Glacier: Usable Enforcement
of Transitive Immutability

Michael Coblenz, Whitney Nelson, Jonathan Aldrich,
Brad Myers, and Joshua Sunshine

17-396/17-696/17-960: Language Design and Prototyping

Carnegie Mellon University

I S is”ét}%?j&r % Carnegie Mellon University
RESEARCH School of Computer Science

Motivation: vulnerability from Java 1.1.1

. Tracks which principals have
public class Class { signed the code represented

private Obiject|] signers; by this class.

public Object|] getSigners() {

: . j _
return Signers; Returns the internal array

} ‘ used for storage
I Fvil An attacker can mutate the
class Evil { array, allowing arbitrary code
public void evﬂ() { to be treated as trusted.

getClass().getSigners()[0] = “com.google";
h

} Note: example simplified for presentation purposes 2

Patching the vulnerability: make a copy

. Tracks which principals have
public class Class { signed the code represented

private Obiject|] signers; by this class.

public Object|] getSigners() {

return signers.clone();

j

} Patches the vulnerability, but
far from ideal — makes a
costly copy on each call.

Note: example simplified for presentation purposes 3

A better solution: immutabillity

public class Class {
private (@Immutable Object|] signers;

public (@Immutable Object[| getSigners() {
return signers;

j

} Returns an immutable array
— one that attackers cannot

write to. No performance

A common problem: cost unless we need to

« Provide access to read-mostly data change the list of signers
- Protect integrity (unlikely here).

Note: example simplified for presentation purposes 4

Immutability: not solved already?

* Java’s final, C++’s const restrict assignment
e But const is unsound, both are too weak to be useful
¢ What properties to programmers actually need?
* Can we enforce mathematical properties that provide value?

* Some languages, type systems have stronger semantics
* Haskell immutable by default), IG] (immutability in Java)

* These have not caught on
* We found serious usability problems with IG] (more later)

* Can we leverage the science of usability to do better?
* Message: better immutability types can improve security, correctness

* Meta-message: significant benefit from combining
type theory and usability science

Many Design Decisions

* Immutability vs. read-only references

* Can the data structure be changed through other pointers?
* Scope

* Enforce immutability for all uses of a type, or case-by-case?
* Transitivity

* Is this object immutable, or all reachable data?
* Initialization

* Relax immutability during initialization?
* Abstraction

* Protect only abstract state, e.g. allowing caching? Or all state?
* Polymorphism

* Collections polymorphic over the immutability of contents?

What do programmers need?

Semi-structured interviews with 8 experienced [mean 15
years| developers found:

* Significant usage of immutable or access-restricted APIs

* State change is a major source of bugs

* QQ: “Are bugs frequently caused by unintended state changer”
A: “Oh God, most of them!

* Existing language constructs did not meet perceived needs
* Viral nature of C++’s const caused usability problems
* Need to protect an entire class from mutation
* Guarantees too weak to be useful

* Takeaways: some evidence that:
* Immutability matters to practitioners
* Need better usability, stronger semantics than Java, C++

What guarantees would help?

* Immutability > read only references

* Read-only references restrict mutation only through one reference
* Mutation through other references can still cause problems

* Immutability means data that cannot be changed at all
¢ Powerful mathematical properties: equational reasoning, guarantees no race
conditions, prohibits an attacker from violating data integrity

* Transitive > non-transitive
 Transitive immutability protects an entire reachable data

structure from mutation
e Lifts the guarantees provided by immutability to the units that matter
architecturally

@Immutable Personp = ...;
p.getAddress().setCity(city); // transitive immutability error

Are existing research systems usable?

* Some research systems provide the guarantees we want.

Are they usable enough?

* Pilot study with 3 programmers using the 1G]
immutability type system [Zibin e a/. 2007] showed

difficulties:
* Enforcing transitive immutability
* Understanding error messages

* Root problems may include complexity, high syntactic

overhead

* Issues may be shared with other systems
¢ C++: what is constant here?
int * const x

Are current industrial systems usable?

Study of 10 developers carrying out immutability-related tasks using final in Java

Results

* 0/10 developers correctly expressed immutability
* Even with a “cheat sheet” of steps recommended by Bloch
* Too many details can go wrong, e.g. transitivity, defensive copies...

public class User { ...
final String[] authorizedFiles; // Files the user is anthorized to access
public Uset(..., String|[] authorizedFiles) {
/] implement me
this.authorizedFiles = authorizedFiles;

10

Specifying immutability in immutable designs

» With final (Bloch):

* Don’t provide any methods that modity the
object’s state.

e Ensure that the class can’t be extended.
e Make all fields final.
* Make all fields private.

* Ensure exclusive access to any mutable
components.

11

Are current industrial systems usable?

