Hoare Logic: Proving Programs Correct

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich
Reading: C.A.R. Hoare, An Axiomatic Basis for Computer Programming
Some presentation ideas from a lecture by K. Rustan M. Leino

Testing and Proofs

- **Testing**
 - Observable properties
 - Verify program for one execution
 - Manual development with automated regression
 - Most practical approach now

- **Proofs**
 - Any program property
 - Verify program for all executions
 - Manual development with automated proof checkers
 - May be practical for small programs in 10-20 years

- So why learn about proofs if they aren’t practical?
 - Proofs tell us how to *think* about program correctness
 - Important for development, inspection
 - Foundation for static analysis tools
 - These are just simple, automated theorem provers
 - Many are practical today!
How would you argue that this program is correct?

```c
float sum(float *array, int length) {
    float sum = 0.0;
    int i = 0;
    while (i < length) {
        sum = sum + array[i];
        i = i + 1;
    }
    return sum;
}
```

Function Specifications

- **Predicate**: a boolean function over program state
 - i.e. an expression that returns a boolean
 - We often use mathematical symbols as well as program text
- **Examples**
 - \(x = 3 \)
 - \(y > x \)
 - \((x \neq 0) \Rightarrow (y+z = w) \)
 - \(s = \sum_{i=1}^{n} a[i] \)
 - \(\forall i \in 1..n . a[i] > a[i-1] \)
 - true
Function Specifications

- Contract between client and implementation
 - Precondition:
 - A predicate describing the condition the function relies on for correct operation
 - Postcondition:
 - A predicate describing the condition the function establishes after correctly running
 - Correctness with respect to the specification
 - If the client of a function fulfills the function’s precondition, the function will execute to completion and when it terminates, the postcondition will be true
 - What does the implementation have to fulfill if the client violates the precondition?
 - A: Nothing. It can do anything at all.

/*@
 requires len >= 0 && array.length = len
 @
 ensures \result ==
 @ (\sum int j; 0 <= j && j < len; array[j])
 @*/
float sum(int array[], int len) {
 float sum = 0.0;
 int i = 0;
 while (i < length) {
 sum = sum + array[i];
 i = i + 1;
 }
 return sum;
}
Hoare Triples

- Formal reasoning about program correctness using pre- and postconditions
- Syntax: \{P\} S \{Q\}
 - P and Q are predicates
 - S is a program
- If we start in a state where P is true and execute S, then S will terminate in a state where Q is true

Hoare Triple Examples

- \{ true \} x := 5 \{ x=5 \}
- \{ x = y \} x := x + 3 \{ x = y + 3 \}
- \{ x > -1 \} x := x * 2 + 3 \{ x > 1 \}
- \{ x=a \} if (x < 0) then x := -x \{ x=|a| \}
- \{ false \} x := 3 \{ x = 8 \}
- \{ x < 0 \} while (x!=0) x := x-1 \}
 - no such triple!
Strongest Postconditions

- Here are a number of valid Hoare Triples:
 - \{x = 5\} x := x * 2 \{ true \}
 - \{x = 5\} x := x * 2 \{ x > 0 \}
 - \{x = 5\} x := x * 2 \{ x = 10 \ || \ x = 5 \}
 - \{x = 5\} x := x * 2 \{ x = 10 \}
 - All are true, but this one is the most useful
 - x=10 is the strongest postcondition

- If \{P\} S \{Q\} and for all Q’ such that \{P\} S \{Q’\},
 Q \Rightarrow Q’, then Q is the strongest postcondition
 of S with respect to P
 - check: x = 10 \Rightarrow true
 - check: x = 10 \Rightarrow x > 0
 - check: x = 10 \Rightarrow x = 10 \ || \ x = 5
 - check: x = 10 \Rightarrow x = 10

Weakest Preconditions

- Here are a number of valid Hoare Triples:
 - \{x = 5 \ && \ y = 10\} z := x / y \{ z < 1 \}
 - \{x < y \ && \ y > 0\} z := x / y \{ z < 1 \}
 - \{y \neq 0 \ && \ x / y < 1\} z := x / y \{ z < 1 \}
 - All are true, but this one is the most useful because it
 allows us to invoke the program in the most general
 condition
 - y \neq 0 \ && \ x / y < 1 is the weakest precondition

