
Programming Language Design and
Performance

Jonathan Aldrich

17-396: Language Design and Prototyping

Spring 2020

Opening discussion

• What features/tools make a language fast?

2

Basic Tradeoff

3

Safety/Abstraction/Dynamism

P
e
rf

o
rm

a
n
ce

C

Java

JavaScript

How can we
do better?

C: Fast because
maps directly to
hardware. But
unsafe, little
abstraction or
dynamism.

Dynamic optimization

4

Safety/Abstraction/Dynamism

P
e
rf

o
rm

a
n
ce

C

Java

JavaScript

Dynamic optimization techniques
Brings Java to ~2x of C run time,
JavaScript ~3x
(depending on benchmark)
Origins in Self VMs

Source: https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Parallelizing Compilers

5

Safety/Abstraction/Dynamism

P
e
rf

o
rm

a
n
ce

C, Fortran

Java

JavaScript

Parallelizing Compilers
• Can parallelize C, Fortran
• Requires substantial platform-specific tweaking
• One study: hand-optimized Fortran code ~10x larger

(and ~2x faster) than unoptimized Fortran

Source: https://queue.acm.org/detail.cfm?id=1820518

Language Influence on Parallelization

• Fortran compilers assume parameters, arrays do not alias
• Danger: this is not checked!

// illustrative example, in C syntax

void f(float* a, float* b, unsigned size) {
for (unsigned i = 0; i < size; ++i)

*a += b[i]; // Fortran can cache a in a register; C can’t
}

// client code
float a[200]; // initialize to something
f(a+100, a, 200); // this would be illegal in Fortran

6Example due to euzeka at https://arstechnica.com/civis/viewtopic.php?f=20&t=631580

C and (especially) Fortran also benefit from mature
parallelizing compilers and great libraries (BLAS, LAPACK)

The Importance of Libraries

• Python: widely used for scientific computing
• Perceived to be easy to use
• Slow (but see PyPy, which is a lot like Truffle/Graal)
• Dynamic, interpreted language
• Boxed numbers (everything is a number allocated on the heap)

• Python packages for scientific computing
• Numpy: multidimensional arrays
• Fixed size, homogeneous, packed data (like C arrays)
• Vectorized operations: c = a+b // adds arrays elementwise

• SciPy: mathematical/scientific libraries
• Wraps BLAS, LAPACK and others
• Uses Numpy in interface

7

Julia: Performance + Usability

• Dynamic language, like Python/JavaScript

• Excellent libraries for scientific computing
• Like Fortran, Python

• Unique performance strategy
• Uses multiple dispatch to choose appropriate algorithms
• e.g. sparse vs. full matrix multiplication; special cases for tridiagonal

matrices

• Aggressive specialization to overcome cost of abstraction
• Reduces dispatch overhead, enables inlining

• Optional static type annotations
• Annotations on variables, parameters, fields enforced dynamically
• Make specialization more effective

8

Example of algorithm choice

• Consider solving a matrix equation Ax = b
• Solution can be expressed as x = A \ b

• Julia has a special type for Tridiagonal matrices:

• Applying the \ operator selects an efficient O(n) impl:

9

Source: Bezanson et al.,
Julia: A Fresh Approach to Numerical
Computing. SIAM Review, 2017

Multiple Dispatch

• Ordinary dispatch: choose method based on receiver
x.multiply(y) // selects implementation based on class of x

• Note: overloading changes this slightly, but relies on static type
rather than run-time type

• Multiple dispatch: choose method based on both types

10

Works for Matrices too

11

Specialization/Inlining in Julia

• s

12Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Specialization/Inlining in Julia

• s

13

Resulting assembly same as C

Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Type Inference

14

Interprocedural

Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Does it Work?

15Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Remaining performance loss mostly due to memory operations (e.g. GC)
Outliers: regex just calls C implementation; knucleotide written for clarity over performance;
mandelbrot lacks vectorization

Why Good Performance in Julia

…despite so little effort on the implementation?

