EER-C EIN | ERED LANGUAGE DESICHSS
waledBPsRTL &

Michael Coblenz

,f Which of the following might be a valid Java constructor invocation?

malloc(sizeof(Square))

Square.new(5)
square(d)

new Square(5) '

In Java, encapsulation refers to:

Preventing clients from improperly depending on ;"
Serializing data correctly so that it is transmitted ;ﬁ

Using the capsule keyword to protect secret da

volid test () {

ArrayList listl = new ArrayList(f

listl.add(1l);

ArrayList list2 listl;

list2.add(2);

System.out.println(listl.size())5

If test () is run, what is the output?

Interfaces have no
field declarations

unless they are
public static

final.

Methods in interfaces
are public by default.

Methods in interfaces
(except for default

methods) lack bodies.

A class can
implement no more
than one interface.

Which statements are true of interfaces in standard Java?

True

,; Do not use any external resources to answer this question. |

False

TR R UL

* Assume you have some tasks for the usabllity question from before.
* Who will you try to recrurt!
* How will you:

¥ Becruit!

* Incentivize!

e Screen?

R ORMED CONDERER

» Online consent 1s OK (with IRB approval)

* We proposed paper-based consent for this study

Consent Form for Participation in Research

Study Title: A Study of Programming Language Design Methodology

Principal Investigator: Jonathan Aldrich, Professor, Institute for Software Research

5000 Forbes Ave., Pittsburgh, PA 15217

1-412-268-7278, jonathan.aldrich@cs.cmu.edu
Other Investigator(s): Brandon Bohrer, Michael Coblenz, Ariel Davis, Megan Hofmann, Vivian Huang,
Siyue Jin, Skanda Kaashyap, Max Krieger, Caleb Lavicka, Kyle Liang, Brad Myers, Joshua Sunshine, Brian

Wei, Mengchen Yong

Purpose of this Study
The purpose of the study is twofold: to assess| methods of designing and evaluating programming
languages, and to learn about the usability of particular language designs.

Summary

By doing this study, we hope to develop better methods of designing programming languages to make
programmers more effective. We also hope to learn, by seeing how participants use and think about
programming languages, how to design better languages in the future.

Procedures

In this study, you will be given programming-related tasks to do. For example, you may be asked to write
a program, describe what a program does, or answer questions about a program. By observing your
work, we hope to learn how to refine our language designs to make them more effective for
programmers and software engineers.

We may record video or audio of you and your work during this study. We may also record the screen
while you are doing your work. We may use these materials to help us analyze and interpret the results
of the study. Only the investigators listed above and their collaborators will have access to these
materials.

The study will take no more than three hours, and possibly substantially less. The location is one that you
and the investigator running your particular study have mutually agreed on.

Participant Requirements
All participants must be at least 18 years old.

Compensation & Costs
There is no compensation for participation in this study. There will be no cost to you if you participate in
this study.

Future Use of Information and/or Bio-Specimens

In the future, once we have removed all identifiable information from your data (information or bio-
specimens), we may use the data for our future research studies, or we may distribute the data to
other investigators for their research studies. We would do this without getting additional informed

consent from you (or your legally authorized representative). Sharing of data with other researchers
will only be done in such a manner that you will not be identified.

Confidentiality

By participating in the study, you understand and agree that Carnegie Mellon may be required to
disclose your consent form, data and other personally identifiable information as required by law,
regulation, subpoena or court order. Otherwise, your confidentiality will be maintained in the following
manner:

Your data and consent form will be kept separate. Your research data will be stored in a secure location
on Carnegie Mellon property. By participating, you understand and agree that the data and
information gathered during this study may be used by Carnegie Mellon and published and/or disclosed
by Carnegie Mellon to others outside of Carnegie Mellon. However, your name, address, contact
information and other direct personal identifiers will not be mentioned in any such publication or
dissemination of the research data and/or results by Carnegie Mellon. Note that per regulation all
research data must be kept for a minimum of 3 years.

We will not send your data to any transcription or annotation services.

The researchers will take the following steps to protect participants’ identities during this study: (1)

Each participant will be assigned a number; (2) The researchers will record any data collected during
the study by number, not by name; (3) Any original recordings or data files will be stored on password-
protected volumes.

Optional Permission

| understand that the researchers may want to use a short portion of any video or audio, or screen
recording for illustrative reasons in presentations of this work for scientific or educational purposes. |
give my permission to do so provided that my name and face will not appear.