- If \{P\} S \{Q\} and for all P’ such that \{P’\} S \{Q\},
 P’ \Rightarrow P, then P is the weakest precondition
 wp(S,Q) of S with respect to Q
Hoare Triples and Weakest Preconditions

- \{P\} S \{Q\} holds if and only if \(P \Rightarrow wp(S, Q) \)
 - In other words, a Hoare Triple is still valid if the precondition is stronger than necessary, but not if it is too weak
- Question: Could we state a similar theorem for a strongest postcondition function?
 - e.g. \{P\} S \{Q\} holds if and only if \(sp(S, P) \Rightarrow Q \)
 - A: Yes, but it’s harder to compute

Hoare Logic Rules

- Assignment
 - \{ P \} x := 3 \{ x+y > 0 \}
 - What is the weakest precondition \(P \)?
 - What is most general value of \(y \) such that \(3 + y > 0 \)?
 - \(y > -3 \)
Hoare Logic Rules

• Assignment
 • \{ P \} x := 3 * y + z \{ x * y - z > 0 \}
 • What is the weakest precondition P?

Hoare Logic Rules

• Assignment
 • \{ P \} x := 3 \{ x + y > 0 \}
 • What is the weakest precondition P?

• Assignment rule
 • \wp(x := E, P) = [E/x] P
 • Resulting triple: \{ [E/x] P \} x := E \{ P \}
 • \[3 / x\] (x + y > 0)
 • = (3) + y > 0
 • = y > -3
Hoare Logic Rules

• Assignment
 • \{ P \} x := 3*y + z \{ x * y - z > 0 \}
 • What is the weakest precondition P?

• Assignment rule
 • wp(x := E, P) = [E/x] P
 • [3*y+z / x] (x * y – z > 0)
 = (3*y+z) * y - z > 0
 = 3*y^2 + z*y - z > 0

• Sequence
 • \{ P \} x := x + 1; y := x + y \{ y > 5 \}
 • What is the weakest precondition P?
Hoare Logic Rules

- **Sequence**
 - \{ P \} x := x + 1; y := x + y \{ y > 5 \}
 - What is the weakest precondition P?

- **Sequence rule**
 - \(wp(S;T, Q) = wp(S, wp(T, Q)) \)
 - \(wp(x:=x+1; y:=x+y, y>5) \)
 - \(= wp(x:=x+1, wp(y:=x+y, y>5)) \)
 - \(= wp(x:=x+1, x+y>5) \)
 - \(= x+1+y>5 \)
 - \(= x+y>4 \)

Hoare Logic Rules

- **Conditional**
 - \{ P \} if \(x > 0 \) then \(y := z \) else \(y := -z \) \{ y > 5 \}
 - What is the weakest precondition P?
Hoare Logic Rules

- Conditional
 - \{ P \} if \(x > 0 \) then \(y := z \) else \(y := -z \) \{ y > 5 \}
 - What is the weakest precondition \(P \)?

- Conditional rule
 - \(wp(\text{if } B \text{ then } S \text{ else } T, Q) \)
 - \(= B \Rightarrow wp(S,Q) \&\& \neg B \Rightarrow wp(T,Q) \)
 - \(wp(\text{if } x>0 \text{ then } y:=z \text{ else } y:=-z, y>5) \)
 - \(= x>0 \Rightarrow wp(y:=z,y>5) \&\& x\leq0 \Rightarrow wp(y:=-z,y>5) \)
 - \(= x>0 \Rightarrow z > 5 \&\& x\leq0 \Rightarrow -z > 5 \)
 - \(= x>0 \Rightarrow z > 5 \&\& x\leq0 \Rightarrow z < -5 \)

Hoare Logic Rules

- Loops
 - \{ P \} while (i < x) f=f*i; i := i + 1 \{ f = x! \}
 - What is the weakest precondition \(P \)?
Proving loops correct

