
Glacier: Usable Enforcement 
of Transitive Immutability

Michael Coblenz, Whitney Nelson, Jonathan Aldrich, 
Brad Myers, and Joshua Sunshine

17-396/17-696/17-960: Language Design and Prototyping

Carnegie Mellon University

School of Computer Science



Motivation: vulnerability from Java 1.1.1

public class Class {
private Object[] signers;

public Object[] getSigners() {
return signers;

}
}

class Evil {

public void evil() {

getClass().getSigners()[0] = “com.google";

} 

} 2

Tracks which principals have 
signed the code represented 
by this class.

Returns the internal array 
used for storage

Note: example simplified for presentation purposes

An attacker can mutate the 
array, allowing arbitrary code 
to be treated as trusted.



Patching the vulnerability: make a copy

public class Class {
private Object[] signers;

public Object[] getSigners() {
return signers.clone();

}
}

3

Patches the vulnerability, but 
far from ideal – makes a 
costly copy on each call.

Tracks which principals have 
signed the code represented 
by this class.

Note: example simplified for presentation purposes



A better solution: immutability

public class Class {
private @Immutable Object[] signers;

public @Immutable Object[] getSigners() {
return signers;

}
}

4

Returns an immutable array 
– one that attackers cannot 
write to.  No performance 
cost unless we need to 
change the list of signers 
(unlikely here).

A common problem:
• Provide access to read-mostly data
• Protect integrity

Note: example simplified for presentation purposes



Immutability: not solved already?

• Java’s final, C++’s const restrict assignment
• But const is unsound, both are too weak to be useful
• What properties to programmers actually need?
• Can we enforce mathematical properties that provide value?

• Some languages, type systems have stronger semantics
• Haskell (immutable by default), IGJ (immutability in Java)
• These have not caught on
• We found serious usability problems with IGJ (more later)

• Can we leverage the science of usability to do better?

• Message: better immutability types can improve security, correctness

• Meta-message: significant benefit from combining
type theory and usability science

5



Many Design Decisions

• Immutability vs. read-only references
• Can the data structure be changed through other pointers?

• Scope
• Enforce immutability for all uses of a type, or case-by-case?

• Transitivity
• Is this object immutable, or all reachable data?

• Initialization
• Relax immutability during initialization?

• Abstraction
• Protect only abstract state, e.g. allowing caching? Or all state?

• Polymorphism
• Collections polymorphic over the immutability of contents?

6



What do programmers need?

Semi-structured interviews with 8 experienced [mean 15 
years] developers found:

• Significant usage of immutable or access-restricted APIs

• State change is a major source of bugs
• Q: “Are bugs frequently caused by unintended state change?”

A: “Oh God, most of them!

• Existing language constructs did not meet perceived needs
• Viral nature of C++’s const caused usability problems
• Need to protect an entire class from mutation
• Guarantees too weak to be useful

• Takeaways: some evidence that:
• Immutability matters to practitioners
• Need better usability, stronger semantics than Java, C++

7



What guarantees would help?

• Immutability > read only references
• Read-only references restrict mutation only through one reference
• Mutation through other references can still cause problems

• Immutability means data that cannot be changed at all
• Powerful mathematical properties: equational reasoning, guarantees no race 

conditions, prohibits an attacker from violating data integrity

• Transitive > non-transitive
• Transitive immutability protects an entire reachable data 

structure from mutation
• Lifts the guarantees provided by immutability to the units that matter 

architecturally

@Immutable Person p = …;
p.getAddress().setCity(city); // transitive immutability error

8



Are existing research systems usable?

• Some research systems provide the guarantees we want.  
Are they usable enough?

• Pilot study with 3 programmers using the IGJ 
immutability type system [Zibin et al. 2007] showed 
difficulties:
• Enforcing transitive immutability
• Understanding error messages

• Root problems may include complexity, high syntactic 
overhead
• Issues may be shared with other systems
• C++: what is constant here?
int * const x

9



Are current industrial systems usable?

