
Case Studies for Evaluating
Programming Languages

Jonathan Aldrich

17-396/17-696/17-960:
Language Design and Prototyping

Carnegie Mellon University

Thought Question

• What can we learn from trying out a
language? Can this be done scientifically?

PL Design & Proto. Jonathan Aldrich - Case Studies 2

Case Study

• A research method that deeply examines a
particular situation to gain understanding

• Used for

– Generating hypotheses

– Answering how and why questions

– Evaluating hypotheses in a real-world setting

• Limitation: no statistical generalization

– But does support analytical generalization

PL Design & Proto. Jonathan Aldrich - Case Studies 3

Why Use a Case Study?

• You want to gain a deep understanding of
your language in a real world context

– Does it have the effect you expect?

– What surprising effects does it have?

– How and why does it have those effects?

– How does it stand up to the complexities of the
real world?

PL Design & Proto. Jonathan Aldrich - Case Studies 4

Data Gathering

• Case studies typically a mixed method

– Count things – how big, how many, how long?

– Observe things – the process, artifact…

– Use triangulation: multiple sources and kinds of
evidence that point to the same facts

• Case studies exist in a context

– Beneficial for external validity – realistic
• Results likely meaningful real world

– Challenge for internal validity – hard to control
• Hard to be sure in identifying causes

PL Design & Proto. Jonathan Aldrich - Case Studies 5

Case Studies with PLs

• Example case: writing a program in a new PL

• Data that could be gathered

– How long did it take?

– How many lines of code?

– How were particular new constructs used? What were
the benefits/limitations of those constructs in context?

– Did the PL affect the design? Help find bugs?

• Compare to the same program in another PL

PL Design & Proto. Jonathan Aldrich - Case Studies 6

Discussion: Is This Science?

PL Design & Proto. Jonathan Aldrich - Case Studies 7

What Makes It Science?
(vs. an experience report or illustrative example)

• Research questions identified

• Data is collected consistently, according to a plan

• Inferences connect data to research questions

• Explores, explains, describes, or (causally)
analyzes a phenomenon

• Systematically addresses threats to validity

PL Design & Proto. Jonathan Aldrich - Case Studies 8

[adapted from Easterbrook et al.]

How to Design a Case Study (1)

• Identify research questions precisely

– Draw on relevant theory

• Identify hypotheses

– Sometimes called “propositions” for case studies

– Alternatively, your goal may be to form hypotheses
• Exploratory studies – still need purpose (what kind of

hypotheses?) and criteria for success

• Identify the unit of analysis

– Precisely define the case – what is the study’s scope?

PL Design & Proto. Jonathan Aldrich - Case Studies 9

[adapted from Easterbrook et al.]

How to Design a Case Study (2)

• Data collection
– What information will you collect? How will you do it?

– How will you decide what to include/exclude?

• Linking logic
– Logic that relates data to hypotheses

– Example: pattern matching

• Describe several patterns, e.g. that represent alternative explanations

• Compare case study to patterns: which one fits best?

• Interpretation criteria
– How will you analyze the data and interpret findings?

PL Design & Proto. Jonathan Aldrich - Case Studies 10

[adapted from Easterbrook et al.]

Analytical Generalization

• Compare qualitative findings to a theory

– Does the data support or refute the theory?

• Note: in the case of partial support, may motivate possible changes to the
theory

– Is one theory better supported than another?

• Empirical induction

– Evidence builds when several case studies all support a theory (compared
to rival theories)

• Power comes from detail

– Looks at underlying mechanism; tries to explain

– Many pieces of data come together to support (or refute) a theory

• Compare: statistical generalization

– Sample from, generalize to a population

PL Design & Proto. Jonathan Aldrich - Case Studies 11

[adapted from Easterbrook et al.]

Case Study Replication

• Replicating case studies can

– Add confidence to conclusions

– Help broaden a theory and its support

• Selection guided by theory

– Predict similar results

– Predict contrasting results but for predictable reasons

• Not random sampling from a pool!

PL Design & Proto. Jonathan Aldrich - Case Studies 12

[adapted from Easterbrook et al.]

Case Study Analysis Principles

• Rely on theory

– Tells you what data is relevant and how to test it

– Alternatively, derive possible theories from data
(in an exploratory study)

• Consider rival explanations

– Can you gather evidence to confirm/reject alternatives
to the theory under investigation?