• Dispatch & specialization
• Chooses right algorithm based on run-time types
• Specialize implementation for actual run-time types encountered
• Allows inlining, unboxing, further optimization

• Programmer discipline
• Type annotations on fields
• Allows compiler to infer types read from the heap
• It knows types of arguments from dispatch/specialization

• Type stability
• Code is written so that knowing the concrete types of arguments allows

the compiler to infer concrete types for all variables in the function
• Thus specialized code becomes monomorphic: no dispatch, no polymorphism

• Maintained by programmer discipline

16

Zero Cost Abstraction: From C to C++

• Starts with C, but adds abstraction facilities (and a little
dynamism)

• Motto: “Zero-cost abstraction”
• C++ can perform similarly to C, but is (somewhat) higher-level

• Generic programming: Static specialization with templates
• Templated code is parameterized by one or more types T
• A copy is generated for each instantiation with a concrete type
• Can get genericity with static dispatch instead of dynamic
• Same benefits as Julia, no GC overhead (unless you choose to add it)
• More language complexity, and little more safety than C

17

Adding Safety in C++

• Memory issues one of the big problems in C, early C++

• Modern solution: smart pointers
• The pointer itself is an abstraction
• Method calls are passed on to the object

unique_ptr<Obj> p(new Obj());
unique_ptr<Obj> q = move(p);
q->foo(); // OK
p->foo(); // illegal; the pointer is in q now

// deallocate q’s memory automatically when q goes out of scope

18

Adding Safety in C++

• Memory issues one of the big problems in C, early C++

• Modern solution: smart pointers
• The pointer itself is an abstraction
• Method calls are passed on to the object

shared_ptr<Obj> p(new Obj());
shared_ptr<Obj> q = p; // reference count increments
q->foo(); // OK
p->foo(); // OK

// deallocate memory automatically when both p and q go out of scope

19

Modern C++ programming is completely different from when
I taught the language circa 2001 due to smart pointers

Rust: Ownership Types for Memory Safety

• Rust keeps “close to the metal” like C,
provides abstraction like C++

• Safety achieved via ownership types
• Like in Obsidian, every block of memory has an owner
• Adds power using regions
• A region is a group of objects with the same lifetime
• Allocated/freed in LIFO (stack) order
• Younger objects can point to older ones
• Type system tracks region of each object, which regions are younger

• Fast and powerful—but (anecdotally) hard to learn
• Nevertheless anyone in this class could do it!

• Unsafe blocks allow bending the rules
• But clients see a safe interface

20

Domain-Specific Paths to Performance

• Domain-Specific Language
• Captures a particular program domain
• Usually restricted – sometimes not Turing-complete
• Execution strategy takes advantage of domain restrictions

• Examples
• DataLog – bottom-up logic programming
• Dramatic performance enhancements on problems like alias analysis

21

Domain-Specific Paths to Performance

• Domain-Specific Language
• Captures a particular program domain
• Usually restricted – sometimes not Turing-complete
• Execution strategy takes advantage of domain restrictions

• Examples
• DataLog – bottom-up logic programming
• Dramatic performance enhancements on problems like alias analysis
• Infers new facts from other known facts until all facts are generated
• Optimization based on database indexing controlled by programmer

• SAT/SMT solving – logical formulas
• Based on DPLL and many subsequent algorithmic improvements

• SPIRAL (a CMU project!)
• Optimization of computational kernels across platforms
• Like Fortran parallelization, but with more declarative programs and auto-

tuning for the platform
22

Datalog Examples

• See separate presentation on Declarative Static Program
Analysis with Doop, slides 1-4, 18-30, 34-37, and 62-68

http://www.cs.cmu.edu/~aldrich/courses/17-355-18sp/notes/slides20-declarative.pdf

23

Summary

• Tradeoff between performance and
abstraction/safety/dynamism

• Approaches to this tradeoff
• Giving programmers control (Fortran, C, C++)
• Smart dynamic compilers (Java, JavaScript, Python, etc.)
• Smart parallelization (Fortran, C)
• Compiler assumptions + programmer discipline (Fortran)
• Good libraries (Fortran, C, Julia, Python)
• Abstraction and generic programming (C++)
• Types for memory safety (Rust)
• Multiple dispatch + specialization + programmer discipline (Julia)
• Domain-specific languages and optimizations (DataLog, SPIRAL,

SAT/SMT solvers)

24

