
1

Predicate-based Test
Coverage and Generation

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

These slides prepared by Thomas Ball, with additional
material from M. Young, A. Memon and MSR’s FSE group.

Used by permission.

MSIL Unit Test Tool
a hybrid helper

• Goal
capture developer knowledge ASAP
via a strong set of unit tests
to form a specification of the code’s behavior

• How
– generate tests based on analysis of MSIL
– symbolic execution + constraint satisfaction
– runtime analysis to check complicated invariants

• Facets
– complements specification-based test generation
– positive feedback cycle with programmer

What criteria should
guide unit test generation?

Predicate-complete Testing

• Predicates
– relational expression such as (x<0)
– the expression (x<0) || (y>0) has two predicates
– predicates come from program and safe runtime semantics

• Consider a program with m statements and n predicates
– predicates partition input domain
– m x 2n possible observable states S

• Goal of Predicate-complete Testing:
– cover all reachable observable states R ⊆ S

PCT Coverage

L2: if (A || B) S else T
L3: if (C || D) U else V

• PCT requires covering all logical combinations
over {A,B,C,D} at
– L2 and L3
– S, T, U and V

• Some combinations may not be reachable

PCT Coverage Subsumes
Statement, Edge Coverage

• Statement coverage
– Must cover all statements with all predicates

• Edge coverage
– Must cover if statements with all predicates
– Therefore touch both branches

• Path coverage
– Must cover every path through program
– Infinite number of them!

2

PCT Coverage does not imply
Path Coverage

L1: if (x<0)
L2: skip;

else
L3: x = -2;
L4: x = x + 1;
L5: if (x<0)
L6: A;

PCT Coverage does not imply
Path Coverage

L1: if (x<0)
L2: skip;

else
L3: x = -2;
L4: x = x + 1;
L5: if (x<0)
L6: A;

PCT Coverage does not imply
Path Coverage

L1: if (x<0)
L2: skip;

else
L3: x = -2;
L4: x = x + 1;
L5: if (x<0)
L6: A;

PCT Coverage does not imply
Path Coverage

L1: if (x<0)
L2: skip;

else
L3: x = -2;
L4: x = x + 1;
L5: if (x<0)
L6: A;

L1: if (p)
L2: if (q)
L3: x=0;
L4: y=p+q;

Path Coverage does not imply
PCT Coverage

L1: if (p)
L2: if (q)
L3: x=0;
L4: y=p+q;

Path Coverage does not imply
PCT Coverage

3

Denominator Problem

• Coverage metrics require a denominator
– e.g. statements executed / total statements

• Easy to define for observable states
– executed observable states / (m x 2n)

• But (m x 2n) is not a very good denominator!
– most observable states will not be reachable
– R <<< S

Upper and Lower Bounds

m x 2n possible
states S

Upper bound U

Reachable
states R

Lower bound L

• Bound reachable observable states
– modal transition systems and
predicate abstraction

– |L| / |U| defines “goodness” of
abstraction

• Test generation using lower bound L

• Refinement to increase |L| / |U| ratio

a

a’

may

MC MA

ρ

ρ

a

a’

total

MC MA

ρ

ρ

a

a’

total
&

onto

ρ

ρ

a

a’

onto

ρ

ρ

Abstraction Construction Upper Bound:
May-Reachability

a

b

c

may

a

b

c

may

Upper Bound:
May-Reachability

a

b

c

may

a

b

c

may

c

d

total

a

b

onto

Pessimistic Lower Bound

may

4

c

d

a

b

Pessimistic Lower Bound

may

onto

total

c

d

a

b

Pessimistic Lower Bound

may

onto

total

void partition(int a[]) {
assume(a.length()>2);
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;
while (lo<=hi) {
while (a[lo]<=pivot)
lo++;

while (a[hi]>pivot)
hi--;

if (lo<hi)
swap(a,lo,hi);

}
}

Example

void partition(int a[]) {
assume(a.length()>2);
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;
while (lo<=hi) {
while (a[lo]<=pivot)
lo++;

while (a[hi]>pivot)
hi--;

if (lo<hi)
swap(a,lo,hi);