Study of 10 developers carrying out immutability-related tasks using final in Java

Results

• 0/10 developers correctly expressed immutability
• Even with a “cheat sheet” of steps recommended by Bloch
• Too many details can go wrong, e.g. transitivity, defensive copies…

public class User { …
final String[] authorizedFiles; // Files the user is authorized to access
public User(…, String[] authorizedFiles) {

// implement me
this.authorizedFiles = authorizedFiles;

}

10



Specifying immutability in immutable designs

• With final (Bloch):

• Don’t provide any methods that modify the 
object’s state. 

• Ensure that the class can’t be extended.

• Make all fields final.

• Make all fields private.

• Ensure exclusive access to any mutable 
components. 

11



Are current industrial systems usable?

Study of 10 developers carrying out immutability-related tasks using final in Java

Results

• 0/10 developers correctly expressed immutability

• 7/10 developers implemented put() mutably for an immutable HashBucket

HashBucket put(Object k, Object v) {

// replace or merge

for (int i = 0; i < keys.length; i++) {

if (k.equals(keys[i])) {

values[i] = v;

…

}

}

…

12

Based on a real 
bug in BaseX



Are current industrial systems usable?

Study of 10 developers carrying out immutability-related tasks using final in Java

Results

• 0/10 developers correctly expressed immutability

• 7/10 developers implemented put() mutably for an immutable HashBucket

• 4/10 developers introduced a getSigners()-like vulnerability

public String[] getAuthorizedFiles() {

// TODO; returning null is bogus

return authorizedFiles;

}

13



GLACIER

Great 
Languages
Allow
Class
Immutability 
Enforced
Readily

14Aletsch Glacier. https://www.flickr.com/photos/squirmelia/. 
Licensed under CC NC SA.



Glacier: simple transitive immutability

• We set out to design a type system that is
• Simple – to avoid the usability problems in earlier systems
• Strong – enforcing transitive immutability
• not just final fields or read-only references

• Sound – always enforces the claimed mathematical properties

15



A Glacier example

16

@Immutable class Person
{

String name;
Address address;

}

class Address { … }

Person p = …
p.name = “Alex”

OK, String is 
@Immutable

Error: Address is 
not @Immutable

Every Person instance is 
@Immutable

Error: name is 
(implicitly) final



Glacier’s Design Decisions

As simple as possible, given strong and sound semantics:
• Immutability vs. read-only references
• Immutability [Strong semantics]

• Scope
• Class immutability [Simplicity, usability]

• Transitivity
• All reachable data is immutable [Strong semantics]

• Initialization
• No relaxation [Simplicity]

• Abstraction
• Protect all state, no exceptions for caching [Simplicity]

• Polymorphism
• Not supported [Simplicity]

Is it too simple?  Maybe, but we wanted an existence proof for a 
usable, useful immutability type system

17



Informal evidence: simplicity reasonable

• Observation: most Java classes are naturally either mutable 
or immutable
• Advice from Josh Bloch on making classes immutable

“Classes should be immutable unless there's a very good reason to make 
them mutable.”

• Immutable collections libraries are designed differently
add() returns a new collection, vs. side-effecting in a mutable library

• Suggests we might be able to live with class-level 
immutability, lack of polymorphism

18



Glacier: simple transitive immutability

• Glacier is an annotation system and checker for Java
• @Immutable marks a class immutable

• All fields of an @Immutable object are final and must point to 
other @Immutable objects

• Sound handling of inheritance, parametric polymorphism, arrays
• @Immutability inherited
• Type parameters of an @Immutable class must be @Immutable
• @ReadOnly necessary for standard library treatment of arrays

19



Theoretical Evaluation: is Glacier sound?

• Does @Immutable enforce transitive immutability?
• Key design decisions based on (multiple) formal models of 

immutability type systems and proofs of soundness

20



Empirical Evaluation

• A user study:
• Usability: can people specify immutability with the system? Better 

than Java’s final?
• Usefulness: Does using Glacier prevent bugs and security 

vulnerabilities?

