MSIL Unit Test Tool
a hybrid helper

Predicate-based Test . o
1 capture developer knowledge ASAP
Cove rage and Gene ratlon via a strong set of unit tests
to form a specification of the code’s behavior
17-654/17-765 « How
— generate tests based on analysis of MSIL

Analysis of Software Artifacts t :) rVISIL
— symbolic execution + constraint satisfaction
— runtime analysis to check complicated invariants

Jonathan Aldrich

These slides prepared by Thomas Ball, with additional
material from M. Young, A. Memon and MSR’s FSE group.
Used by permission. « Facets

— complements specification-based test generation

— positive feedback cycle with programmer

Predicate-complete Testing

* Predicates
— relational expression such as (x<0)
— the expression (x<0) || (y>0) has two predicates
— predicates come from program and safe runtime semantics

What criteria should
guide unit test generation?

« Consider a program with m statements and n predicates

— predicates partition input domain
— m x 2" possible observable states S

* Goal of Predicate-complete Testing:
— cover all reachable observable states R 0 S

PCT Coverage Subsumes

PCT Coverage
9 Statement, Edge Coverage
L2:if (A]|B)SelseT * Statement coverage
— Must cover all statements with all predicates

L3:if (C|| D) U else V
» Edge coverage

s peT rzq;i?%cmt/ering all logical combinations — Must cover if statements with all predicates
over {A.8,C.D} a — Therefore touch both branches
—L2and L3
-S,T,UandV » Path coverage
— Must cover every path through program
« Some combinations may not be reachable — Infinite number of them!

PCT Coverage does not imply
Path Coverage

L1:
L2:

L3:
L4:
L5:
L6:

PCT Coverage does not imply
Path Coverage

if (x<0) ((L\’XLeD (LU,) (X o))
ski p; PCLn, xL oy
el se
X = -2; (v, V(X oY)
X = x + 1; Ckiyxeed S o
if (x<0) (Lo, 2t Ls, (%
A (Le, xLred
Thee Tests
X = -1

L1:
L2:

L3:
L4:
L5:
L6:

PCT Coverage does not imply
Path Coverage

if (x<0) ((L\’XLeD (LU,) (X o))
ski p;)C Ln, % Lo l

el se N
X = -2; [C\Ns)\(XLE»

x = x + 1) CRboxeed o

if (x<0) FhCis, 2oy [Ls,txeo)
A gLLe)xLo)

Thyee Yests
X = - NN

L1: if (x<0) (L, xee) (L, tixceo))
L2: ski p; (L, Lo
el se ox e
L3: X = -2; (w2l)
L4: x = x + 1; Ckboxeed
L5: if (x<0) (Lo, 2co) (LSJ\'C*LQ)
L6: A (LG, %re)
PCT Coverage does not imply
Path Coverage
L1: if (x<0) (L, xce) (L, lixceo))
L2: ski p;)C La, ¥ o) l
el se Y(x »
L3: X = -2; [CLFJ;.)
L4: x = x + 1; CHEoxeed .
L5: if (x<0) ;QLsy xco) (s, tixco)
L6: A Le, xLe)
Thyee Tests
X — -\ N AN
Path Coverage does not imply
PCT Coverage
L1 if (p) (4,9%) (Leg)
L2: if (q) (r28%) CL},@@
L3: x=0; (Ll>,p%) _
L4: y=p+q; (WP (g
T t
pa\'\/\ ot
LU ke Ly LY L ey

Path Coverage does not imply
PCT Coverage

L1 if (p) (4,9%) (Leg)
L2: if (q) (2% CL},@G@
L3: x=0; (Ll>,p%)
L4: y=p+q; (W, 0% (L e
T 0
pa\‘\/\ ‘)oﬁf\z\
Lk Ly LY Lo e

Denominator Problem

Coverage metrics require a denominator
— e.g. statements executed / total statements

Easy to define for observable states
— executed observable states / (m x 2")

But (m x 2") is not a very good denominator!
— most observable states will not be reachable
- R<<<S

Upper and Lower Bounds

m x 2" possible « Bound reachable observable states
Stalesly — modal transition systems and
Upper bound U predicate abstraction
— |L| / |U]| defines “goodness” of
Reachable abstraction

states R

« Test generation using lower bound L

Lower bound L

« Refinement to increase |L| / |U| ratio

Abstraction Construction

Upper Bound:
May-Reachability

Upper Bound:
May-Reachability

+ onto

may

total

Pessimistic Lower Bound

- onto

Qov\)ro)‘* is ﬁ

may

total (‘{‘O’HXI 3“ s M

Pessimistic Lower Bound

e
L onto <ov\)ro)w . ﬁ
)
may
_—
total (+o+zx[Vs Total

Lf’ = CO‘(\:\‘O)* mm\[? ("{‘O+Q\ 3*

Example

void partition(int a[]) {
assunme(a. |l engt h()>2);
int pivot = a[0];
int lo=1;
int hi = a.length()-1,
while (lo<=hi) {
whi |l e (a[l o] <=pivot)
| o++;
whi | e (a[hi]>pivot)
hi --;
if (1o<hi)
swap(a,lo, hi);

