Case Studies for Evaluating
Programming Languages

Jonathan Aldrich

17-396/17-696/17-960:
Language Design and Prototyping

Carnegie Mellon University

Thought Question

* What can we learn from trying out a
language? Can this be done scientifically?

PL Design & Proto. Jonathan Aldrich - Case Studies

Case Study

e A research method that deeply examines a
particular situation to gain understanding

* Used for
— Generating hypotheses

— Answering how and why questions
— Evaluating hypotheses in a real-world setting

« Limitation: no statistical generalization

— But does support analytical generalization

PL Design & Proto. Jonathan Aldrich - Case Studies

Why Use a Case Study?

* You want to gain a deep understanding of
your language 1n a real world context

— Does 1t have the effect you expect?
— What surprising effects does it have?
— How and why does it have those effects?

— How does it stand up to the complexities of the
real world?

PL Design & Proto. Jonathan Aldrich - Case Studies

Data Gathering

» Case studies typically a mixed method
— Count things — how big, how many, how long?
— Observe things — the process, artifact...
— Use triangulation: multiple sources and kinds of
evidence that point to the same facts
« (Case studies exist in a context

— Beneficial for external validity — realistic

 Results likely meaningful real world

— Challenge for internal validity — hard to control

« Hard to be sure in identifying causes

PL Design & Proto. Jonathan Aldrich - Case Studies

Case Studies with PLs

« Example case: writing a program 1n a new PL

« Data that could be gathered
— How long did 1t take?
— How many lines of code?

— How were particular new constructs used? What were
the benefits/limitations of those constructs in context?

— Did the PL affect the design? Help find bugs?
* Compare to the same program in another PL

PL Design & Proto. Jonathan Aldrich - Case Studies

Discussion: Is This Science?

PL Design & Proto. Jonathan Aldrich - Case Studies

What Makes It Science?

(vs. an experience report or illustrative example)

Research questions 1dentified
Data 1s collected consistently, according to a plan
Inferences connect data to research questions

Explores, explains, describes, or (causally)
analyzes a phenomenon

Systematically addresses threats to validity

[adapted from Easterbrook et al.]

PL Design & Proto. Jonathan Aldrich - Case Studies 8

How to Design a Case Study (1)

 Identify research questions precisely

— Draw on relevant theory

 Identify hypotheses
— Sometimes called “propositions™ for case studies

— Alternatively, your goal may be to form hypotheses

« Exploratory studies — still need purpose (what kind of
hypotheses?) and criteria for success

 Identify the unit of analysis

— Precisely define the case — what is the study’s scope?

[adapted from Easterbrook et al.]
PL Design & Proto. Jonathan Aldrich - Case Studies 9

How to Design a Case Study (2)

« Data collection
— What information will you collect? How will you do it?
— How will you decide what to include/exclude?
« Linking logic
— Logic that relates data to hypotheses
— Example: pattern matching

« Describe several patterns, e.g. that represent alternative explanations

» Compare case study to patterns: which one fits best?

 Interpretation criteria

— How will you analyze the data and interpret findings?

[adapted from Easterbrook et al.]
PL Design & Proto. Jonathan Aldrich - Case Studies 10

Analytical Generalization

Compare qualitative findings to a theory

— Does the data support or refute the theory?

* Note: in the case of partial support, may motivate possible changes to the
theory

— Is one theory better supported than another?
Empirical induction

— Evidence builds when several case studies all support a theory (compared
to rival theories)

Power comes from detail

— Looks at underlying mechanism,; tries to explain

— Many pieces of data come together to support (or refute) a theory
Compare: statistical generalization

— Sample from, generalize to a population

[adapted from Easterbrook et al.]

PL Design & Proto. Jonathan Aldrich - Case Studies 11

Case Study Replication

* Replicating case studies can
— Add confidence to conclusions
— Help broaden a theory and its support

* Seclection guided by theory
— Predict similar results

— Predict contrasting results but for predictable reasons

* Not random sampling from a pool!

[adapted from Easterbrook et al.]
PL Design & Proto. Jonathan Aldrich - Case Studies 12

Case Study Analysis Principles

* Rely on theory
— Tells you what data 1s relevant and how to test it

— Alternatively, derive possible theories from data
(in an exploratory study)

« Consider rival explanations

— Can you gather evidence to confirm/reject alternatives
to the theory under investigation?