PL Design & Proto. Jonathan Aldrich - Case Studies 13

[adapted from Easterbrook et al.]

Questions?

• Let’s look at an example…

• This example is from a long time ago, when
I was a graduate student

– It was well-respected at the time, and the paper
even won a 10-year retrospective award

– But this was early in the world of applying case
studies in PLs—so there are also things to
criticize!

PL Design & Proto. Jonathan Aldrich - Case Studies 14

ArchJava
Connecting Software Architecture to Implementation

Jonathan Aldrich

Craig Chambers

David Notkin

University of Washington

ICSE ‘02, May 22, 2002

PL Design & Proto. Jonathan Aldrich - Case Studies 16

Software Architecture

• High-level system structure
– Components and connections

• Automated analysis

• Support program evolution
– Source of defect

– Effect of change

– Invariants to preserve

parser codegen scanner

Compiler

PL Design & Proto. Jonathan Aldrich - Case Studies 17

parser codegen scanner

Compiler

Architecture and Implementation

• Inconsistency caused by evolution

– Architecture documentation becomes obsolete

• Problems

– Surprises

– Misunderstandings lead to defects

– Untrusted architecture won’t be used

PL Design & Proto. Jonathan Aldrich - Case Studies 18

parser codegen scanner

Compiler

Architecture and Implementation

• Does code conform to architecture?

• Communication integrity [LV95,MQR95]

– All communication is documented

• Interfaces and connectivity

– Enables effective architectural reasoning

• Quickly learn how components fit together

• Local information is sufficient

PL Design & Proto. Jonathan Aldrich - Case Studies 19

Architectural Approaches:
Checking vs. Flexibility

Partial

Dynamic

Static

General PurposeRestricted Language

Communication Integrity

None

Flexibility

Note: only two dimensions
of the design space

PL Design & Proto. Jonathan Aldrich - Case Studies 20

Architectural Approaches:
Checking vs. Flexibility

Partial

Dynamic

Static

Knit, ACOEL,
ML, Rose RealTime

General PurposeRestricted Language

Rapide

Communication Integrity

None

SDL

Wright, SADL

Flexibility

PL Design & Proto. Jonathan Aldrich - Case Studies 21

Architectural Approaches:
Checking vs. Flexibility

Partial

Dynamic

Static

Knit, ACOEL,
ML, Rose RealTime

General PurposeRestricted Language

Rapide

Communication Integrity

None

SDL

Wright, SADL

Flexibility

ArchJava

PL Design & Proto. Jonathan Aldrich - Case Studies 22

ArchJava

• Approach: add architecture to language

– Control-flow communication integrity

• Enforced by type system

– Architecture updated as code evolves

– Flexible

• Dynamically changing architectures

• Common implementation techniques

• Case study: is it practical and useful?

PL Design & Proto. Jonathan Aldrich - Case Studies 23

A Parser Component

public component class Parser {

Component class
• Defines architectural object
• Must obey architectural constraints

Parser

PL Design & Proto. Jonathan Aldrich - Case Studies 24

A Parser Component

public component class Parser {
public port in {
requires Token nextToken();

}
public port out {
provides AST parse();

}

Components communicate through Ports
• A two-way interface
• Define provided and required methods

Parser out in

PL Design & Proto. Jonathan Aldrich - Case Studies 25

A Parser Component

public component class Parser {
public port in {
requires Token nextToken();

}
public port out {
provides AST parse();

}

Ordinary (non-component) objects
• Passed between components
• Sharing is permitted
• Can use just as in Java

Parser out in

PL Design & Proto. Jonathan Aldrich - Case Studies 26

A Parser Component

public component class Parser {
public port in {
requires Token nextToken();

}
public port out {
provides AST parse();

}
AST parse() {
Token tok=in.nextToken();
return parseExpr(tok);

}
AST parseExpr(Token tok) { ... }
...

}

Can fill in architecture with ordinary Java code

Parser out in

PL Design & Proto. Jonathan Aldrich - Case Studies 27

Hierarchical Composition

public component class Compiler {
private final Scanner scanner = new Scanner();
private final Parser parser = new Parser();
private final CodeGen codegen = new CodeGen();

Subcomponents

– Component instances inside another component

– Communicate through connected ports

parser codegen scanner

Compiler
out in out in

PL Design & Proto. Jonathan Aldrich - Case Studies 28

Hierarchical Composition

public component class Compiler {
private final Scanner scanner = new Scanner();
private final Parser parser = new Parser();
private final CodeGen codegen = new CodeGen();
connect scanner.out, parser.in;
connect parser.out, codegen.in;

Connections

– Bind required methods to provided methods

parser codegen scanner

Compiler
out in out in

PL Design & Proto. Jonathan Aldrich - Case Studies 29

Evaluation Questions

• Does ArchJava guarantee communication integrity?

