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MSIL Unit Test Tool
a hybrid helper

• Goal 
capture developer knowledge ASAP
via a strong set of unit tests
to form a specification of the code’s behavior 

• How
– generate tests based on analysis of MSIL
– symbolic execution + constraint satisfaction
– runtime analysis to check complicated invariants

• Facets 
– complements specification-based test generation
– positive feedback cycle with programmer

What criteria should
guide unit test generation? 

Predicate-complete Testing

• Predicates
– relational expression such as (x<0)
– the expression (x<0) || (y>0) has two predicates
– predicates come from program and safe runtime semantics 

• Consider a program with m statements and n predicates
– predicates partition input domain
– m x 2n possible observable states S

• Goal of Predicate-complete Testing:
– cover all reachable observable states R ⊆ S

PCT Coverage  

L2: if (A || B) S else T
L3: if (C || D) U else V

• PCT requires covering all logical combinations 
over {A,B,C,D} at 
– L2 and L3
– S, T, U and V 

• Some combinations may not be reachable

PCT Coverage Subsumes 
Statement, Edge Coverage

• Statement coverage
– Must cover all statements with all predicates

• Edge coverage
– Must cover if statements with all predicates
– Therefore touch both branches

• Path coverage
– Must cover every path through program
– Infinite number of them!
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PCT Coverage does not imply  
Path Coverage 

L1:  if (x<0)
L2:    skip;

else
L3:    x = -2;
L4:  x = x + 1;
L5:  if (x<0)
L6:    A;

PCT Coverage does not imply  
Path Coverage 

L1:  if (x<0)
L2:    skip;

else
L3:    x = -2;
L4:  x = x + 1;
L5:  if (x<0)
L6:    A;

PCT Coverage does not imply  
Path Coverage 

L1:  if (x<0)
L2:    skip;

else
L3:    x = -2;
L4:  x = x + 1;
L5:  if (x<0)
L6:    A;

PCT Coverage does not imply  
Path Coverage 

L1:  if (x<0)
L2:    skip;

else
L3:    x = -2;
L4:  x = x + 1;
L5:  if (x<0)
L6:    A;

L1:  if (p)
L2:    if (q) 
L3:      x=0;
L4:  y=p+q;

Path Coverage does not imply
PCT Coverage 

L1:  if (p)
L2:    if (q) 
L3:      x=0;
L4:  y=p+q;

Path Coverage does not imply
PCT Coverage
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Denominator Problem

• Coverage metrics require a denominator
– e.g. statements executed / total statements

• Easy to define for observable states
– executed observable states / (m x 2n) 

• But (m x 2n) is not a very good denominator!
– most observable states will not be reachable
– R <<< S

Upper and Lower Bounds 

m x 2n possible 
states S

Upper bound U

Reachable 
states R

Lower bound L

• Bound reachable observable states
– modal transition systems and 
predicate abstraction

– |L| / |U| defines “goodness” of 
abstraction

• Test generation using lower bound L

• Refinement to increase |L| / |U| ratio

a

a’

may

MC MA

ρ

ρ

a

a’

total

MC MA

ρ

ρ

a

a’

total
&

onto

ρ

ρ

a

a’

onto

ρ

ρ

Abstraction Construction Upper Bound: 
May-Reachability

a

b

c

may

a

b

c

may

Upper Bound: 
May-Reachability

a

b

c

may

a

b

c

may

c

d

total

a

b

onto

Pessimistic Lower Bound  

may



4

c

d

a

b

Pessimistic Lower Bound  

may

onto

total

c

d

a

b

Pessimistic Lower Bound  

may

onto

total

void partition(int a[]) {
assume(a.length()>2);
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;
while (lo<=hi) {
while (a[lo]<=pivot) 
lo++;

while (a[hi]>pivot)  
hi--;

if (lo<hi)   
swap(a,lo,hi);

}
}

Example

void partition(int a[]) {
assume(a.length()>2);
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;
while (lo<=hi) {
while (a[lo]<=pivot) 
lo++;

while (a[hi]>pivot)  
hi--;

if (lo<hi)   
swap(a,lo,hi);