• Two case studies: is Glacier applicable to real-world 
projects?

21



Participants (N=20)

• Mean programming experience: 9.5 years (range: 4-19 
years)

• Mean Java experience: 3 years (range: 1-8 years)

• 90% had used final before

• Pre-test on final; mean score 3.45 correct (of 5)

• 9 of 20 thought that it is forbidden to call setters on 
objects referenced by final fields

• On reading final documentation: “I’ve only used final
on integers before, so this will be instructive.”

22



User Study Methodology

23

final (N=10) Glacier (N=10)

Questionnaire Questionnaire

3 pages of documentation 
on final

2-page paper tutorial

2 annotation tasks 2 annotation tasks

Instructions on immutability 
[Bloch]

Revised annotation tasks

2 programming tasks 2 programming tasks



Specifying immutability in immutable designs

• With final (Bloch):

• Don’t provide any methods that modify the object’s 
state. 

• Ensure that the class can’t be extended.

• Make all fields final.

• Make all fields private.

• Ensure exclusive access to any mutable 
components. 

• With Glacier:

• Add @Immutable where required

24



Evaluation: does Glacier help?

User experiment carrying out immutability-related tasks
using final in Java vs. @Immutable in Glacier

Results

Ensuring Person, Accounts data structures are transitively 
immutable

25

final Glacier

Correctly enforced 
immutability in class 
Person

0/10 10/10

Correctly enforced 
immutability in class 
Accounts

0/10 9/10



Evaluation: does Glacier help?

User experiment carrying out immutability-related tasks
using final in Java vs. @Immutable in Glacier

Results

Implementing put() in an immutable Hashtable (based on
a real bug in BaseX)

26

final Glacier

Claimed task completion 10/10 7/10

Task correct (avoided 
mutating array in place)

3/10 7/7



Evaluation: does Glacier help?

User experiment carrying out immutability-related tasks
using final in Java vs. @Immutable in Glacier

Results

Implementing pieces of a server with user accounts

27

final Glacier

Claimed task completion 8/10 7/10

Task correct (avoided security 
vulnerability)

4/8 7/7



Results, Limitations

• Glacier
• enabled more users to finish tasks without bugs/vulnerabilities
• only slightly decreased task completion

• Limitation: Small lab study
• But if people insert bugs in small, simple projects, they are likely 

to in large, complex projects

• Limitation: Graduate student participants
• But they had at least some experience in Java

28



CASE STUDY 1 :  ZK  SPREADSHEET

29



Case study: ZK Spreadsheet

• Authors didn’t use immutability 
(performance concerns)

• Refactored model (36 KLOC) to 
make cell styles immutable

• Updated calls in spreadsheet 
module (21 KLOC) to use 
modified model

• 20 person-hours

• Found two previously-unknown 
bugs

30



Case study: Guava ImmutableList

• Goal: see how Glacier works in reusable library code

• Refactored:

• @Immutable ImmutableList

• @Immutable ImmutableCollection

• and subclasses (as required)

• Success, but with some limitations
• No polymorphism  one method duplicated
• Could not leverage a cache used to convert collections to 

lists

31



Future Work

• Can we add expressiveness while retaining usability?
• Lazy initialization of caches
• Allow mutation temporarily (circular data structures)
• Polymorphism

• Which structures should be designed to be immutable? 
What is the current practice?

32



Immutability Types – based on math and science

• Glacier is a new immutability type system for Java
• Simple enough to be usable by programmers
• Soundly enforces a strong mathematical property: transitive immutability
• Applies to real code with little overhead and only minor code changes
• Helps users write correct code and prevent security vulnerabilities
• First user study on immutability!

• Glacier illustrates an effective approach to improving languages
• Use mathematical models to ensure correctness and power of tools
• Leverage usability science to ensure benefit from that power in practice

33



34



Backup Slides

35



Sample Errors

36