Please initial here: YES NO

Rights

Your participation is voluntary. You are free to stop your participation at any point. Refusal to
participate or withdrawal of your consent or discontinued participation in the study will not result in any
penalty or loss of benefits or rights to which you might otherwise be entitled. The Principal Investigator

may at his/her discretion remove you from the study for any of a number of reasons. In such an event,
you will not suffer any penalty or loss of benefits or rights which you might otherwise be entitled.

Right to Ask Questions & Contact Information

If you have any questions about this study, you should feel free to ask them now. If you have
questions later, desire additional information, or wish to withdraw your participation please contact
the Principal Investigator by mail, phone or e-mail in accordance with the contact information listed
on the first page of this consent.

If you have questions pertaining to your rights as a research participant; or to report concerns to this

study, you should contact the Office of Research Integrity and Compliance at Carnegie Mellon
University. Email: irb-review@andrew.cmu.edu . Phone: 412-268-1901 or 412-268-5460.

Voluntary Consent

By signing below, you agree that the above information has been explained to you and all your current
questions have been answered. You are encouraged ask questions about any aspect of this research
study during the course of the study and in the future. By signing this form, you agree to participate in
this research study. A copy of the consent form will be given to you.

PRINT PARTICIPANT’S NAME

PARTICIPANT SIGNATURE DATE

| certify that | have explained the nature and purpose of this research study to the above individual and |

have discussed the potential benefits and possible risks of participation in the study. Any questions the
individual has about this study have been answered and any future questions will be answered as they

arise.

SIGNATURE OF PERSON OBTAINING CONSENT DATE

EOGRAFHICE

» Collect information If you want it/

» Programming experience! Languages!

gy tell you, you can use It...

F = (sender

Participant code

Pre-study questionnaire

1.How long have you been programming? years

months

2.Gender:

3.If you have any academic computer science background, what
degrees have you completed? If you are partway through a

degree, what degree and how far?

4.How much professional (paid) software development

experience do you have? years months

5.List any programming languages in which you are currently

comfortable programming in DECREASING order of familiarity.

6.How much experience do you have programming in Java?
Include time spent doing Java part-time, such as in a course.

years months

7.Please rate your level of expertise in Java by circling one
option:
beginner intermediate advanced
8.Please rate your level of expertise in Rust by circling one
option:
none beginner intermediate advanced
9.Please rate your level of expertise in each of the following
blockchain programming languages/environments:
Solidity:
| don’t know what this is/none beginner intermediate
advanced
Hyperledger Fabric:
| don’t know what this is/none beginner intermediate

advanced

Other (specify which)

T RAINING

» How will you prepare your participants!

¥ Teoble don't read.

» People think they understand but in fact do not.

* |each...and then assess.

» Or: decide that no training Is necessary.

Obsidian

Docs » Obsidian Tutorial () Edit on GitHub

Obsidian Tutorial

Getting Started

! © Obsidian Language Tutorial

i Ownership - Introduction

| Ownership - Transactions
Ownership - Variables
Ownership - Miscellaneous
Assets
States - Introduction
States - Manipulating State
States - Miscellaneous
States and Assets
Using Obsidian on a Blockchain
Taking Advantage of Ownership

Obsidian Reference

Using the compiler

Contributing to Obsidian

is open(job):

promote(RTD)

print('HIRED')

Support open source while hiring your
next developer with Read the Docs

Sponsored - Ads served ethically

Ownership - Introduction
o Principles of ownership
Ownership - Transactions
o Transaction return types
o Transaction parameters

o Transaction receivers (this)

Ownership - Variables

o Assignment

o Fields

o Local variables

o Constructors
Ownership - Miscellaneous
o Ownership checks

o Getting rid of ownership
o Invoking transactions

o Handling Errors

o Return

Assets

States - Introduction

o States and Ownership
States - Manipulating State
o The -> Operator

o Alternative field initialization
o Optional compiler checks

o Testing states with in

States - Miscellaneous

o Unowned references

o Shared references

o Implicit casts

States and Assets

Using Obsidian on a Blockchain

o Concurrency

contract Money {

}
contract Wallet {
Money@0wned m;
Write a contract called Person that has an Owned reference to a House and a Shared Wallet@owned() {
reference to a Park. The House and Park contracts are given below. m = new Money();
}

transaction spendMoney() returns Money@0wned {
contract House {

}

} transaction receiveMoney(Money@dwned >> Unowned mon) {
}

contract Park { }

}

What is m in the above code fragment above?