• First consider *partial correctness*
 • The loop may not terminate, but if it does, the postcondition will hold
• \{P\} while B do S \{Q\}
 • Find an invariant \(\text{Inv} \) such that:
 • \(P \Rightarrow \text{Inv} \)
 • The invariant is initially true
 • \(\{ \text{Inv} \land B \} S \{ \text{Inv} \} \)
 • Each execution of the loop preserves the invariant
 • \((\text{Inv} \land \neg B) \Rightarrow Q \)
 • The invariant and the loop exit condition imply the postcondition
 • *Why do we need each condition?*

Loop Example

• Prove array sum correct
 \{ N \geq 0 \}
 \begin{align*}
 & j := 0; \\
 & s := 0;
 \end{align*}

 while \(j < N \) do
 \begin{align*}
 & j := j + 1; \\
 & s := s + a[j];
 \end{align*}
 end
 \{ s = (\sum_{i} | 0 \leq i < N \cdot a[i]) \}
Loop Example

- Prove array sum correct

\[
\{ N \geq 0 \}
\]
\[
j := 0;
\]
\[
s := 0;
\]
\[
\{ 0 \leq j \leq N \text{ && } s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}
\]
while \(j < N \) do
\[
\{ 0 \leq j \leq N \text{ && } s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \text{ && } j < N \}
\]
\[
j := j + 1;
\]
\[
s := s + a[j];
\]
\[
\{ 0 \leq j \leq N \text{ && } s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}
\] end
\[
\{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \}
\]

Proof Obligations

- Invariant is initially true

\[
\{ N \geq 0 \}
\]
\[
j := 0;
\]
\[
s := 0;
\]
\[
\{ 0 \leq j \leq N \text{ && } s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}
\]
- Invariant is maintained

\[
\{ 0 \leq j \leq N \text{ && } s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \text{ && } j < N \}
\]
\[
j := j + 1;
\]
\[
s := s + a[j];
\]
\[
\{ 0 \leq j \leq N \text{ && } s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}
\]
- Invariant and exit condition implies postcondition

\[
0 \leq j \leq N \text{ && } s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \text{ && } j \geq N
\]
\[
\Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i])
\]
Proof Obligations

- Invariant is initially true

 \[
 \{ N \geq 0 \} \\
 \{ 0 \leq 0 \leq N \land \& \& 0 = (\Sigma i | 0 \leq i < 0 \cdot a[i]) \} \quad \text{// by assignment rule} \\
 j := 0; \\
 \{ 0 \leq j \leq N \land \& \& 0 = (\Sigma i | 0 \leq i < j \cdot a[i]) \} \quad \text{// by assignment rule} \\
 s := 0; \\
 \{ 0 \leq j \leq N \land \& \& s = (\Sigma i | 0 \leq i < j \cdot a[i]) \}
 \]

- Need to show that:

 \[
 (N \geq 0) \Rightarrow (0 \leq 0 \leq N \land \& \& 0 = (\Sigma i | 0 \leq i < 0 \cdot a[i])) \\
 = (N \geq 0) \Rightarrow (0 \leq N \land \& \& 0 = 0) \quad \text{// 0 \leq 0 is true, empty sum is 0} \\
 = (N \geq 0) \Rightarrow (0 \leq N) \quad \text{// 0=0 is true, P \& \& true is P} \\
 = \text{true}
 \]

Proof Obligations

- Invariant is maintained

 \[
 \{ 0 \leq j \leq N \land \& \& s = (\Sigma i | 0 \leq i < j \cdot a[i]) \land \& \& j < N \} \\
 \{ 0 \leq j + 1 \leq N \land \& \& s + a[j+1] = (\Sigma i | 0 \leq i < j+1 \cdot a[i]) \} \quad \text{// by assignment rule} \\
 j := j + 1; \\
 \{ 0 \leq j \leq N \land \& \& s + a[j] = (\Sigma i | 0 \leq i < j \cdot a[i]) \} \quad \text{// by assignment rule} \\
 s := s + a[j]; \\
 \{ 0 \leq j \leq N \land \& \& s = (\Sigma i | 0 \leq i < j \cdot a[i]) \}
 \]