• Is ArchJava expressive enough for real systems?

• Can ArchJava aid software evolution tasks?

PL Design & Proto. Jonathan Aldrich - Case Studies 30

A component may only communicate with the
components it is connected to in the architecture

ArchJava enforces integrity for control flow

• No method calls permitted from one component to
another except
– From a parent to its nested subcomponents

– Through connections in the architecture

Communication Integrity

parser codegen scanner

Compiler

PL Design & Proto. Jonathan Aldrich - Case Studies 31

A component may only communicate with the
components it is connected to in the architecture

ArchJava enforces integrity for control flow

• No method calls permitted from one component to
another except
– From a parent to its immediate subcomponents

– Through connections in the architecture

Communication Integrity

parser codegen scanner

Compiler

PL Design & Proto. Jonathan Aldrich - Case Studies 32

A component may only communicate with the
components it is connected to in the architecture

ArchJava enforces integrity for control flow

Other communication paths
– Shared data (current work)

– Run-time system

Communication Integrity

parser codegen scanner

Compiler

PL Design & Proto. Jonathan Aldrich - Case Studies 33

• Architecture allows
– Calls between connected components

Control Communication Integrity

parser codegen scanner

Compiler

PL Design & Proto. Jonathan Aldrich - Case Studies 34

parser codegen scanner

Compiler

• Architecture allows
– Calls between connected components

– Calls from a parent to its immediate subcomponents

Control Communication Integrity

PL Design & Proto. Jonathan Aldrich - Case Studies 35

parser codegen scanner

Compiler
symbol

• Architecture allows
– Calls between connected components

– Calls from a parent to its immediate subcomponents

– Calls to shared objects

Control Communication Integrity

PL Design & Proto. Jonathan Aldrich - Case Studies 36

parser codegen scanner

Compiler

• Architecture allows
– Calls between connected components

– Calls from a parent to its immediate subcomponents

– Calls to shared objects

• Architecture forbids
– External calls to subcomponents

Control Communication Integrity

PL Design & Proto. Jonathan Aldrich - Case Studies 37

parser codegen scanner

Compiler

• Architecture allows
– Calls between connected components

– Calls from a parent to its immediate subcomponents

– Calls to shared objects

• Architecture forbids
– External calls to subcomponents

– Calls between unconnected subcomponents

Control Communication Integrity

PL Design & Proto. Jonathan Aldrich - Case Studies 38

• Architecture allows
– Calls between connected components

– Calls from a parent to its immediate subcomponents

– Calls to shared objects

• Architecture forbids
– External calls to subcomponents

– Calls between unconnected subcomponents

– Calls through shared objects

Control Communication Integrity

parser codegen scanner

Compiler
symbol

PL Design & Proto. Jonathan Aldrich - Case Studies 39

parser codegen scanner

Compiler

• Architecture allows
– Calls between connected components

– Calls from a parent to its immediate subcomponents

– Calls to shared objects

• Architecture forbids
– External calls to subcomponents

– Calls between unconnected subcomponents

– Calls through shared objects

• Benefit: local reasoning about control flow

Control Communication Integrity

PL Design & Proto. Jonathan Aldrich - Case Studies 40

Enforcing Control-flow Integrity

• Type system invariant

– Components can only get a typed reference to
subcomponents and connected components

– Prohibits illegal calls

• Informal description in ICSE paper

– Formalization and proof to appear in ECOOP ‘02

PL Design & Proto. Jonathan Aldrich - Case Studies 41

Evaluation Questions

• Does ArchJava guarantee control communication
integrity?
– Yes, using the type system

• Is ArchJava expressive enough for real systems?

• Can ArchJava aid software evolution tasks?

• Two case studies
– 12,000 lines of Java code each

– Asked developer to draw architecture

– Tried to specify architecture in ArchJava

PL Design & Proto. Jonathan Aldrich - Case Studies 42

Evaluation Questions

• Does ArchJava guarantee control communication
integrity?
– Yes, using the type system

• Is ArchJava expressive enough for real systems?

