
Protocol Analysis

17-654/17-764

Analysis of Software Artifacts

Kevin Bierhoff

2

Take-Aways

� Protocols define temporal ordering of events

� Can often be captured with state machines

� Protocol analysis needs to pay attention to

� Interprocedural control flow

� Aliasing of objects

� Disjoint sets and capabilities can handle

aliasing correctly

3

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

4

Streams can be read until

they’re closed

public interface InputStream {

public int read();

public void close();

}

Stream sample client
InputStream f = new FileInputStream(…);

int c = f.read(); // read first character

while(c >= 0) {

// do something with c

c = f.read(); // read next character

}

f.close();

Stream protocol state machine

open

closed

close()

read()

5

Sockets go through a well-

defined sequence of states

@States({“created”, “connected”, “closed”})

public class Socket {

@Creates(“created”)

public Socket()

@ChangesState(“created”, “connected”)

public void connect(…)

@InState(“connected”)

public InputStream getInputStream()

@InState(“connected”)

public OutputStream getOutputStream()

@ChangesState(“connected”, “closed”)

public void close();

}

Java Socket protocol

created

connected

close()

closed

connect(…) getInputStream()

6

Java Applets have a funny

back edge

Java Applet protocol

created

initialized
start()

running

init()

destroyed

stopped
stop()

destroy()

start()

Example based on: G. Fairbanks, D. Garlan & W. Scherlis. Design fragments make
using frameworks easier. In Proceedings of OOPSLA’06, pp. 75-88. ACM Press, 2006.

7

Crystal3 analyses have the

same back edge

Crystal3 method analysis protocol

created

beforeAllMethods()

running

done

afterAllMethods()

beforeAllMethods()

analyzeMethod(…)

Unawareness of this back edge can lead to outdated error reports

8

Protocols constrain temporal

ordering of events

� Protocols define restrictions on which
methods can be called when

� Clients have to follow protocols in
order to avoid runtime errors

� Protocols can often be modeled as
state machines

9

Protocol documentation…

� Protocols are informally documented

� Example: java.io.InputStream

� Detailed Javadoc for every method

� Example: java.net.Socket

� Exceptions describe when methods cannot

be called

� Not always complete and precise

10

…formalized in various ways

…

created : connect(…) -> connected

connected :

getInputStream() -> connected

| close() -> closed

State machine defined in

one place (similar to Metal)

connect (getInputStream | getOutputStream)* closeRegular expressions

@States({“created”, “connected”, “closed”})

public class Socket {

@Creates(“created”) public Socket()

@ChangesState(“created”, “connected”)

public void connect(…) …

Annotations on classes and

methods

Socket exampleFormalization

We will use annotations on classes and methods

11

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

12

Protocol analysis tracks states

of variables

� What if sock is assigned to another variable?

� What if sock is assigned to a field?

� What if sock is passed to another method?

Socket sock = new Socket();
sock.connect(new InetSocketAddress(

"www.cs.cmu.edu",80));
InputStream in = sock.getInputStream();
sock.close();

Post-state
Created

Connected
Connected
Closed

13

Calling other methods

public class SocketClient {

private String readSocket(Socket s) {

InputStream in = s.getInputStream();

… // read and return string

}

public String readRemoteData() {

Socket sock = new Socket();

sock.connect(new InetSocketAddress(

"www.cs.cmu.edu",80));

String result = readSocket(sock);

sock.close();

return result;

} }

Need to handle inter-procedural control flow

Is this call ok?

Is this call ok?

14

Interprocedural analysis

techniques

� Need to handle inter-procedural control flow

� Every method call could potentially affect

analysis results

� Need to figure out what happens in called

methods

� Some possible approaches

� Default assumptions

� Interprocedural CFG

� More annotations

15

Defaults too inflexible for

protocol analysis

� Simple approach: default assumptions
� Assumption about method parameters and result

� Check that call and return sites respect the default

� Example: Maybe-null assumption in null analysis (HW6)

� Assume that method parameters may be null

� Check methods with that assumption

� All call and return sites automatically maybe-null

� No reasonable default for protocol analysis
� “Any” state too imprecise (lots of false positives)

