Programming Language Design and
Performance

Jonathan Aldrich

17-396: Language Design and Prototyping
Spring 2020

institute for
I S SOFTWARE
RESEARCH

Opening discussion

* What features/tools make a language fast?

Basic Tradeoff

C: Fast because
4 maps directly to
hardware. But
unsafe, little

abstraction or
dynamism.

Performance

How can we
‘ do better?

Java

JavaScript

A 4

Safety/Abstraction/Dynamism

Dynamic optimization

Dynamic optimization techniques
Brings Java to ~2x of C run time,

Performance

JavaScript ~3x
f (depending on benchmark)
Origins in Self VMs

1

JavaScript

Java

Safety/Abstraction/Dynamism

Source: https://benchmarksgame-team.pages.debian.net/benchmarksgame/ 4

Parallelizing Compilers

Parallelizing Compilers
» Can parallelize C, Fortran

« Requires substantial platform-specific tweaking
* One study: hand-optimized Fortran code ~10x larger
(and ~2x faster) than unoptimized Fortran

C, Fortran

Performance

Java

JavaScript

A 4

Safety/Abstraction/Dynamism

Source: https://queue.acm.org/detail.cfim?id=1820518 5

Language Influence on Parallelization

* Fortran compilers assume parameters, arrays do not alias
* Danger: this is not checked!

// illustrative example, in C syntax
void f(float* a, float* b, unsigned size) {
for (unsigned i = 9; 1 < size; ++1)
*a += b[i]; // Fortran can cache a in a register; C can’t

¥

// client code
float a[200]; // initialize to something
f(a+100, a, 200); // this would be illegal in Fortran

C and (especially) Fortran also benefit from mature

parallelizing compilers and great libraries (BLAS, LAPACK)

Example due to euzeka at https://arstechnica.com/civis/viewtopic.php?f=20&t=631580

The Importance of Libraries

* Python: widely used for scientific computing
* Percetved to be easy to use

* Slow (but see PyPy, which is a lot like Truffle/Graal)
* Dynamic, interpreted language
¢ Boxed numbers (everything is a number allocated on the heap)

* Python packages for scientific computing

* Numpy: multidimensional arrays
* Fixed size, homogeneous, packed data (like C arrays)
* Vectorized operations: c = a+b // adds arrays elementwise

* SciPy: mathematical/scientific libraries
¢ Wraps BLAS, LAPACK and others
* Uses Numpy 1in interface

Julia: Performance + Usability

* Dynamic language, like Python/JavaScript

* Excellent libraries for scientific computing
* Like Fortran, Python

* Unique performance strategy

* Uses multiple dispatch to choose appropriate algorithms
* e.g. sparse vs. full matrix multiplication; special cases for tridiagonal
matrices
* Ageressive specialization to overcome cost of abstraction
* Reduces dispatch overhead, enables inlining
* Optional static type annotations

* Annotations on variables, parameters, fields enforced dynamically
* Make specialization more effective

Example of algorithm choice

 Consider solving a matrix equation Ax = b
* Solution can be expressed as x = A \ b

* Julia has a special type for Tridiagonal matrices:

In[3]: strang(n) = SymTridiagonal(2+=ones(n),-ones(n-1))

strang(T)
Out[31: 7x7 SynmTridiagonal{Float64}:
2.0 -1.0 0.0 0.0 0.0 0.0 0.0
-1.0 2.0 -1.0 0.0 0.0 0.0 0.0
0.0 -i.0 2.0 -1.0 0.0 0.0 0.0
¢.0 0.0 -1.0 2.0 -1.0 0.0 0.0
0.0 0.0 0.0 -1.0 2.0 -1.0 0.0
0.0 0.0 0.0 0.0 -1.0 2.0 -1.0
0.0 0.0 0.0 0.0 0.0 -1.0 2.0

* Applying the \ operator selects an efficient O(n) impl:

Inf4]: strang{8) \one=(8)

Out [4] : 8-element Array{Floatfd i}: Source: Bezanson et al.,

4. Julia: A Fresh Approach to Numerical
7. Computing. SIAM Review, 2017

8.
10.
10.
2.
i
4.