[adapted from Easterbrook et al.]
PL Design & Proto. Jonathan Aldrich - Case Studies 13

Questions?

* Let’s look at an example...

* This example 1s from a long time ago, when
I was a graduate student

— It was well-respected at the time, and the paper
even won a 10-year retrospective award

— But this was early 1n the world of applying case
studies in PLs—so there are also things to
criticize!

PL Design & Proto. Jonathan Aldrich - Case Studies

ArchlJava

Connecting Software Architecture to Implementation

Jonathan Aldrich
Craig Chambers
David Notkin

University of Washington

ICSE 02, May 22, 2002

Software Architecture

Compiler

scanner {*O—] parser (”*O—] codegen

* High-level system structure
— Components and connections

* Automated analysis

* Support program evolution

— Source of defect
— Effect of change
— Invariants to preserve

PL Design & Proto. Jonathan Aldrich - Case Studies

Architecture and Implementation

Compiler

scanner {*O—] parser (”*O—] codegen

* Inconsistency caused by evolution

— Architecture documentation becomes obsolete
* Problems

— Surprises

— Misunderstandings lead to defects

— Untrusted architecture won’t be used

PL Design & Proto. Jonathan Aldrich - Case Studies

Architecture and Implementation

Compiler

scanner {*O—] parser (”*O—] codegen

e Does code conform to architecture?

* Communication integrity [LV95,MQR95]

— All communication 1s documented

* Interfaces and connectivity

— Enables effective architectural reasoning
* Quickly learn how components fit together

» [.ocal information 1s sufficient

PL Design & Proto. Jonathan Aldrich - Case Studies

Architectural Approaches:
Checking vs. Flexibility

Communication Integrity

Static

Note: only two dimensions
of the design space

Dynamic

» Flexibility
Restricted Language General Purpose

PL Design & Proto. Jonathan Aldrich - Case Studies

Architectural Approaches:
Checking vs. Flexibility

Communication Integrity

Static SDIL

Dynamic Rapide

Knit, ACOEL,
ML, Rose RealTime

Wright, SADL

» Flexibility
Restricted Language General Purpose

PL Design & Proto. Jonathan Aldrich - Case Studies

Architectural Approaches:
Checking vs. Flexibility

Communication Integrity

Static SDL ArchJava

Dynamic Rapide

Knit, ACOEL,
ML, Rose RealTime

Wright, SADL

» Flexibility
Restricted Language General Purpose

PL Design & Proto. Jonathan Aldrich - Case Studies

ArchlJava

» Approach: add architecture to language

— Control-flow communication integrity
« Enforced by type system

— Architecture updated as code evolves
— Flexible

* Dynamically changing architectures

 Common 1implementation techniques

» Case study: 1s it practical and useful?

PL Design & Proto. Jonathan Aldrich - Case Studies

A Parser Component

Parser

public component class Parser {

Component class
e Defines architectural object
e Must obey architectural constraints

PL Design & Proto. Jonathan Aldrich - Case Studies

A Parser Component

in (Parser D out

public component class Parser {
public port in {
requires Token nextToken () ;

}
public port out {
provides AST parse();

}

Components communicate through Ports
* A two-way interface
e Define provided and required methods

PL Design & Proto. Jonathan Aldrich - Case Studies

A Parser Component

in (Parser D out

public component class Parser {
public port in {
requires Token nextToken () ;

}
public port out {
provides AST parse();

}

Ordinary (non-component) objects
* Passed between components

» Sharing 1s permitted

» Can use just as in Java

PL Design & Proto. Jonathan Aldrich - Case Studies

A Parser Component

in (Parser D out

public component class Parser {
public port in {
requires Token nextToken ()
}
public port out {
provides AST parse();
}
AST parse () {
Token tok=in.nextToken () ;
return parseExpr (tok);

}
AST parseExpr (Token tok) {

Can fill in architecture with ordinary Java code

PL Design & Proto. Jonathan Aldrich - Case Studies

Hierarchical Composition
Compiler

out in out inl

scanner © Q parser O Q codegen

public component class Compiler {
private final Scanner scanner = new Scanner();
private final Parser parser = new Parser();
private final CodeGen codegen = new CodeGen () ;