}
}

Observation Vector

[  lo<hi, lo<=hi, a[lo]<=pivot, a[hi]>pivot ]

• lo<hi ⇒ lo<=hi

• ¬lo<hi ∧ lo<=hi ⇒ (a[lo]<=pivot ∧ ¬a[hi]>pivot)                  

∨ (¬a[lo]<=pivot ∧ a[hi]>pivot)

Only 10/16 observations possible

13 labels x 10 
observations = 
130 observable states

But, program 
constrains reachable
observable states
greatly.

void partition(int a[]) {
assume(a.length()>2); 
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;

L0: while (lo<=hi) {
L1:   ;
L2:   while (a[lo]<=pivot) {
L3:     lo++;
L4:   ;}
L5:   while (a[hi]>pivot) {
L6:     hi--;
L7:   ;}
L8:   if (lo<hi) {   
L9:    swap(a,lo,hi);
LA:   ;}
LB: ;}
LC: ;

}

void partition() {
decl lt, le, al, ah;
enforce ( (lt=>le) &   

((!lt&le)=>(al&!ah)|(!al&ah)) );
lt,le,al,ah := T,T,*,*;

L0: while (le) {
L1:   ;
L2:   while (al) {
L3:     lt,le,al := (!lt ? F:*), lt, *;
L4:   ;}
L5:   while (ah) {
L6:     lt,le,ah := (!lt ? F:*), lt, *;
L7:   ;}
L8:   if (lt) {   
L9:     al,ah := !ah,!al;
LA:   ;}
LB: ;}
LC: ;

}

Boolean Program
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State Space of Boolean Program

TTTT TTTF FTTF FFTF TTFT FTFT FFFT TTFF FFFF FFTT
L0 x x x x x
L1 x x x x
L2 x x x x x x x x
L3 x x x x
L4 x x x x x x x x
L5 x x x x x
L6 x x x
L7 x x x x x
L8 x x
L9 x
LA x
LB x x
LC x

Upper Bound = 49 states

[  lo<hi, lo<=hi, a[lo]<=pivot, a[hi]>pivot ]

plaintext 

Test Generation

• DFS of Lp generates covering set of paths

• Symbolically execute paths to generate 
tests

• Run program on tests to find errors and 
compute coverage of observable states

Array bounds violations

Generated Inputs

(L0:TTTT,L4:FTFT) { 0,-8,1  }
(L0:TTTT,L4:TTFT) { 0,-8,2,1 }
(L0:TTTT,L4:TTTT) { 0,-8,-8,1 }
(L0:TTTF,L4:TTFF) { 1,-7,3,0 }
(L0:TTTF,L4:FTTF) { 0,-7,-8 }
(L0:TTTF,L4:TTTF) { 1,-7,-7,0 }
(L0:TTFT,L7:TTFF) { 0,2,-8,1 }
(L0:TTFT,L7:FTFT) { 0,1,2 }
(L0:TTFT,L7:TTFT) { 0,3,1,2 }
(L0:TTFF,L0:TTTT) { 1,2,-1,0 }

void partition(int a[]) {
assume(a.length()>2);
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;

L0: while (lo<=hi) {
L1:   ;
L2:   while (a[lo]<=pivot) {
L3:     lo++;
L4:   ;}
L5:   while (a[hi]>pivot) {
L6:     hi--;
L7:   ;}
L8:   if (lo<hi) {   
L9:    swap(a,lo,hi);
LA:   ;}
LB: ;}
LC: ;

}

Results

• Buggy partition function
– U=49, L=43, Tested=42

• Fixed partition function
– U=56, L=37, Tested=43

• What about the remaining 13 states?

Refinement 
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New Observation Vector

[  lo<hi, lo<=hi, lo=hi+1,
a[lo]<=pivot, a[hi]>pivot,
a[lo-1]<=pivot, a[hi+1]>pivot

]

Only 48/128 observations possible

For this set of predicates, Lp = U 

Conclusions

• PCT coverage 
– new form of state-based coverage 
– similar to path coverage but finite 

• Upper and lower bounds 
– computed using predicate abstraction and 

modal transitions 
– use lower bound to guide test generation
– refine bounds