=T = = T == T == Q= [= =

Multiple Dispatch

* Ordinary dispatch: choose method based on receiver
x.multiply(y) /] selects implementation based on class of x

* Note: overloading changes this slightly, but relies on static type
rather than run-time type

* Multiple dispatch: choose method based on both types

P(x::Int, y::Int) = add(x,y)

P (x::Float64,y::Float64) = vaddsd(x,y)

P(x::Int, y::Float64) = vaddsd(vcvtsi2sd(x),y)
P (x::Float64,y::Int) =y ® X

10

Works for Matrices too

Dense + Dense
@(A: :Matrix, B::Matrix) =
[Ali,jl+Bli,j]l for i in 1:gize(A;1).] in 1:size(A,2)]

Dense + Sparse
@ (A: :Matrix, B::AbstractSparseMatrix)
Sparse + Dense
@ (A: :AbstractSparseMatrix,B::Matrix) = B @ A # Use Dense + Sparse
Sparse + Sparse is best written using the long form function definition:
function @ (A::AbstractSparseMatrix, B::AbstractSparseMatrix)

C=copy (4)

(i,j)=findn(B)

for k=1:length(i)

Clilk],jlk]]+=B[ilk],j[k]]

A & full(B)

end
return C
end

11

Specialization/Inlining in Julia

function vsum(x)
sum = zero(x)
for i = 1:1length(x)
@inbounds v = x[1i]
if !is_na(v)
sum += v
end
end
sum
end
zero(::Array{T}) where {T<:AbstractFloat} = 0.0
zero(::Array{T}) where {T<:Complex} = complex(0.0,0.0)
zero(x) = 0

is_na(x::T) where T = x == typemin(T)

typemin(:: Type{Complex{T}}) where {T<:Real}
= Complex{T}(-NaN)

Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Specialization/Inlining in Julia

function vsum(x)
sum = zero(x)
for i = 1:1length(x)
@inbounds v = x[1i]
if !is_na(v)

sum += v
end
end
=l IL48:
end
zero(::Array{T}) where {T<:AbstractFloat} =["*
zero(::Array{T}) where {T<:Complex} = compld.sas:
zero(x) = 0
is_na(x::T) where T = x == typemin(T)
IL83:

typemin(:: Type{Complex{T}}) where {T<:Real}
= Complex{T}(-NaN)

Resulting assembly same as C

push
mov
mov
mov
xor
test
cmove
mov1l
movabs
jmp
nopw
add
inc
dec
nopl
cmp
je
mov
inc
cmp
je
jmp
pop
ret
nopw

%rbp

%rsp, %rbp
(%rdi), %rcx
8(%rdi), %rdx
%eax, %eax
%rdx, %rdx
%rax, %rdx

$1, %esi
$0x8000000000000000, %r8
L54

%cs: (%hrax,%rax)
%rdi, %rax
%»rsi

%»rsi

(%rax)

%rsi, %rdx

L83
(%rcx,%rsi,8), %rdi
%»rsi

%r8, %rdi

L64

L48

%rbp

%»cs: (krax, %rax)

Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Type Inference

function f(a,b)
c = atb
d=c/2.0
return d

end

Interprocedural

function a()
return b(3)+1

end

function b(num)
return num+2

end

function f(a::Int,b::Int)
¢ = atb::Int
d =c/2.0::Float64
return d

end => Float64

function a()
return b(3)+1::Int
end => Int
function b(num::Int)
return num+2::Int
end => Int

Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Does it Work?

pidigits -
regex - . .
revcomp - . Julia . JavaScript . Python
knucleotide -
fasta - 42 X
binary trees - 43 X
fannkuch - 58 x
nbody - 142 X
spectralnorm - 152 x
mandelbrot - 189 x
0 2 4 6 8 10 12 14 16 18 20 22 24
Slowdown

Remaining performance loss mostly due to memory operations (e.g. GC)
Outliers: regex just calls C implementation; knucleotide written for clarity over performance;
mandelbrot lacks vectorization

Julia- I
PyPy -
V8 - I
HotSpot -

50 100 150 200
Person—-year

Fig. 6. Time spent on implementations

Source: Bezanson et al., Julia: Dynamism and Performance Reconciled by Design. PACMPL(OOPSLA) 2018.

Why Good Performance in Julia

...despite so little effort on the implementation?