- Need to show that:

 \[
 (0 \leq j \leq N \land \& \& s = (\Sigma i | 0 \leq i < j \cdot a[i]) \land \& \& j < N) \\
 \Rightarrow (0 \leq j + 1 \leq N \land \& \& s + a[j+1] = (\Sigma i | 0 \leq i < j+1 \cdot a[i])) \\
 = (0 \leq j \leq N \land \& \& s = (\Sigma i | 0 \leq i < j \cdot a[i])) \\
 \Rightarrow (-1 \leq j < N \land \& \& s + a[j+1] = (\Sigma i | 0 \leq i < j \cdot a[i]) + a[j]) \quad \text{// simplify bounds of j} \\
 = (0 \leq j < N \land \& \& s = (\Sigma i | 0 \leq i < j \cdot a[i])) \\
 \Rightarrow (-1 \leq j < N \land \& \& s + a[j+1] = (\Sigma i | 0 \leq i < j \cdot a[i]) + a[j]) \quad \text{// separate last element} \\
 \text{// we have a problem – we need a[j+1] and a[j] to cancel out}
 \]
Where's the error?

- Prove array sum correct

\[
\begin{align*}
\{ \text{N } \geq 0 \} \\
j &:= 0; \\
s &:= 0; \\
\text{while (j < N) do} \\
\quad j &:= j + 1; \\
\quad s &:= s + a[j]; \\
\text{end} \\
\{ \text{s }= \langle \sum i \mid 0 \leq i < N \cdot a[i] \rangle \}
\end{align*}
\]

Need to add element before incrementing j

Corrected Code

- Prove array sum correct

\[
\begin{align*}
\{ \text{N } \geq 0 \} \\
j &:= 0; \\
s &:= 0; \\
\text{while (j < N) do} \\
\quad s &:= s + a[j]; \\
\quad j &:= j + 1; \\
\text{end} \\
\{ \text{s }= \langle \sum i \mid 0 \leq i < N \cdot a[i] \rangle \}
\end{align*}
\]
Proof Obligations

• Invariant is maintained
 \(0 \leq j \leq N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \land j < N\)
 \(0 \leq j + 1 \leq N \land \land s + a[j] = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i])\) // by assignment rule
 \(s := s + a[j];\)
 \(0 \leq j + 1 \leq N \land \land s = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i])\) // by assignment rule
 \(j := j + 1;\)
 \(0 \leq j \leq N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i])\)

• Need to show that:
 \(0 \leq j \leq N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \land j < N\)
 \(\Rightarrow (0 \leq j + 1 \leq N \land \land s + a[j] = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i])\)
 \(= (0 \leq j < N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]))\)
 \(\Rightarrow (-1 \leq j < N \land \land s + a[j] = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i])\) // simplify bounds of j
 \(= (0 \leq j < N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]))\)
 \(\Rightarrow (-1 \leq j < N \land \land s + a[j] = (\Sigma i \mid 0 \leq i < j \cdot a[i]) + a[j])\) // separate last part of sum
 \(= (0 \leq j < N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]))\)
 \(\Rightarrow (-1 \leq j < N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]))\) // subtract a[j] from both sides
 \(= true\) // 0 ≤ j ⇒ -1 ≤ j

Proof Obligations

• Invariant and exit condition implies postcondition
 \(0 \leq j \leq N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \land j \geq N\)
 \(\Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i])\)
 \(= 0 \leq j \land \land j = N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i])\)
 \(\Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i])\)
 // because (j ≤ N \land \land j ≥ N) = (j = N)
 \(= 0 \leq N \land \land s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i])\)
 // by substituting N for j, since j = N
 \(= true\) // because P \land \land Q ⇒ Q
Invariant Intuition

- For code without loops, we are simulating execution directly
 - We prove one Hoare Triple for each statement, and each statement is executed once
- For code with loops, we are doing one proof of correctness for multiple loop iterations
 - Don’t know how many iterations there will be
 - Need our proof to cover all of them
 - The invariant expresses a general condition that is true for every execution, but is still strong enough to give us the postcondition we need
 - This tension between generality and precision can make coming up with loop invariants hard

