Protocol Analysis

17-654/17-764
Analysis of Software Artifacts
Kevin Bierhoft

[Take-Aways

Protocols define temporal ordering of events
o (Can often be captured with state machines
Protocol analysis needs to pay attention to

o Interprocedural control flow

o Aliasing of objects

Disjoint sets and capabilities can handle
aliasing correctly

o Modeling protocols as state machines
= Protocol analysis approaches

o Annotations vs. interprocedural analyses
= Aliasing challenges

o Tracking aliases in methods and fields
= Protocol implementation checking

Streams can be read until

they're closed

public interface InputStream {
public int read();
public void close();

}

Stream sample client
InputStream f = new FilelnputStream(...);
int c = f.read(); // read first character
while(c >= 0) {

// do something with ¢

c =f.read(); // read next character

}

f.close();

Stream protocol state machine

X -

close()

A 4

0

Sockets go through a well-
defined sequence of states

@States({“created”, “connected”, “closed”})

ublic class Socket
° @Creates(“createo{l”) Java Socket protocol

public Socket() \O

@ChangesState(“created”, “connected”)

public void connect(...) connectf(...) getlnputStream()
@InState(“connected”)

public InputStream getlnputStream()

@InState(“connected”) close()

public OutputStream getOutputStream()
@ChangesState(“connected”, “closed”) O

public void close();

Java Applets have a funny
back edge

created

initialized running

destroyed

Example based on: G. Fairbanks, D. Garlan & W. Scherlis. Design fragments make
using frameworks easier. In Proceedings of OOPSLA’06, pp. 75-88. ACM Press, 2006.

Crystal3 analyses have the
| same back edge

created

running

done

Unawareness of this back edge can lead to outdated error reports

Protocols constrain temporal
[ordering of events

Protocols define restrictions on which
methods can be called when

Clients have to follow protocols in
order to avoid runtime errors

Protocols can often be modeled as
state machines

[Protocol documentation...

Protocols are informally documented
o Example: java.io.lInputStream
Detailed Javadoc for every method

o Example: java.net.Socket

Exceptions describe when methods cannot
be called

Not always complete and precise

...formalized in various ways

Formalization Socket example

Annotations on classes and | @States({“created”, “connected”, “closed’})
methods public class Socket {

@Creates(“created”) public Socket()
@ChangesState(“created”, “connected”)
public void connecit(...) ...

Regular expressions connect (getlnputStream | getOutputStream)* close

State machine defined in created : conneci(...) -> connected
one place (similar to Metal) | connected :

getlnputStream() -> connected
| close() -> closed

We will use annotations on classes and methods

10

[Agenda]

= Example protocols
o Modeling protocols as state machines

m=) Protocol analysis approaches {==
o Annotations vs. interprocedural analyses

= Aliasing challenges
o Tracking aliases in methods and fields

= Protocol implementation checking

11

Protocol analysis tracks states
of variables

Post-state
Socket sock = new Socket(); Created
sock.connect(new InetSocketAddress(
"www.cs.cmu.edu”,80)); Connected
InputStream in = sock.getlnputStream(); Connected
sock.close(); Closed

What if sock is assigned to another variable?
What if sock is assigned to a field?
mm) What if sock is passed to another method? <{am

12

Calling other methods

public class SocketClient {

private String readSocket(Socket s) {
InputStream in = s.getlnputStream();

} ... // read and return string X Is this call ok? |

public String readRemoteData() {
Socket sock = new Socket();

sock.connect(new InetSocketAddress(

"www.cs .cmu.edu",80));

String result 5 readSocket(sock);-
sock.close(); # s this call ok? !

return result;

I

Need to handle inter-procedural control flow

13

|

Interprocedural analysis
techniques

Need to handle inter-procedural control flow

o Every method call could potentially affect
analysis results

o Need to figure out what happens in called
methods

Some possible approaches

o Default assumptions

o Interprocedural CFG

o More annotations

14

Defaults too inflexible for
protocol analysis

Simple approach: default assumptions
o Assumption about method parameters and result
o Check that call and return sites respect the default

o Example: Maybe-null assumption in null analysis (HW6)
Assume that method parameters may be null
Check methods with that assumption
All call and return sites automatically maybe-null