• Can ArchJava aid software evolution tasks?

• Case study: Aphyds
– 12,000 lines of Java code
– Original developer drew architecture for us

– Our task: express the architecture in ArchJava

PL Design & Proto. Jonathan Aldrich - Case Studies 43

Aphyds
Architecture

• UI above

– Main window

– 3 secondary windows

• Circuit DB below

– Central DB

– 5 comput. modules

• Arrows

– Data & control flow

PL Design & Proto. Jonathan Aldrich - Case Studies 44

Aphyds Architecture
• Informal drawing

– Common in practice

• Leaves out details
– What’s inside the components, connections?

– CircuitViewer has internal structure

• Some surprises
– Missing paths

– Component lifetimes

Hypothesis: Developers have a conceptual model of their
architecture that is mostly accurate, but this model may
be a simplification of reality, and it is often not explicit
in the code.

45

UI Architecture Comparison

PL Design & Proto. Jonathan Aldrich - Case Studies

46

UI Architecture Comparison

PL Design & Proto. Jonathan Aldrich - Case Studies

PL Design & Proto. Jonathan Aldrich - Case Studies 47

Advantages of ArchJava
• Complete

– Can “zoom in” on details

• Consistency checking
– Original architecture had minor flaws

• Evolves with program

• Low cost
– 30 hours, or 2.5 hours/KLOC

– Includes substantial refactoring

– 12.1 KLOC => 12.6 KLOC

Hypothesis: Applications can be translated into ArchJava
without excessive effort or code bloat.

PL Design & Proto. Jonathan Aldrich - Case Studies 48

Evaluation Questions

• Does ArchJava guarantee control communication
integrity?
– Yes

• Is ArchJava expressive enough for real systems?
– Yes (further validated other case studies)

• Three experiments
– Understanding Aphyds communication

– Refactoring Aphdys

– Reparing a defect

PL Design & Proto. Jonathan Aldrich - Case Studies 49

Evaluation Questions

• Does ArchJava guarantee control communication
integrity?
– Yes

• Is ArchJava expressive enough for real systems?
– Yes (validated by 2 other case studies)

• Can ArchJava aid software evolution tasks?

• Three experiments
– Understanding Aphyds communication

– Reengineering Aphyds’ architecture

– Repairing a defect

PL Design & Proto. Jonathan Aldrich - Case Studies 50

Program Understanding

Communication between the main structures is awkward, especially
the change propagation messages

– Aphyds developer, initial interview

• Communication analysis aided by ArchJava
– Ports group related methods

• provided and required interfaces

– Connections show relationships

• Discovered refactoring opportunities

Hypothesis: Expressing software architecture in
ArchJava highlights refactoring opportunities by
making communication protocols explicit.

PL Design & Proto. Jonathan Aldrich - Case Studies 51

Program Understanding

Communication between the main structures is awkward, especially
the change propagation messages

– Aphyds developer, initial interview

• Communication analysis aided by ArchJava
– Ports group related methods

• provided and required interfaces

– Connections show relationships

• Discovered refactoring opportunities

Hypothesis: Expressing software architecture in
ArchJava highlights refactoring opportunities by
making communication protocols explicit.

PL Design & Proto. Jonathan Aldrich - Case Studies 52

Reengineering Aphyds

getDisplayer().getViewer().ChannelRouterMenuItem.setEnabled(b);

• Highly coupled code

– Depends on every link in chain

– Programs are fragile, change is difficult

• Law of Demeter [Lieberherr et al.]

– Design guideline

– “Only talk with your neighbors”

RouterDialog CircuitDisplayer CircuitViewer MenuItem

PL Design & Proto. Jonathan Aldrich - Case Studies 53

Reengineering Aphyds

getDisplayer().getViewer().ChannelRouterMenuItem.setEnabled(b);

• Control communication integrity
– Components only talk with connected components

• Compile-time error in ArchJava

– RouterDialog can only reference local connections

– Instead, call a method through a new port

Hypothesis: Enforcing communication integrity helps to
reduce system coupling

CircuitViewer

MenuItem
RouterDialog

CircuitDisplayer

PL Design & Proto. Jonathan Aldrich - Case Studies 54

Reengineering Aphyds

getDisplayer().getViewer().ChannelRouterMenuItem.setEnabled(b);

• Control communication integrity
– Components only talk with connected components