Total Correctness for Loops

- \{P\} while B do S \{Q\}
- Partial correctness:
 - Find an invariant Inv such that:
 - \(P \Rightarrow Inv\)
 - The invariant is initially true
 - \(\{Inv \&\& B\} S \{Inv\}\)
 - Each execution of the loop preserves the invariant
 - \((Inv \&\& \neg B) \Rightarrow Q\)
 - The invariant and the loop exit condition imply the postcondition
- Total correctness
 - Loop will terminate
Termination

- How would you prove this program terminates?
 \[
 \{ N \geq 0 \} \\
 j := 0; \\
 s := 0; \\
 \]
 while (j < N) do \\
 \[
 s := s + a[j]; \\
 j := j + 1; \\
 \]
 end \\
 \[
 \{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \} \\
 \]

Total Correctness for Loops

- \{P\} while B do S \{Q\}
- Partial correctness:
 - Find an invariant Inv such that:
 - \(P \Rightarrow Inv \)
 - The invariant is initially true
 - \(\{ Inv \land \neg B \} \Rightarrow \neg Inv \)
 - Each execution of the loop preserves the invariant
 - \((Inv \land \neg B) \Rightarrow Q \)
 - The invariant and the loop exit condition imply the postcondition
- Termination bound
 - Find a variant function \(v \) such that:
 - \(v \) is an upper bound on the number of loops remaining
 - \((Inv \land B) \Rightarrow v > 0 \)
 - The variant function evaluates to a finite integer value greater than zero at the beginning of the loop
 - \(\{ Inv \land B \land v=V \} \Rightarrow (v < V) \)
 - The value of the variant function decreases each time the loop body executes (here \(V \) is a constant)
Total Correctness Example

while (j < N) do
 \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \&\& j < N\}
 s := s + a[j];
 j := j + 1;
 \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}
end
• Variant function for this loop?
 • N-j

Guessing Variant Functions

• Loops with an index
 • N \pm i
 • Applies if you always add or always subtract a constant, and if you exit the loop when the index reaches some constant
 • Use N-i if you are incrementing i, N+i if you are decrementing i
 • Set N such that N \pm i \leq 0 at loop exit

• Other loops
 • Find an expression that is an upper bound on the number of iterations left in the loop
Additional Proof Obligations

- Variant function for this loop: N-j
- To show: variant function initially positive
 \[(0 \leq j \leq N \land s = (\sum_{i=0}^{j} a[i]) \land j < N) \Rightarrow N-j > 0 \]
- To show: variant function is decreasing
 \[\{0 \leq j \leq N \land s = (\sum_{i=0}^{j} a[i]) \land j < N \land N-j = V\} \]
 \[s := s + a[j]; \]
 \[j := j + 1; \]
 \[\{N-j < V\} \]

Additional Proof Obligations

- To show: variant function initially positive
 \[(0 \leq j \leq N \land s = (\sum_{i=0}^{j} a[i]) \land j < N) \Rightarrow N-j > 0 \]
 \[= (0 \leq j \leq N \land s = (\sum_{i=0}^{j} a[i]) \land j < N) \Rightarrow N > j \quad // added j to both sides \]
 \[= \text{true} \quad // (N > j) = (j < N), P \land Q \Rightarrow P \]
Additional Proof Obligations

- To show: variant function is decreasing
 \(\{0 \leq j \leq N ~\&\&~ s = (\sum_i |0 \leq i < j \cdot a[i]) ~\&\&~ j < N ~\&\&~ N-j = V\} \)
 \(\{N-(j+1) < V\} \) // by assignment
 \(s := s + a[j] \);
 \(\{N-(j+1) < V\} \) // by assignment
 \(j := j + 1 \);
 \(\{N-j < V\} \)
- Need to show:
 \(\{0 \leq j \leq N ~\&\&~ s = (\sum_i |0 \leq i < j \cdot a[i]) ~\&\&~ j < N ~\&\&~ N-j = V\} \)
 \(\Rightarrow \{N-(j+1) < V\} \)
 Assume \(0 \leq j \leq N ~\&\&~ s = (\sum_i |0 \leq i < j \cdot a[i]) ~\&\&~ j < N ~\&\&~ N-j = V \)
 By weakening we have \(N-j = V \)
 Therefore \(N-j-1 < V \)
 But this is equivalent to \(N-(j+1) < V \), so we are done.