No reasonable default for protocol analysis

o “Any” state too imprecise (lots of false positives)

o Optimistic assumption (a particular state) might be wrong
a lot of the times

15

Interprocedural CFG “inlines”

method calls

Interprocedural CFG

= Pretend that called
methods are part of
current method

= Every method
appears once

Problem: scalability

= One big CFG for the
entire program

BEGIN

A 4

sock = new Socket();

A 4

sock.connect(...);

A 4

readSocket(sock);

BEGIN

~,

s.getlnputStream();

~,

END

L

sock.close();

A 4

END

Interprocedural CFG hard to use at scale

16

Assume and Check

Annotations

String readSocket(
@InState(“connected”) Socket s) {

InputStream in = s.getlnputStream();

Annotations -}

o Starting dataflow value for all parameters
o Dataflow value for result

Verification

o Initial info: starting value for parameters
o Verify result E annotation, o
Ending value for result obeys annotation

o Verify arg E anno’[ationalrg

Actual arguments obey annotations on formal
parameter

17

[Agenda]

= Example protocols
o Modeling protocols as state machines

= Protocol analysis approaches
o Annotations vs. interprocedural analyses

=) Aliasing challenges {=m

o Tracking aliases in methods and fields
= Protocol implementation checking

18

Looks familiar? Aliasing is a
problem that you can easily have

11 12 t3
SimpleProtocolTest t1 = new SimpleProtocolTest(); a
SimpleProtocolTest t2 = new SimpleProtocolTest(); a a
SimpleProtocolTest 13 = t1; a a a
t1.aToB(); b

a a
/[t1 aliast3in b, t2in a

t1 =12;
//13in b, t1 alias t2 in a
t1.aToB();
t3.0ToC();

t2.inB();
//11 aliast2 inb,t3inc

Spurious warnings

ERR

Aliasing = multiple names for the same thing

19

Track local aliases as disjoint
sets (aka equivalence classes)

Track aliased variables as disjoint sets
o Lattice information
A={S1,...,Sn}
S1, ..., Sn disjoint sets of variables
o Copy instructions x = y
Get y's aliases S € Awherey € S
Add x to S (and remove it from any other set)
o Obiject allocations x = new C(...)
Remove x from existing sets
A=Au{x} (i.e., add new set with just x)
(Need to also set initial state for x)

Track state for each disjoint set

o Method calls x =y.m(...)
Gety's aliasesS={y1,...,yn}wherey € S
Update S’s state according to m’s spec

20

Disjoint sets correctly handle
local aliases in example

aliasing t1 t2 {3

SimpleProtocolTest t1 = new SimpleProtocolTest(); {t1}

a
SimpleProtocolTest t2 = new SimpleProtocolTest(); | {t1}, {t2} a| a

a

b

SimpleProtocolTest t3 = t1; {11,134, {t2} a | a
t1.aToB(); (1,13}, {2} a| b
// 11 alias t3 in b, t2in a

t = t2; L3y al a| b
// 13 in b, t1 alias t2 in a

t1.aToB(); {t1,12}, {t8} | b b b
13.6ToC(); 3y b | b | c
£2.inB(): 2L 3y b | b | c

//11 aliast2 inb,t3inc

States of aliased variables are updated correctly

21

Calling other methods can
affect fields

Our approach so far
does not issue
public class AliasingFun() { any warnings

@InState(“b”) private SimpleProtocolTest t2;

private void callField() { B
t2.inB(); jjeld annotation makes this call go through

}

public void aliasingFun()
SimpleProtocolTest t1

t1.aToB();
internal(t1);/Ehis call violates t2’s annotation
t1.0ToC();

callField(); private void internal(@InState(“b”) SimpleProtocolTest 1) {

t2 is actually in “c” when called

} } 2=t i t2 aliases t and t1]

Fields hold on to objects beyond duration of methods

Aliasing through fields different
[from local variables

Aliasing in local variables affects current
method only

o We can handle that with disjoint sets

Fields hold on to objects

o Assignment to field in one method can affect
other methods

o Changing state of local variable can
inadvertently change state of field

Other situations with similar problems?