� Optimistic assumption (a particular state) might be wrong
a lot of the times

16

Interprocedural CFG “inlines”

method calls

Interprocedural CFG

� Pretend that called
methods are part of
current method

� Every method
appears once

Problem: scalability

� One big CFG for the
entire program

BEGIN

sock = new Socket();

sock.connect(…);

readSocket(sock);

sock.close();

END

BEGIN

s.getInputStream();

END

…

Interprocedural CFG hard to use at scale

17

Assume and Check

Annotations

� Annotations
� Starting dataflow value for all parameters

� Dataflow value for result

� Verification
� Initial info: starting value for parameters

� Verify result ⊑ annotationresult

� Ending value for result obeys annotation

� Verify arg ⊑ annotationarg

� Actual arguments obey annotations on formal
parameter

String readSocket(
@InState(“connected”) Socket s) {

InputStream in = s.getInputStream();

… }

18

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

19

Looks familiar? Aliasing is a

problem that you can easily have

Aliasing = multiple names for the same thing

--

t2.inB();

// t1 alias t2 in b, t3 in c

t3.bToC();

t1.aToB();

t1 = t2;

// t3 in b, t1 alias t2 in a

t1.aToB();

// t1 alias t3 in b, t2 in a

SimpleProtocolTest t3 = t1;

--SimpleProtocolTest t2 = new SimpleProtocolTest();

--SimpleProtocolTest t1 = new SimpleProtocolTest();

t1 t2 t3

Spurious warnings

a

aa

aaa

b aa

aaa

b aa

ERRb a

ERRb

20

Track local aliases as disjoint

sets (aka equivalence classes)

� Track aliased variables as disjoint sets
� Lattice information

� A = { S1, …, Sn }

� S1, …, Sn disjoint sets of variables

� Copy instructions x = y
� Get y’s aliases S ∈ A where y ∈ S

� Add x to S (and remove it from any other set)

� Object allocations x = new C(…)
� Remove x from existing sets
� A = A ∪ { x } (i.e., add new set with just x)

� (Need to also set initial state for x)

� Track state for each disjoint set
� Method calls x = y.m(…)

� Get y’s aliases S = { y1, …, yn } where y ∈ S

� Update S’s state according to m’s spec

21

Disjoint sets correctly handle

local aliases in example

States of aliased variables are updated correctly

--

t2.inB();

// t1 alias t2 in b, t3 in c

t3.bToC();

t1.aToB();

t1 = t2;

// t3 in b, t1 alias t2 in a

t1.aToB();

// t1 alias t3 in b, t2 in a

SimpleProtocolTest t3 = t1;

--SimpleProtocolTest t2 = new SimpleProtocolTest();

--SimpleProtocolTest t1 = new SimpleProtocolTest();

t1 t2 t3aliasing

a

aa

aaa

b ba

baa

b bb

b b

b

c

b c

{t1}

{t1}, {t2}

{t1,t3}, {t2}

{t1,t3}, {t2}

{t1,t2}, {t3}

{t1,t2}, {t3}

{t1,t2}, {t3}

{t1,t2}, {t3}

22

Calling other methods can

affect fields

public class AliasingFun() {

@InState(“b”) private SimpleProtocolTest t2;

private void callField() {

t2.inB();

}

public void aliasingFun() {

SimpleProtocolTest t1 = new SimpleProtocolTest();

t1.aToB();

internal(t1);

t1.bToC();

callField();

…

}

Fields hold on to objects beyond duration of methods

private void internal(@InState(“b”) SimpleProtocolTest t) {

Field annotation makes this call go through

t2 = t;

}

This call violates t2’s annotation

t2 is actually in “c” when called

t2 aliases t and t1

Our approach so far

does not issue

any warnings

23

Aliasing through fields different

from local variables

� Aliasing in local variables affects current

method only

� We can handle that with disjoint sets

� Fields hold on to objects

� Assignment to field in one method can affect

other methods

� Changing state of local variable can

inadvertently change state of field

� Other situations with similar problems?