Study of 10 developers carrying out immutability-related tasks using final in Java

Results
* 0/10 developers correctly expressed immutability

* 7/10 developers implemented put() mutably for an immutable HashBucket

HashBucket put(Object k, Object v) {
/| replace or merge
for (inti = 0;1 < keys.length; i++) {
if (k.equals(keys[i])) {

I values|i] = v; Based on a real
| bug in BaseX

b

12

Are current industrial systems usable?

Study of 10 developers carrying out immutability-related tasks using final in Java

Results

* 0/10 developers correctly expressed immutability

* 7/10 developers implemented put() mutably for an immutable HashBucket
* 4/10 developers introduced a getSigners()-like vulnerability

public String|] getAuthorizedFiles() {
/| TODO; returning null is bogus

‘ return authorizedFiles;

b

13

GLACIER

Great
Languages
llow

14SS

Immutability
Enforced
Readily

Aletsch Glacier. https://www.flickr.com/photos/squirmelia/. Eaa
Licensed under CC NC SA.

e

Glacier: simple transitive immutability

* We set out to design a type system that is
* Simple — to avoid the usability problems in earlier systems

* Strong — enforcing transitive immutability
* not just final fields or read-only references

* Sound — always enforces the claimed mathematical properties

15

A Glacier example

Every Person instance 1s
(@Immutable

OK, String 1s

(@Immutable class Person @Immutable

d

String name;

Address address;

Error: Address is

class Address { ... } not (@Immutable

Personp = ... Error: name 1s
p.name = “Alex” implicitly) final

16

Glacier’'s Design Decisions

As simple as possible, given strong and sound semantics:

* Immutability vs. read-only references
¢ Immutability [Strong semantics]

Scope
 Class immutability [Simplicity, usability]

Transitivity
* All reachable data is immutable [Strong semantics]

Initialization
¢ No relaxation [Simplicity]

Abstraction
* Protect all state, no exceptions for caching [Simplicity]

Polymorphism

* Not supported [Simplicity]
Is it too simple? Maybe, but we wanted an existence proof for a
usable, useful immutability type system

17

Informal evidence: simplicity reasonable

* Observation: most Java classes are naturally either mutable

or immutable

* Advice from Josh Bloch on making classes immutable
“Classes should be immutable unless there's a very good reason to make
them mutable.”

* Immutable collections libraries are designed differently
add() returns a new collection, vs. side-effecting in a mutable library

* Suggests we might be able to live with class-level
immutability, lack of polymorphism

18

Glacier: simple transitive immutability

* Glacier 1s an annotation system and checker for Java
* @Immutable marks a class immutable

* All fields of an @Immutable object are final and must point to
other @Immutable objects

* Sound handling of inheritance, parametric polymorphism, arrays
* @Immutability inherited
* Type parameters of an (@Immutable class must be @Immutable
* (@ReadOnly necessary for standard library treatment of arrays

19

Theoretical Evaluation: is Glacier sound?

* Does @Immutable enforce transitive immutability?
* Key design decisions based on (multiple) formal models of
immutability type systems and proofs of soundness

I'sH4I"||I'Seq4 I ||C— M

fieldType(l'(x), f) =T freeze(l'(y)) <: 7
isImmutable(l'(x)) = I'(x) e Ti I'y)eT) = I'(x) e T;

N-zf=yArl

T-To-FIELD

x ¢ dom(I") fieldType(l'(y),.f) =T I'v)eT;
''z=yfAdAl z:71

T-FroM-FIELD

x ¢ dom()
isImmutable(C') = 7 = liquid C —isImmutable(C) = 17=C

- - T-NEwW
IN'—x=new C 4 x:71

x ¢ dom([") methodLookup(/'(y),m) =17 m(7TT) Q
I'(y) e T} < @ = liquid Vi { i) <! Ti

''-z=ym(z) 4 I x:

T-MeTHOD-CALL

Theorem 1 (Soundness). For some program consisting of Seq and a set of
class declarations CL, 20
if @+ Seq -4 I and (F,{F,Seq) - top) =* (0,85), then wf(o, S).

Empirical Evaluation

* A user study:
* Usability: can people specify immutability with the system? Better
than Java’s final?
* Usefulness: Does using Glacier prevent bugs and security
vulnerabilities?

* Two case studies: 1s Glacier applicable to real-world
projects?

21

Participants (N=20)

Mean programming experience: 9.5 years (range: 4-19
years)

Mean Java experience: 3 years (range: 1-8 years)
90% had used final before
Pre-test on final; mean score 3.45 correct (of 5)

* 9 of 20 thought that it is forbidden to call setters on
objects referenced by final fields

* On reading final documentation: “I’ve only used final
on integers before, so this will be instructive.”