* Dispatch & specialization
* Chooses right algorithm based on run-time types

* Specialize implementation for actual run-time types encountered
 Allows inlining, unboxing, further optimization

* Programmer discipline

* Type annotations on fields
¢ Allows compiler to infer types read from the heap
* It knows types of arguments from dispatch/specialization
* Type stability
¢ Code 1s written so that knowing the concrete types of arguments allows

the compiler to infer concrete types for all variables in the function
* Thus specialized code becomes monomorphic: no dispatch, no polymorphism
* Maintained by programmer discipline

16

Zero Cost Abstraction: From C to C++

e Starts with C, but adds abstraction facilities (and a little
dynamism)

* Motto: “Zero-cost abstraction”
* C++ can perform similarly to C, but is (somewhat) higher-level

* Generic programming: Static specialization with templates
* Templated code is parameterized by one or more types T
* A copy 1s generated for each instantiation with a concrete type

* Can get genericity with static dispatch instead of dynamic
¢ Same benefits as Julia, no GC overhead (unless you choose to add it)
* More language complexity, and little more safety than C

17

Adding Safety in C++

* Memory issues one of the big problems in C, early C++

* Modern solution: smart pointers
* The pointer itself 1s an abstraction
* Method calls are passed on to the object

unique_ptr<Obj> p(new Obj());
unique_ptr<Obj> q = move(p);
q->foo(); // OK

p->too(); // illegal; the pointer is in q now

/| deallocate q’s memory automatically when q goes out of scope

18

Adding Safety in C++

* Memory issues one of the big problems in C, early C++

* Modern solution: smart pointers
* The pointer itself 1s an abstraction
* Method calls are passed on to the object

shared_ptr<Obj> p(new Obj());
shared_ptr<Obj> q = p; // reference count increments
q->foo(); // OK

p->foo(); // OK

// deallocate memory automatically when both p and q go out of scope

Modern C++ programming is completely different from when

| taught the language circa 2001 due to smart pointers

19

Rust: Ownership Types for Memory Safety

* Rust keeps “close to the metal” like C,
provides abstraction like C++

* Safety achieved via ownership types
* Like in Obsidian, every block of memory has an owner

* Adds power using regions
* A region is a group of objects with the same lifetime
* Allocated/freed in LIFO (stack) order
* Younger objects can point to older ones
* Type system tracks region of each object, which regions are younger

* Fast and powerful—but (anecdotally) hard to learn
* Nevertheless anyone in this class could do it!

* Unsafe blocks allow bending the rules
* But clients see a safe interface

20

Domain-Specific Paths to Performance

* Domain-Specific Language
* Captures a particular program domain
* Usually restricted — sometimes not Turing-complete
* Execution strategy takes advantage of domain restrictions

* Examples
* DatalL.og — bottom-up logic programming
. Dramatic performance enhancements on problems like alias analysis

doop 1
paddle

6000 —

5000 -

lysis time (

e
=
o
Q4000 |- -
W
[}
2 3000 - -
(1]
[=
«
2000 - —
°l V_I V_I ’_I
0 21
pse

hsi qldb jython luindex

Domain-Specific Paths to Performance

* Domain-Specific Language
* Captures a particular program domain
* Usually restricted — sometimes not Turing-complete
* Execution strategy takes advantage of domain restrictions

* Examples
* DatalL.og — bottom-up logic programming
* Dramatic performance enhancements on problems like alias analysis

 Infers new facts from other known facts until all facts are generated
¢ Optimization based on database indexing controlled by programmer

* SAT/SMT solving — logical formulas

* Based on DPLL and many subsequent algorithmic improvements

* SPIRAL (a CMU project!)

* Optimization of computational kernels across platforms
* Like Fortran parallelization, but with more declarative programs and auto-
tuning for the platform

22

Datalog Examples

* See separate presentation on Declarative Static Program

Analysis with Doop, slides 1-4, 18-30, 34-37, and 62-68

http://www.cs.cmu.edu/~aldrich/courses/17-355-18sp/notes/slides20-declarative.pdf

23

Summary

* Tradeoff between performance and
abstraction/safety/dynamism

* Approaches to this tradeoft
* Giving programmers control (Fortran, C, C++)
* Smart dynamic compilers (Java, JavaScript, Python, etc.)
* Smart parallelization (Fortran, C)
* Compiler assumptions + programmer discipline (Fortran)
* Good libraries (Fortran, C, Julia, Python)
* Abstraction and generic programming (C++)
* Types for memory satety (Rust)
* Multiple dispatch + specialization + programmer discipline (Julia)
* Domain-specific languages and optimizations (DatalLog, SPIRAL,
SAT/SMT solvers)

24

