o Eclat Tool Analysis

Team 3
Christine Ryu
Dahlia Bock
Faustinus Gozali

° About Eclat

o Goal: Help discover errors and write new
unit tests for Java classes.
o When running Eclat on a Java class, one
would need to input two things:
The class(es) that is being tested
An example test suite, i.e. maybe a simple
program that demonstrates the use of the
class
o From that Eclat will automatically
generate new test inputs different from the
ones given in the example test suite.

° Setting up Eclat

1. Download diakon.jar and eclat.jar

2. Add diakon.jar and eclat.jar to
classpath

C:t5-413>set CLASSPATH=:CLASEPATH:»;c:tH5—413%daikon. jar;c:¥5-413Weclat jar

3. Create JunitTest to run against files
4. Run it to generate new inputs

C:¥5-413>java eclat.textui.Main generate—inputs ——create—regression—suite ——tes
it CRAP/InputParszer.java —test CRAP-0OpenEnded.java ——test CRAP/8ingleChoice. javal

CRAP.JunitTest

° How we applied Eclat

o Our projectis in J2ME

Revised code to rely on JAVA instead of
J2ME

o Could not test User Interface or interactive
content

o Decided to test:
Parsing an SMS String
Creating a new Question object
Set/Get attributes of the question

Sx TESTING CE
String gString = "How are you today":
String gType = "OE"

String Userld = "1111";
String Questionld = "2222":

String testMsg = Userld + "=" + QuesticnId + "*" + qTyps + gString:

InputParser parser = new InputParser():
(Question q = parser parsePayload(testM=g):

if{ lgString.equals{qg.getQuestion{}] J {
System.out.println{"Question string not =set propsrly"):

+
1f(lqType.equals(g.getQTyp=())) {
System.out.println({'Question type not set propsrly"):
+
1f{ 1U=zerld equals(g.getUserID{)}) {
System.out println{"User ID is not set properly”):
+

1f{ !Questionld. equals(qg.getOuestionID()) » {
System.out println{"Question ID not set properly”):
K

Systen.out . println(

——— Finished testing new Question creation ———");

gString = "A nev gquestion here";
q.=etuestion(gString):

if{ lgString.equals{g.getQuestion{})) {
Systen.out.println{"Question string not set properly").
¥

qType = "NM":
q.=set0Type(gType)
if{ lqType.equals(qg. getQType()) 1 {
ysten . out println{"Question type not set properly”):

Userld = "1123";

q.=etUserID(Us=rld)

if(|Userld.equals(g.getUserID())) {
Systen.out.println{"User ID is not set properly");

QuestionId = "L213";

q.=etQuestionIlQuestionId)

if{ !'Duestionld. equals(qg.getOuestionID()))
Systen.out . println{"Ouestion ID not set properly”):

Systen.out.println({”——Finished testing set methods ——"):
~E TESTING 5C

WWINDOWS Wsystemn32'Wemd.exe

Observing CRAP.JunitTest’s values as it executes.
[Entering Daikon to detect invariants over observations.
Daikon version 4.1.7, released November 1. 2088 http:/rspag.csail_mit _edusdaikon

[Processing trace data; reading 1 dtrace file:
[?:85:15 PM Finished reading JunitTest.dtrace.gz
ICreating implications

[Exiting Daikon.

Instrumenting sources for runtime invariant checking.
ICompiling instrumented sources.

Generating inputs.

Constructing new inputs (round 12>

Max. possible inputs for this round: 1

Constructed 1 new inputs <out of 1 possihled.

Constructing neu inputs Cround 2>. ..

possible inputs for this round: 8

i
[Constructed 7 new inputs C{out of B possibled.

Constructing new inputs Cround 3>...
Mox. possible inputs For this round: 8

Constructed B new inputs €out of 8 possihled.

Constructing new inputs Cround 4>
Max. possible inputs for this round: 8

Constructed @ new inputs (out of 8 possible).
Done generating inputs.

ICreated file containing inputs in text format: C:W5-4i3Meclat—miscWJunicTest.al]
linputs.txt.zip

[This file contains ALL the inputs generated.

in case you want to see them.

Creating JUnit class.

MUnit test suite has been created: C:¥W15-413Weclat—srcleclatgenWproblensWEclatTe|
st . iava

° Results and Analysis

o Eclat produces eclat-src, eclat-scratch and
eclat-misc
o eclat-src/
Contains the JUnit suites that Eclat
generated to test the stack

Determines the minor and major
preconditions and postconditions for each
method in each class which is used to check
for violations of the conditions

o eclat-misc/

Contains a human-readable listing of all the
inputs that Eclat generated

° Results and Analysis

o We were able to:
See what unit tests could be run
The minor/major pre/post-conditions
Possible inputs for our program

o We were unable to:

Run the test suites and see exactly
where the program failed

Run for any interactive input

Results Example

round: 2
d: 10886
INPUT CLASSIFIED AS <illegals

1. CRAP,InputParser varl? = new CRAP.InputParser(];

2. CRAP.question varl027 = varl2.parsemultiplechoiced(java.lang.stringinulll;

Prep code evaluation (lines 1 through 1J.

EXCEPTIONS: nonge.
INVARIANT VIGLATIONS:
naone.

Test expression ewvaluation (line 2).

EXCEPTIONS: java. lang. NullPointerexception
INVARIANT VIOLATIONS:
nane.

Explanation:

Mo wiolations, but found an exception or error. Since one of
the ar?uments was null, I will classify this input as
illegaT.

Benefits

o Requires a downloading of only 2 relatively small files to
run
o Generates new inputs and the results of executing those
inputs on the class that is being tested
Generates inputs that the developer may not have
thought of

Shows how extensively Eclat is testing the class and
which types of inputs will cause errors/bugs.
Can aid in the creation of new unit tests
o Usesa small list of commands to generate the new test
Inputs
Though a short list, it covers a significant number of
different options that a user can add when running the

tool. Each extra option is documented in the Eclat
Manual.

Drawbacks

o Not easy to use for all platforms
Requires Java 1.5, but Andrew uses 1.4
Tutorial provides Unix commands, but is
hard to follow from a Windows Command
line

o Documentation is sparse

Overlooks issues that a user might face
regarding setting classpath variables

o Cannot handle User Interface testing
Does not deal with interactive input

Scope of Applicability

o Assumes that javac and UNIX
commands are available for use

Easy to use for Unix command line
with Java 1.5

o Non-interactive JAVA programs

° Conclusion!

o Eclat is helpful in generating possible
inputs for an application
Helps to classify as illegal/fault-

revealing/normal execution so we can
deal with it accordingly

o Difficult to use unless UNIX and Java
1.5 are readily available