}
}

Observation Vector

[lo<hi, lo<=hi, a[lo]<=pivot, a[hi]>pivot]

• lo<hi ⇒ lo<=hi

• ¬lo<hi ∧ lo<=hi ⇒ (a[lo]<=pivot ∧ ¬a[hi]>pivot)

∨ (¬a[lo]<=pivot ∧ a[hi]>pivot)

Only 10/16 observations possible

13 labels x 10
observations =
130 observable states

But, program
constrains reachable
observable states
greatly.

void partition(int a[]) {
assume(a.length()>2);
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;

L0: while (lo<=hi) {
L1: ;
L2: while (a[lo]<=pivot) {
L3: lo++;
L4: ;}
L5: while (a[hi]>pivot) {
L6: hi--;
L7: ;}
L8: if (lo<hi) {
L9: swap(a,lo,hi);
LA: ;}
LB: ;}
LC: ;

}

void partition() {
decl lt, le, al, ah;
enforce ((lt=>le) &

((!lt&le)=>(al&!ah)|(!al&ah)));
lt,le,al,ah := T,T,*,*;

L0: while (le) {
L1: ;
L2: while (al) {
L3: lt,le,al := (!lt ? F:*), lt, *;
L4: ;}
L5: while (ah) {
L6: lt,le,ah := (!lt ? F:*), lt, *;
L7: ;}
L8: if (lt) {
L9: al,ah := !ah,!al;
LA: ;}
LB: ;}
LC: ;

}

Boolean Program

5

State Space of Boolean Program

TTTT TTTF FTTF FFTF TTFT FTFT FFFT TTFF FFFF FFTT
L0 x x x x x
L1 x x x x
L2 x x x x x x x x
L3 x x x x
L4 x x x x x x x x
L5 x x x x x
L6 x x x
L7 x x x x x
L8 x x
L9 x
LA x
LB x x
LC x

Upper Bound = 49 states

[lo<hi, lo<=hi, a[lo]<=pivot, a[hi]>pivot]

plaintext

Test Generation

• DFS of Lp generates covering set of paths

• Symbolically execute paths to generate
tests

• Run program on tests to find errors and
compute coverage of observable states

Array bounds violations

Generated Inputs

(L0:TTTT,L4:FTFT) { 0,-8,1 }
(L0:TTTT,L4:TTFT) { 0,-8,2,1 }
(L0:TTTT,L4:TTTT) { 0,-8,-8,1 }
(L0:TTTF,L4:TTFF) { 1,-7,3,0 }
(L0:TTTF,L4:FTTF) { 0,-7,-8 }
(L0:TTTF,L4:TTTF) { 1,-7,-7,0 }
(L0:TTFT,L7:TTFF) { 0,2,-8,1 }
(L0:TTFT,L7:FTFT) { 0,1,2 }
(L0:TTFT,L7:TTFT) { 0,3,1,2 }
(L0:TTFF,L0:TTTT) { 1,2,-1,0 }

void partition(int a[]) {
assume(a.length()>2);
int pivot = a[0];
int lo = 1;
int hi = a.length()-1;

L0: while (lo<=hi) {
L1: ;
L2: while (a[lo]<=pivot) {
L3: lo++;
L4: ;}
L5: while (a[hi]>pivot) {
L6: hi--;
L7: ;}
L8: if (lo<hi) {
L9: swap(a,lo,hi);
LA: ;}
LB: ;}
LC: ;

}

Results

• Buggy partition function
– U=49, L=43, Tested=42

• Fixed partition function
– U=56, L=37, Tested=43

• What about the remaining 13 states?

Refinement

6

New Observation Vector

[lo<hi, lo<=hi, lo=hi+1,
a[lo]<=pivot, a[hi]>pivot,
a[lo-1]<=pivot, a[hi+1]>pivot

]

Only 48/128 observations possible

For this set of predicates, Lp = U

Conclusions

• PCT coverage
– new form of state-based coverage
– similar to path coverage but finite

• Upper and lower bounds
– computed using predicate abstraction and

modal transitions
– use lower bound to guide test generation
– refine bounds