Subcomponents

— Component instances inside another component

— Communicate through connected ports

PL Design & Proto. Jonathan Aldrich - Case Studies

Hierarchical Composition
Compiler

out in out inl

scanner ©O—Q parser P—Q codegen

public component class Compiler {
private final Scanner scanner = new Scanner();
private final Parser parser = new Parser();
private final CodeGen codegen = new CodeGen () ;
connect scanner.out, parser.in;
connect parser.out, codegen.in;

Connections

— Bind required methods to provided methods

PL Design & Proto. Jonathan Aldrich - Case Studies

Evaluation Questions

* Does ArchlJava guarantee communication integrity’!
e Is ArchlJava expressive enough for real systems?

* Can Archlava aid software evolution tasks?

PL Design & Proto. Jonathan Aldrich - Case Studies

Communication Integrity

Compiler

scanner {)—] parser {>—] codegen

A component may only communicate with the
components it is connected to in the architecture

PL Design & Proto. Jonathan Aldrich - Case Studies

Communication Integrity

Compiler

scanner {)—] parser {>—] codegen

A component may only communicate with the
components it is connected to in the architecture

ArchJava enforces integrity for control flow

* No method calls permitted from one component to
another except

— From a parent to its immediate subcomponents
— Through connections 1n the architecture

PL Design & Proto. Jonathan Aldrich - Case Studies

Communication Integrity

Compiler

scanner {)—] parser {>—] codegen

A component may only communicate with the
components it is connected to in the architecture

ArchJava enforces integrity for control flow

Other communication paths
— Shared data (current work)
— Run-time system

PL Design & Proto. Jonathan Aldrich - Case Studies

Control Communication Integrity

Compiler

scanner@ parser @ codegen

 Architecture allows

— Calls between connected components

PL Design & Proto. Jonathan Aldrich - Case Studies

Control Communication Integrity

/‘\ Com;ii ler—\

scanner {)—] parser {>—] codegen

 Architecture allows

— Calls between connected components

— Calls from a parent to its immediate subcomponents

PL Design & Proto. Jonathan Aldrich - Case Studies

Control Communication Integrity
Caymbol D+ _Compiler

scanner 4) parser Ecodeg en

 Architecture allows

— Calls between connected components

— Calls from a parent to its immediate subcomponents

— Calls to shared objects

PL Design & Proto. Jonathan Aldrich - Case Studies

Control Communication Integrity

Compiler

scanner {)—] parser {>—] codegen

« Architecture allows
— Calls between connected components
— Calls from a parent to its immediate subcomponents
— Calls to shared objects

e Architecture forbids

— External calls to subcomponents

PL Design & Proto. Jonathan Aldrich - Case Studies

Control Communication Integrity

Compiler

scanner {)—] parser codegen

« Architecture allows
— Calls between connected components
— Calls from a parent to its immediate subcomponents

— Calls to shared objects
e Architecture forbids

— External calls to subcomponents

— Calls between unconnected subcomponents

PL Design & Proto. Jonathan Aldrich - Case Studies

Control Communication Integrity
@ Compiler

scanner (O—) parser (O— codegen

« Architecture allows
— Calls between connected components

— Calls from a parent to its immediate subcomponents

— Calls to shared objects
e Architecture forbids

— External calls to subcomponents

— Calls between unconnected subcomponents

— Calls through shared objects

PL Design & Proto. Jonathan Aldrich - Case Studies

Control Communication Integrity

Compiler

scanner {)—] parser codegen

« Architecture allows
— Calls between connected components
— Calls from a parent to its immediate subcomponents
— Calls to shared objects

e Architecture forbids
— External calls to subcomponents
— Calls between unconnected subcomponents
— Calls through shared objects

« Benefit: local reasoning about control flow

PL Design & Proto. Jonathan Aldrich - Case Studies

Enforcing Control-flow Integrity

* Type system 1nvariant

— Components can only get a typed reference to
subcomponents and connected components

— Prohibits 1llegal calls

 Informal description in ICSE paper
— Formalization and proof to appear in ECOQOP 02

PL Design & Proto. Jonathan Aldrich - Case Studies

Evaluation Questions

* Does ArchlJava guarantee control communication
integrit)?
— Yes, using the type system

» Is ArchlJava expressive enough for real systems?

e Can Archlava aid software evolution tasks?