Factorial

\(\{ N \geq 1 \} \)
\(k := 1 \)
\(f := 1 \)
while \((k < N) \) do
 \(f := f \cdot k \)
 \(k := k + 1 \)
end
\(\{ f = N! \} \)
- Loop invariant?
- Variant function?
Factorial

\{ N \geq 1 \}
\begin{align*}
& k := 1 \\
& f := 1 \\
\text{while } (k < N) \text{ do} \\
& \quad k := k + 1 \\
& \quad f := f \times k \\
\end{align*}
\text{end}
\{ f = N! \}

- Loop invariant?
 - \(f = k! \text{ } \&\& \text{ } 0 \leq k \leq N \)
- Variant function?
 - \(N-k \)

Factorial

\{ N \geq 1 \}
\begin{align*}
& 1 = 1! \text{ } \&\& \text{ } 0 \leq 1 \leq N \\
& k := 1 \\
& 1 = k! \text{ } \&\& \text{ } 0 \leq k \leq N \\
& f := 1 \\
& f = k! \text{ } \&\& \text{ } 0 \leq k \leq N \\
\text{while } (k < N) \text{ do} \\
& \quad \{ f = k! \text{ } \&\& \text{ } 0 \leq k \leq N \text{ } \&\& \text{ } k < N \text{ } \&\& \text{ } k \leq N \} \\
& \quad \{ f \times (k+1) = (k+1)! \text{ } \&\& \text{ } 0 \leq k+1 \leq N \text{ } \&\& \text{ } N \times (k+1) < V \} \\
& \quad k := k + 1 \\
& \quad \{ f \times k = k! \text{ } \&\& \text{ } 0 \leq k \leq N \text{ } \&\& \text{ } N \times k < V \} \\
& \quad f := f \times k \\
& \quad \{ f = k! \text{ } \&\& \text{ } 0 \leq k \leq N \text{ } \&\& \text{ } N \times k < V \} \\
\end{align*}
\text{end}
\{ f = k! \text{ } \&\& \text{ } 0 \leq k \leq N \text{ } \&\& \text{ } k \geq N \}
\{ f = N! \}
Factorial Obligations (1)

\[(N \geq 1) \Rightarrow (1 = 1! \land 0 \leq 1 \leq N) \]
\[= (N \geq 1) \Rightarrow (1 \leq N) \quad // \text{because } 1 = 1! \text{ and } 0 \leq 1 \]
\[= \text{true} \quad // \text{because } (N \geq 1) = (1 \leq N) \]

Factorial Obligations (2)

\[f = k! \land 0 \leq k \leq N \land k < N \land N-k = V \]
\[\Rightarrow (f+(k+1) = (k+1)! \land 0 \leq k+1 \leq N \land N-(k+1) < V) \]
\[= (f = k! \land 0 \leq k < N \land N-k = V) \]
\[\Rightarrow (f+(k+1) = k!(k+1) \land 0 \leq k+1 \leq N \land N-k-1 < V) \]
// by simplification and \((k+1)! = k!(k+1)\)
Assume \((f = k! \land 0 \leq k < N \land N-k = V)\)
Check each RHS clause:
 \(f = k! \land 0 \leq k < N \land N-k = V\)
 // division by \((k+1)\) (nonzero by assumption)
 \[= \text{true} \quad // \text{by assumption} \]
 \[0 \leq k+1 \]
 \[= \text{true} \quad // \text{by assumption that } 0 \leq k\]
 \[k+1 \leq N \]
 \[= \text{true} \quad // \text{by assumption that } k < N\]
 \[N-k-1 < V \]
 \[= N-k-1 < N-k \quad // \text{by assumption that } N-k = V\]
 \[= N < k \quad // \text{by addition of } k\]
 \[= \text{true} \quad // \text{by properties of } <\]
Factorial Obligations (3)

\[(f = k! \&\& 0 \leq k \leq N \&\& k \geq N) \Rightarrow (f = N!\)]

Assume \(f = k!\) \&\& \(0 \leq k \leq N\) \&\& \(k \geq N\)

Then \(k=N\) by \(k \leq N\) \&\& \(k \geq N\)

So \(f = N!\) by substituting \(k=N\)