23

Capabilities track whether an
[object IS accessible

Capabilities: Access objects only if not
stored in a field

Exactly one capability for each object

o Can call methods only if capability available
x.m(...) only valid if caller has capability for x

o Capability created with new
o Field assignments x.f =y
“Capture” capability for y
Annotate methods with capabilities
o @Captured if capability needed but not returned
o @Borrowed if capability needed and returned

24

Capabilities correctly handle field
assignments and method calls

public class AliasingFun() {
@InState(“b”) private SimpleProtocolTest t;

private void callField() {
t.inB();
}
public void aliasingFun() {
SimpleProtocolTest t1 = new SimpleProtocolTest();

t1.aToB();

internal(t1); private void internal(@Borrowed SimpleProtocolTest t) {
t1.bToC(); }

callFj}ld(); private void internal(@Captured SimpleProtocolTest 1) {

t2 =1t;

Error: No

capability for t1

25

sets and capabilities

can handle aliasing correctly

[DiSjOint

Track disjoint sets of local aliases
o Handle copies between local variables

One capability for each object

o Hand

Capabl
o Hand

e assignments to fields

ity annotations on methods
e aliasing during method calls

F. Smith, D. Walker & G. Morrisett. Alias types. In European Symposium on
Programming, pages 366-381. Springer, 2000.

R. DeLine & M. Fahndrich. Enforcing high-level protocols in low-level
software. In ACM Conference on Programming Language Design and
Implementation, pages 59-69, 2001.

26

11

» Source calls receive(byte)

» ReceivedLast() signals no

Capabilities are sometimes not
enough

» Reader calls read() to
retrieve characters

» Reader calls close() to close
the pipe

« Unsafe to call close() before
source finished

to deposit characters

more characters

read() returns -1

Pipe is modified through two independent aliases

[Permissions for shared access

Permissions generalize capabilities
o Permission required for all object access
o Many permissions to the same object can exist

o But keep track of how many permissions there
are

Unique(x) is the only existing permission for
object referenced by x

o Similar to capability for x

Half(x) is one of two permissions for x

o Half(x) + Half(x) = Unique(x)

28

Permissions in pipe example

Pipe -
-
» Source calls receive(byte) » Reader calls read() to
— to deposit characters — retrieve characters
. » ReceivedLast() signals no . » Reader calls close() to close
more characters the pipe
Half(snk) Qut « Unsafe to call close() before
source finished
Half(s)
PRI

Unique(s)
Half + Half => Unique

Half(this)

read() returns -1

Change to eof with Half permission
Unique permission needed to close the pipe

29

[Agenda]

= Example protocols
o Modeling protocols as state machines

= Protocol analysis approaches
o Annotations vs. interprocedural analyses

= Aliasing challenges
o Tracking aliases in methods and fields

mm) Protocol implementation checking ¢=m

30

Implementation checking
[tracks changes to fields

So far we looked at clients
o (Code calling methods on sockets etc.
o Assumed that declared protocol was right

Checking protocol implementations
o Does this change state as declared?

o State changes = field manipulations

Protocols ensure that “something” happened
already (or has not happened yet)

“Something” can (only) be recorded in fields

31

client

R

State invariants

define states

In terms of fields

Buffered
stream

“Underlying”
stream

State invariants
constrain fields...

public class BufferedlnputStream {

private InputStream in;

private byte[] buffer;

private int pos, count;

// open: in instate (within | eof) &&
buffer 1= null &&
0 < pos < count &&
count < buffer.length

// closed: in == null && buffer == null

o Gonstraints on field
values
E.g., greater than zero
or non-null
o Expected state of

referenced object

E.g., underlying
stream should be
“within” or “eof”

...but only while in a

will change fiel

accordingly

particular state
-

flose()

Don't forget aliasing...!

client

Buffered
stream

in

NS

| “Underlying”

stream

public class BufferedInputStream {
private InputStream in;

private byte[] buffer;

private int pos, count;

// open: in instate (within | eof) &&
buffer |= null &&

0 < pos < count &&
count < buffer.length
// closed: in == null && buffer == null

What happens when the

underlying stream calls
back to the buffer?

As it turns out, such a
re-entrant callback can
violate count’s
invariant, leading to an
access to buffer outside
its bounds.

33