PL Design & Proto. Jonathan Aldrich - Case Studies

Evaluation Questions

Does ArchlJava guarantee control communication
integrity’!

— Yes, using the type system
Is ArchJava expressive enough for real systems?

Can ArchlJava aid software evolution tasks?

Case study: Aphyds
— 12,000 lines of Java code

— Original developer drew architecture for us
— QOur task: express the architecture in ArchJava

PL Design & Proto. Jonathan Aldrich - Case Studies

[ﬂk(——\)

L Qe Architecture
e UI above

— Main window

oS, U5 e Aphyds
: (W/w\,@wf/ .

— 3 secondary windows

e Circuit DB below
— Central DB

— 5 comput. modules

e Arrows

— Data & control flow

PL Design & Proto. Jonathan Aldrich - Case Studies

Aphyds Architecture

* Informal drawing
— Common 1n practice

 [.eaves out details

— What’s inside the components, connections?
— CircuitViewer has internal structure

e Some surprises
— Missing paths
— Component lifetimes

Hypothesis: Developers have a conceptual model of their
architecture that is mostly accurate, but this model may
be a simplification of reality, and it is often not explicit
in the code.

PL Design & Proto. Jonathan Aldrich - Case Studies

UI Architecture Comparison

CircuitViewer

\

FloorplanDialog PlaceRouteViewer ChannelRouteViewer

/

PL Design & Proto. Arhvdsiiode!

UI Architecture Comparison

CircuitViewer

N L

FloorplanDialog PlaceRouteViewer ChannelRouteViewer

A—IC

PL Design & Proto. Aphrdsiiode!

Advantages of ArchJava

Complete
— Can “zoom 1n” on details

Consistency checking
— Original architecture had minor flaws
Evolves with program

Low cost
— 30 hours, or 2.5 hours/KLOC

— Includes substantial refactoring
— 12.1 KLOC =>12.6 KLOC

Hypothesis: Applications can be translated into ArchJava
without excessive effort or code bloat.

PL Design & Proto. Jonathan Aldrich - Case Studies

Evaluation Questions

* Does ArchJava guarantee control communication
integrity’!
— Yes

* Is ArchlJava expressive enough for real systems?
— Yes (further validated other case studies)

PL Design & Proto. Jonathan Aldrich - Case Studies

Evaluation Questions

Does ArchlJava guarantee control communication
integrity’!
— Yes
Is ArchJava expressive enough for real systems?
— Yes (validated by 2 other case studies)

Can ArchlJava aid software evolution tasks?

Three experiments

— Understanding Aphyds communication
— Reengineering Aphyds’ architecture

— Repairing a defect

PL Design & Proto. Jonathan Aldrich - Case Studies

Program Understanding

Communication between the main structures is awkward, especially
the change propagation messages

— Aphyds developer, initial interview

« Communication analysis aided by ArchJava

— Ports group related methods
 provided and required interfaces

— Connections show relationships
* Discovered refactoring opportunities

PL Design & Proto. Jonathan Aldrich - Case Studies

Program Understanding

Communication between the main structures is awkward, especially
the change propagation messages

— Aphyds developer, initial interview

« Communication analysis aided by ArchJava

— Ports group related methods
 provided and required interfaces

— Connections show relationships
* Discovered refactoring opportunities
Hypothesis: Expressing software architecture in

ArchJava highlights refactoring opportunities by
making communication protocols explicit.