22

User Study Methodology

final (N=10) Glacier (N=10)
Questionnaire Questionnaire

3 pages of documentation

on final 2-page paper tutorial

2 annotation tasks 2 annotation tasks

Instructions on immutability
[Bloch]

Revised annotation tasks

2 programming tasks 2 programming tasks

Specifying immutability in immutable designs

- With final (Bloch):

* Don’t provide any methods that modity the object’s
state.

 Ensure that the class can’t be extended.
e Make all fields final.
* Make all fields private.

* Ensure exclusive access to any mutable
components.

* With Glacier:
* Add @Immutable where required

24

Evaluation: does Glacier help?

User experiment carrying out immutability-related tasks
using final in Java vs. @Immutable in Glacier

Results

Ensuring Person, Accounts data structures are transitively
immutable

final Glacier

Correctly enforced
immutability in class 0/10 10/10
Person

Correctly enforced
immutability in class 0/10 9/10
Accounts 25

Evaluation: does Glacier help?

User experiment carrying out immutability-related tasks
using final in Java vs. @Immutable in Glacier

Results

Implementing put() in an immutable Hashtable (based on
a real bug in BaseX)

final Glacier
Claimed task completion 10/10 7/10

Task correct (avoided
mutating array in place)

3/10 717

26

Evaluation: does Glacier help?

User experiment carrying out immutability-related tasks
using final in Java vs. @Immutable in Glacier

Results

Implementing pieces of a server with user accounts

Glacier

Claimed task completion 7/10

Task correct (avoided security
vulnerability)

717

27

Results, Limitations

* Glacter
* enabled more users to finish tasks without bugs/vulnerabilities
* only slightly decreased task completion

* Limitation: Small lab study
* But if people insert bugs in small, simple projects, they are likely
to 1n large, complex projects

 Limitation: Graduate student participants
* But they had at least some experience in Java

28

CASE STUDY 1

Flew Editv Vieww Insertv Helpw

O W ® B-X D 2

EeQ- $-47- A OB = -8
v ft0)

Ratio Analysis

1
2
3 Gray cells will be calculated for you. You do not need to enter anything into them.
4
5

Beginning
line lfem of Year I assets
M liabilities
6 | Inventory $12,500 equity
7 | Total cssets $120.000
8 | Owners equity $29,000
9 | Number of common shares 25,000

/K SPREADSHEET

Last saved: 17:31:06

o
[
Ic
th
4
[
4
&
4
Ni|
4
1
4
g
']

D E F G H

SeriesO

B e e M M =]

12 | Current assets 45,000
13 | Fixed assets 80,000
14 | Total assets 125,000
15 | Average total assets 122,500
16 | Cash and cash equivalents 15,000
17 | Inventory 15,000
18 | Average inventory 13,750
19 | Lo cnant Sammina a2 Ann

= = Input Liquidity Assets Profitability

46,000 46,500 $48.000
80.000 90,000 105,000 $105,000
126,000 136,500 153,000 $153.000
123,000 128,250 136,500 $136,500
18.000 16,500 14,350 $14,350
18.000 16.500 14,350 $14,350
15,250 14,500 13,425 $13.425
—— an can - e

Debt Market

= Merge & Center ~

29

Case study: ZK Spreadsheet

* Authors didn’t use immutability
(performance concerns)

* Refactored model (36 KLLOC) to

make cell styles immutable

* Updated calls in spreadsheet
module (21 KILLOC) to use
modified model

* 20 person-hours

* Found two previously-unknown

bugs

30

Case study: Guava ImmutableList

* Goal: see how Glacier works in reusable library code
e Refactored:

* @Immutable ImmutableList

* @Immutable ImmutableCollection

* and subclasses (as required)

* Success, but with some limitations
* No polymorphism = one method duplicated
* Could not leverage a cache used to convert collections to
lists

31

Future Work

* Can we add expressiveness while retaining usability?
* Lazy initialization of caches
* Allow mutation temporarily (circular data structures)
* Polymorphism
* Which structures should be designed to be immutable?
What is the current practicer?

32

Immutability Types — based on math and science

* Glacier is a new immutability type system for Java
* Simple enough to be usable by programmers
* Soundly enforces a strong mathematical property: transitive immutability
* Applies to real code with little overhead and only minor code changes

* Helps users write correct code and prevent security vulnerabilities
* First user study on immutability!

* Glacter illustrates an etfective approach to improving languages
¢ Use mathematical models to ensure correctness and power of tools
 Leverage usability science to ensure benefit from that power in practice

33

34

Backup Slides

Sample Errors

Error # users

Provided mutating methods

Person not final

Address not final

Accounts not final

User not final

Fields of Person not final

Fields of Address not £inal

Accounts.users not final

Fields of User not final

Fields of Person not private

Fields of Address not private
Accounts.users not private

Fields of User not private

Omitted copying users in Accounts constructor
Omitted copying users in Accounts.getUsers ()
Omitted copying authorizedFiles in User constructor

=

V= JIVO = 0O —=O0 O

36