• Compile-time error in ArchJava

– RouterDialog can only reference local connections

– Call through architecture, reducing coupling

Hypothesis: Enforcing communication integrity helps to
reduce system coupling

CircuitViewer

MenuItem
RouterDialog

CircuitDisplayer

PL Design & Proto. Jonathan Aldrich - Case Studies 55

Reengineering Aphyds

getDisplayer().getViewer().ChannelRouterMenuItem.setEnabled(b);

• Control communication integrity
– Components only talk with connected components

• Compile-time error in ArchJava

– RouterDialog can only reference local connections

– Call through architecture, reducing coupling

Hypothesis: Enforcing communication integrity helps to
reduce system coupling

CircuitViewer

MenuItem
RouterDialog

CircuitDisplayer

PL Design & Proto. Jonathan Aldrich - Case Studies 56

Reengineering Aphyds

getDisplayer().getViewer().ChannelRouterMenuItem.setEnabled(b);

• Control communication integrity
– Components only talk with connected components

• Compile-time error in ArchJava

– RouterDialog can only reference local connections

– Call through architecture, reducing coupling

Hypothesis: Enforcing communication integrity helps to
reduce system coupling

CircuitViewer

MenuItem
RouterDialog

CircuitDisplayer

PL Design & Proto. Jonathan Aldrich - Case Studies 57

Defect Repair
• Fix same Aphyds bug

– First in ArchJava, then Java

• ArchJava version required more coding
– Had to add new ports & connections

• Java took longer
– Difficult to find object involved in fix

– Even though I’d already fixed the bug in ArchJava!

getDisplayer().placeroutedialog1.placeRouteDisplayer1

.getCircuitGlobalRouter().doGlobalRouting();

Hypothesis: An explicit software architecture makes it
easier to identify and evolve the components involved in
a change.

PL Design & Proto. Jonathan Aldrich - Case Studies 58

Defect Repair
• Fix same Aphyds bug

– First in ArchJava, then Java

• ArchJava version required more coding
– Had to add new ports & connections

• Java version took longer
– Difficult to find object involved in fix

• Had to traverse a sequence of hard-to-find field links

– Even though we had already fixed the bug in ArchJava

Hypothesis: An explicit software architecture makes it
easier to identify and evolve the components involved in
a change.

PL Design & Proto. Jonathan Aldrich - Case Studies 59

Defect Repair
• Fix same Aphyds bug

– First in ArchJava, then Java

• ArchJava version required more coding
– Had to add new ports & connections

• Java version took longer
– Difficult to find object involved in fix

• Had to traverse a sequence of hard-to-find field links

– Even though we had already fixed the bug in ArchJava

Hypothesis: An explicit software architecture makes it
easier to identify and evolve the components involved in
a change.

PL Design & Proto. Jonathan Aldrich - Case Studies 60

Evaluation Questions

• Is ArchJava expressive enough for real systems?
– Yes

• Can ArchJava aid software evolution tasks?
– Potential benefits observed

• Highlights refactoring opportunities

• Encourages loose coupling

• May aid defect repair

PL Design & Proto. Jonathan Aldrich - Case Studies 61

Conclusion

• ArchJava integrates architecture with Java code

• Control communication integrity

– Keeps architecture and code synchronized

• Initial experience

– ArchJava can express real program architectures

– ArchJava may aid in software evolution tasks

• Download the ArchJava compiler and tools

http://www.archjava.org/

Discussion

• Consider the ArchJava case study?

• What did it accomplish?

• How would you criticize it?

• Forms of validity
– Construct: are concepts operationalized and measured correctly?

– Internal: properly establishing causal relationships?

– External: to what domain can the findings be generalized?

– Reliability: is the study repeatable with the same results?

PL Design & Proto. Jonathan Aldrich - Case Studies 62

Sources/References

• ArchJava: Connecting Software Architecture to Implementation.
Jonathan Aldrich, Craig Chambers, and David Notkin. Proc.
International Conference on Software Engineering (ICSE '02), May
2002. http://www.cs.cmu.edu/~aldrich/papers/icse02.pdf

• Case Studies for Software Engineers. Steve Easterbrook and Jorge
Aranda. Tutorial at ICSE 2006. http://www.cs.toronto.edu/~sme/case-
studies/case_study_tutorial_slides.pdf

• Case Study Research: Design and Methods. Robert K. Yin. SAGE
Publications, 2017.

PL Design & Proto. Jonathan Aldrich - Case Studies 63