PL Design & Proto. Jonathan Aldrich - Case Studies

Reengineering Aphyds

getDisplayer () .getViewer () .ChannelRouterMenultem. setEnabled(b) ;

* Highly coupled code

— Depends on every link 1n chain
— Programs are fragile, change 1s difficult

« Law of Demeter [Lieberherr et al.]
— Design guideline
— “Only talk with your neighbors”

PL Design & Proto. Jonathan Aldrich - Case Studies

Reengineering Aphyds

CircuitDisplayer

getDisplayer () .getViewer () .ChannelRouterMenultem. setEnabled(b) ;

RouterDialog D O

* Control communication integrity
— Components only talk with connected components

PL Design & Proto. Jonathan Aldrich - Case Studies

Reengineering Aphyds

CircuitViewer

CircuitDisplayer

getDisplayer () .getViewer () .ChannelRouterMenultem. setEnabled(b) ;

I
|
RouterDialog O ol
I

* Control communication integrity
— Components only talk with connected components

e Compile-time error in ArchJava

— RouterDialog can only reference local connections

PL Design & Proto. Jonathan Aldrich - Case Studies

Reengineering Aphyds

CircuitDisplayer

getDisplayer () .getViewer () .ChannelRouterMenultem.setEnabled(b) ;

RouterDialog D 5|

* Control communication integrity
— Components only talk with connected components

e Compile-time error in ArchJava

— RouterDialog can only reference local connections
— Call through architecture, reducing coupling

PL Design & Proto. Jonathan Aldrich - Case Studies

Reengineering Aphyds

CircuitViewer

RouterDialog D 5|

CircuitDisplayer

getDisplayer () .getViewer () .ChannelRouterMenultem. setEnabled(b) ;

* Control communication integrity
— Components only talk with connected components

e Compile-time error in ArchJava

— RouterDialog can only reference local connections
— Call through architecture, reducing coupling

Hypothesis: Enforcing communication integrity helps to
reduce system coupling

PL Design & Proto. Jonathan Aldrich - Case Studies

Defect Repair

* Fix same Aphyds bug

— First in ArchJava, then Java

* ArchJava version required more coding
— Had to add new ports & connections

PL Design & Proto. Jonathan Aldrich - Case Studies

Defect Repair

* Fix same Aphyds bug

— First in ArchJava, then Java
* ArchJava version required more coding
— Had to add new ports & connections

 Java version took longer

— Dafficult to find object involved in fix
« Had to traverse a sequence of hard-to-find field links

— Even though we had already fixed the bug in ArchJava

PL Design & Proto Jonathan Aldrich - Case Studies

Defect Repair

* Fix same Aphyds bug
— First in ArchJava, then Java

* ArchJava version required more coding
— Had to add new ports & connections

 Java version took longer

— Difficult to find object involved 1n fix
« Had to traverse a sequence of hard-to-find field links

— Even though we had already fixed the bug in ArchJava

Hypothesis: An explicit software architecture makes it
easier to identify and evolve the components involved in
a change.

PL Design & Proto. Jonathan Aldrich - Case Studies

Evaluation Questions

» Is ArchlJava expressive enough for real systems?
— Yes

* Can Archlava aid software evolution tasks?

— Potential benefits observed
» Highlights refactoring opportunities
* Encourages loose coupling
* May aid defect repair

PL Design & Proto. Jonathan Aldrich - Case Studies

Conclusion

ArchJava integrates architecture with Java code

Control communication integrity

— Keeps architecture and code synchronized

Initial experience
— ArchJava can express real program architectures

— ArchJava may aid in software evolution tasks
Download the ArchJava compiler and tools

http://www.archjava.org/

PL Design & Proto. Jonathan Aldrich - Case Studies

Discussion

Consider the ArchJava case study?
What did it accomplish?
How would you criticize 1t?

Forms of validity
Construct: are concepts operationalized and measured correctly?
Internal: properly establishing causal relationships?
External: to what domain can the findings be generalized?
Reliability: is the study repeatable with the same results?

PL Design & Proto. Jonathan Aldrich - Case Studies

Sources/References

« ArchJava: Connecting Software Architecture to Implementation.
Jonathan Aldrich, Craig Chambers, and David Notkin. Proc.
International Conference on Software Engineering (ICSE '02), May
2002. http://www.cs.cmu.edu/~aldrich/papers/icse02.pdf

Case Studies for Software Engineers. Steve Easterbrook and Jorge
Aranda. Tutorial at ICSE 2006. http://www.cs.toronto.edu/~sme/case-
studies/case study tutorial slides.pdf

Case Study Research: Design and Methods. Robert K. Yin. SAGE
Publications, 2017.

PL Design & Proto. Jonathan Aldrich - Case Studies

