
1

The Software Lifecycle

15-413: Introduction to Software 
Engineering

Jonathan Aldrich

29 August 2005

Software Development Activities

• Student Comments
• Define the problem – requirements
• Estimate size of task, how long it will 

take to complete
• Provide initial support/teach people to 

support the project
• Teach people how to use the products

29 August 2005

Software Development Activities

• Gathering Requirements

• Team Management

• Software Design

• Coding

• Testing

• Documentation

• Software Maintenance

29 August 2005

Waterfall Model of S/W Dev.

Requirements

Design

Implementation

Quality Assurance

Evolution

29 August 2005

Requirements

• Determining what clients need from 
software
• Problem space, not solution space
• May include quality attributes

• Performance, security, maintainability…

• Challenges
• Clients don’t know what they want
• Clients can’t express what they want
• Bound to change

• Better communication
• Better client
• Changes to environment

29 August 2005

Design

• Engineering solution that addresses 
requirements

• Designs include
• Architecture
• Code interfaces
• User interfaces
• Components
• Data structures
• Algorithms



2

29 August 2005

Implementation

• Realizing a design in code

• More than just coding
• Documentation
• Assertions/Invariants
• Coding standards
• Pair programming
• Tools
• Configuration management

29 August 2005

Quality Assurance

• Ensuring the implementation meets 
quality standards

• Testing
• Unit
• Functional
• Regression

• Analysis

• Design and code reviews

29 August 2005

Evolution

• Changing the software to fix defects 
meet new requirements

• Most development today is really 
evolution

• Differs from initial development
• Significant investment in existing code
• Have to work within additional 

constraints
• Many SE techniques focus on making 

evolution easier

29 August 2005

Problems with Waterfall

• Change is ubiquitous
• Occurs even during software development

• Waterfall assumes one stage completes 
before others begin
• Unrealistic in most environments

• Requirements constantly changing
• Lessons learned in later stages affect earlier 

ones

• Useful applied where communication costs 
high
• Stable requirements
• Very large software systems
• Distributed teams

29 August 2005

Spiral Model of S/W Dev.

Requirements Design

Implementation
Quality

Assurance
29 August 2005

Benefits of Spiral Development

• Delivers initial value early
• Mitigates risk of failure
• Focus on high-priority functionality

• Frequent requirements refinement
• Uses feedback from one iteration to 

refine requirements for the next
• Mitigates impact of change

• Note: the Spiral model is driven by 
uncertainty and change
• A theme of the whole course



3

29 August 2005

Extreme Programming

• An iterative/spiral process
• Divides development into short iterations 

delivering functionality

• Lightweight practices
• Requirements through “stories”
• Planning game
• Pair programming

• Increasingly popular in industry

• Fun

• Will be used for the projects
• Along with waterfall lifecycle deliverables

• Promotes familiarity traditional style 
development artifacts