Observation Vector

[lo<hi, lo<=hi, a[lo]<=pivot, a[hi]>pivot]

¢ lo<hi = lo<=hi

« =lo<hi Olo<=hi = (a[lo]<=pivot O - afhi]>pivot)
0 (- a[lo]<=pivot Oalhi]>pivot)

Only 10/16 observations possible

void partition(int a[]) {

assune(a. | engt h()>2);
int pivot = a[0]; 13 labels x 10

int lo=1; observations =
int hi = a.length()-1;

LO: while (lo<=hi) {

L1: ;

L2: while (a[lo]<=pivot) {

L3: | 0++;

L4 3}

L5: while (a[hi]>pivot) { But, prqgram

L6: hi--; constrains reachable
Lz o} . observable states
L8: if (lo<hi) {

L9: swap(a, l o, hi); greatly.

LA}

LB: ;}

LC ;

130 observable states

Boolean Program

void partition() {
decl It, le, al, ah;
enforce ((It=>le) &
(('1t&e)=>(al & ah)|(!al &h)));
It,le,al,ah :=T,T,*, *;
LO: while (le) {

L1: ;

L2: while (al) {

L3: It,le;al := ('t 2 F*), It, *;
L4: 0}

L5: while (ah) {

L6: It,le;ah := (It 2 F*), It, *;
L7: 0}

L8: if (It) {

L9: al,ah := tah,!al;

LA: 0}

LB: ;}

LC ;

EhSEESELELRES

State Space of Boolean Program

[lo<hi, lo<=hi, a[lo]<=pivot, a[hi]>pivot]
F FTTF FFIF Fi FIFT T TR FF FFTT

X X X X X
X X X X
X X X X X X X X
X X X X
X X X X X X X X
X X X X X
X X X
X X X X X
X X
X
X
X X

Upper Bound = 49 states

[before M?L
[] aSec may ?
N L)
plaintext (A, — Lo

Test Generation

DFS of L, generates covering set of paths

Symbolically execute paths to generate
tests

Run program on tests to find errors and
compute coverage of observable states

Generated Inputs

void partition(int a[]) {

Results

Buggy partition function
—U=49, L=43, Tested=42

Fixed partition function
—U=56, L=37, Tested=43

What about the remaining 13 states?

assune(a. | engt h()>2); Array bounds violations
int pivot = a[0]; /
int lo=1; i
int hi =a.length()-1; | (LOTTTTLAFTFT) {0,811}
i\ (LOTTTT,L4TTFT) {0,8,2,1}

)) LO:TTTT LATTTT 0,-8,-8,1
LO: while (lo<=hi) { gLo:TTTF,u:TTFF; El,-7,3,0))
L1: v) . (LO:TTTF,L4FTTF) {0,-7,-8}
L2: while (a[lo]<=pivot) { (LO:TTTFL4TTTF) {1,-7,-7.0}
L3: | o++; (LO:TTFT,L7:TTFF) {0,2,8,1}
L4: 0} (LO:TTFT,L7:FTFT) {0,1,2}
L5: while (a[hi]>pivot) { (LOTTFT.L7.TTFT) {0312}
L6: hi--; (LOTTFF.LOTTTT) {1,2,-1,0}
L7: 0}
L8 if (lo<hi) {
L9: swap(a, | o, hi);
LA: 0}
LB: ;}
LC ;

}
Refinement
W le
{

7/ NN

N
< pivot= a(e] > pivet=alo]

Extstina erﬁc&\cd\'ﬁs do vl pre CiS@Lf
e \oow\mdc\,/y cond Vo

lo 2\, log\ny J a(16] L{J‘NO“\’J c\[L{\]>{>‘N6¥

New Observation Vector

[lo<hi, lo<=hi, lo=hi+1,
a[lo]<=pivot, al[hi]>pivot,
a[lo-1]<=pivot, a[hi+1]>pivot

Only 48/128 observations possible

For this set of predicates, L, = U

Conclusions

* PCT coverage

—new form of state-based coverage
— similar to path coverage but finite

Upper and lower bounds

—computed using predicate abstraction and
modal transitions

— use lower bound to guide test generation
—refine bounds