(O AMoney object
Please write your answer in the VSCode window (codel.obs). You may compile your

code to check your answer. O An Owned reference to a Money object

(O An Owned object
O All of the above

O None of the above

AN

* [his Is the hardest part of study design.
* You will not get this right the first time.

» Solution: pilot repeatedly.

» But: you can use data from your "pilots" If you follow protocol.

* (atrue "pilot” involves throwing the data out)

 What Is the distribution over task times?

A bILE Y STUDY AT

» Choose an interesting task
» One that you think might be hard
» One that Is central to the usabllity of your design

o 1 fest everything

ORI e

* Write a program according to this specification.

» Are there bugs In this code! If so, what are they?

§ 1l the missing code. ..

* What does this code do?

» Answer these gquestions about this code.

FAROONS PROBLEFTE

» Participant Is given snippets of code, but they are out of order.

» [ask: put them In the right order.

"We find notable correlation between Parsons scores and code
writing scores. VWe find low correlation between code writing ana
tracing and between Parsons and tracing.” | |]

[1] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam question: Parsons problems. In Proceedings of the Fourth international
Workshop on Computing Education Research (ICER ’08). Association for Computing Machinery, New York, NY, USA, 113—-124. DOI:https://doi.org/
10.1145/1404520.1404532

TASK DESIGN

Must carefully restrict tasks!

People will get stuck on Irrelevant things

Decide how much help to provide

[deally: scope task to focus on the variable of interest

Constrain the task as much as possible.

0 OMPOSING TASHS

blonolithic task Slbtasks

A COLERECT IO

» [hink-aloua

. Audio recordings * [ake lots of notes!, Including
timestamps! You do not want to

L o watch the videos.

e|nclude a clock on the screen.

£ areen capture

* bye tracking

» Post-study survey

THINK-ALOUD

* |wo varieties: concurrent and retrospective

lease keep talking.’

» (Can't use timing as a dependent variable due to effect of
explanations.

PORK CONTER T

» Pencil/paper « Compiller?

f lexi editor » Debugger?

£ |[F e Jest cases!

O 00 2 O b W=

e B B B B B B B W W W W W W W W W W NN NN NN DN DD e e e e e e e e e
e B = NS L B VL - =Y o - T B = R I - B =t = T » S B = S B~ PR S =Tt = v T B = S 1 B R ¥ L S e)

contract Auction { 1
// the bidder who made the highest bid so far 1
address maxBidder;
uint maxBidAmount;

main asset contract Auction ({
Participant@Unowned seller;

state Open;
state BidsMade (

// the bidder who made the highest bid so far // 'payable' indicates we can transfer money to this address 1
Participant@Unowned maxBidder; address payable seller; 1
Money@Owned maxBid; 1
} // Allow withdrawing previous money for bids that were outbid

state Closed; mapping (address => uint) pendingReturns;

enum State { Open, BidsMade, Closed } 1
State state; 1
transaction bid(Auction@Shared this, function bid() public payable {
Money@Owned >> Unowned money,

Participant@Unowned bidder) { 1
if (this in Open) { if (state == State.Open) { 1
// Initialize destination state, maxBidder = msg.sender; 1
// and then transition to it. maxBidAmount = msg.value;
BidsMade:: maxBidder = bidder; state = State.BidsMade; :
BidsMade::maxBid = money; } 1
->BidsMade ; 1
} 1
else { else { 1
if (this in BidsMade) { if (state == State.BidsMade) ({

//if the newBid is higher than the current Bid //if the newBid is higher than the current Bid

if (money.getAmount() > maxBid.getAmount()) { if (msg.value > maxBidAmount) { 1
//1. TODO: fill this in. //1. TODO: fill this 1in. 1
// You may call any other transactions as needed. // You may call any other functions as needed. 1
maxBidder.receivePayment (maxBid); pendingReturns[maxBidder] += maxBidAmount; '
maxBidder = bidder; maxBidder = msg.sender; .
maxBid = money; maxBidAmount = msg.value; E

} } E

else { else { 2
//2. TODO: return the money to the bidder, //2. TODO: return the newBid money to the bidder,

// since the new bid wasn't high enough. // since the newBid wasn't high enough.

}

//You may call any other transactions as needed.
bidder.receivePayment (money);

else {
revert ("Can only make a bid on an open auction.");

//You may call any other functions as needed.
pendingReturns[msg.sender] += msg.value;

)

else {

revert ("Can only make a bid on an open auction.");