24

Capabilities track whether an

object is accessible

� Capabilities: Access objects only if not
stored in a field

� Exactly one capability for each object
� Can call methods only if capability available

� x.m(…) only valid if caller has capability for x

� Capability created with new
� Field assignments x.f = y

� “Capture” capability for y

� Annotate methods with capabilities
� @Captured if capability needed but not returned
� @Borrowed if capability needed and returned

25

Capabilities correctly handle field

assignments and method calls

public class AliasingFun() {

@InState(“b”) private SimpleProtocolTest t;

private void callField() {

t.inB();

}

public void aliasingFun() {

SimpleProtocolTest t1 = new SimpleProtocolTest();

t1.aToB();

internal(t1);

t1.bToC();

callField();

…

}

private void internal(@Captured SimpleProtocolTest t) {

t2 = t;

}

private void internal(@Borrowed SimpleProtocolTest t) {

}

Error: No

capability for t1

26

Disjoint sets and capabilities

can handle aliasing correctly

� Track disjoint sets of local aliases

� Handle copies between local variables

� One capability for each object

� Handle assignments to fields

� Capability annotations on methods

� Handle aliasing during method calls

F. Smith, D. Walker & G. Morrisett. Alias types. In European Symposium on

Programming, pages 366-381. Springer, 2000.

R. DeLine & M. Fähndrich. Enforcing high-level protocols in low-level

software. In ACM Conference on Programming Language Design and

Implementation, pages 59-69, 2001.

27

Capabilities are sometimes not

enough
out

in

within eof closed

• Source calls receive(byte)

to deposit characters

• ReceivedLast() signals no

more characters

• Reader calls read() to

retrieve characters

• Reader calls close() to close

the pipe

• Unsafe to call close() before

source finished

in out

eofwithin

read() returns -1

closed

Pipe is modified through two independent aliases

Pipe

28

Permissions for shared access

� Permissions generalize capabilities
� Permission required for all object access
� Many permissions to the same object can exist

� But keep track of how many permissions there
are

� Unique(x) is the only existing permission for
object referenced by x
� Similar to capability for x

� Half(x) is one of two permissions for x
� Half(x) + Half(x) = Unique(x)

29

Permissions in pipe example
out

in

within eof closed

• Source calls receive(byte)

to deposit characters

• ReceivedLast() signals no

more characters

• Reader calls read() to

retrieve characters

• Reader calls close() to close

the pipe

• Unsafe to call close() before

source finished

in out

eofwithin

read() returns -1

closed

Pipe

Half(this)

Half + Half => Unique

Half(snk)

Half(s)

Unique(s)

Change to eof with Half permission

Unique permission needed to close the pipe

30

Agenda

� Example protocols

� Modeling protocols as state machines

� Protocol analysis approaches

� Annotations vs. interprocedural analyses

� Aliasing challenges

� Tracking aliases in methods and fields

� Protocol implementation checking

31

Implementation checking

tracks changes to fields

� So far we looked at clients
� Code calling methods on sockets etc.

� Assumed that declared protocol was right

� Checking protocol implementations
� Does this change state as declared?

� State changes = field manipulations
� Protocols ensure that “something” happened

already (or has not happened yet)

� “Something” can (only) be recorded in fields

32

State invariants define states

in terms of fields

� State invariants
constrain fields…
� Constraints on field

values

� E.g., greater than zero
or non-null

� Expected state of
referenced object

� E.g., underlying
stream should be
“within” or “eof”

� …but only while in a
particular state

public class BufferedInputStream {

private InputStream in;

private byte[] buffer;

private int pos, count;

// open: in instate (within | eof) &&

buffer != null &&
0 � pos � count &&

count � buffer.length

// closed: in == null && buffer == null

Buffered

stream

“Underlying”

stream

client in

close() will change fields

accordingly

33

Don’t forget aliasing…!

public class BufferedInputStream {

private InputStream in;

private byte[] buffer;

private int pos, count;

// open: in instate (within | eof) &&

buffer != null &&
0 � pos � count &&

count � buffer.length

// closed: in == null && buffer == null

Buffered

stream

“Underlying”

stream

client

What happens when the
underlying stream calls
back to the buffer?

As it turns out, such a

re-entrant callback can
violate count’s
invariant, leading to an
access to buffer outside
its bounds.

in

