
02/15/19 Recitation Notes

17-355/17-665/17-819: Program Analysis (Spring 2019)
Jenna Wise

jlwise@andrew.cmu.edu

1 Reminders

• Homework 5 is due next Thursday, February 21, 2019 at 11:59pm. Instructions can be found
on the course website

2 Program Analysis Correctness

2.1 Soundness

For an analysis of a WHILE3ADDR program to be correct, intuitively, we would like the program
analysis results to correctly describe every actual execution of the program.

To formalize correctness, we start by formalizing a program execution as a trace:

Program Trace A trace T of a program P is a potentially infinite sequence
tc0, c1, ...u of program configurations, where c0 � E0, 1 is
called the initial configuration, and for every i ¥ 0 we have
P $ ci ; ci�1

.

Given this definition, we can formally define soundness (correctness):

Dataflow Analysis
Soundness

The result tσn | n P P u of a program analysis running on
program P is sound iff, for all traces T of P , for all i such
that 0 ¤ i   lengthpT q, αpciq � σni

In this definition, just as ci is the program configuration immediately before executing in-
struction ni as the ith program step, σni is the dataflow analysis information immediately before
instruction ni.

2.1.1 Showing Unsoundness of Parity Analysis

We can show that (incorrect) flow functions are unsound for parity analysis as we did in class for
unsound flow functions for zero analysis. The idea is to find an example program and concrete
trace that illustrates that the flow function is unsound. Make sure to show how the program and
concrete trace illustrate the soundness. We will not practice showing global unsoundness of an
incorrect flow function in this recitation, because we had enough practice with it in lecture and
instead we will practice showing local unsoundness.

1

http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/


2.1.2 Local Soundness to Global Soundness

To prove global soundness (as formalized previously) of our dataflow analyses it is enough to
show that our flow functions are monotonic and locally sound (formalized in Sections 2.2 & 2.3),
thanks to the following:

Formal definition of the state of a dataflow analysis at a fixed point:

Fixed Point A dataflow analysis result tσi | i P P u is a fixed point iff
σ0 � σ1 where σ0 is the initial analysis information and σ1
is the information before the first instruction, and for each
instruction i we have

�
jPpredspiq fvP rjswpσjq � σi.

The lecture notes on Program Analysis Correctness, develop proofs that the worklist algo-
rithm, which we use to run our data analyses, terminates with analysis results that reach a fixed
point so long as our flow functions are monotonic and our lattice has finite height.

Finally, the lecture notes on Program Analysis Correctness also develop a proof of the following
theorem:

Theorem 1 (A fixed point of a locally sound analysis is globally sound). If a dataflow analysis’s flow
function f is monotonic and locally sound, and for all traces T we have αpc0q � σ0 where σ0 is the initial
analysis information, then any fixed point tσn | n P P u of the analysis is sound.

Proof. See the lecture notes on Program Analysis Correctness for the proof.

2.2 Monotonicity

Monotonicity of flow functions is important for both termination and correctness of program anal-
yses.

Monotonicity A function f is monotonic iff σ1 � σ2 implies fpσ1q � fpσ2)

2.2.1 Proving Monotonicity of Parity Analysis

We can formally show that parity analysis is monotone. We will only show one interesting case of
the flow function for the multiplication of two variables assigned to a third variable, ie. x :� y � z,
and leave the rest as an exercise to the reader (you can find some other cases for other program
statements for zero analysis in the lecture notes on Program Analysis Correctness):

The parity analysis flow function for the multiplication of two variables assigned to a third
variable:

fP vx :� y � zwpσq �

$'''''''&
'''''''%

σrx ÞÑ Ks if σpyq � K _ σpzq � K

σrx ÞÑ es if pσpyq � e^ σpzq � Kq _ pσpzq � e^ σpyq � Kq

σrx ÞÑ os if σpyq � o^ σpzq � o

σrx ÞÑ Js if pσpyq � J ^ σpzq � e,Kq _ pσpzq � J ^ σpyq � e,Kq

2

http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/notes/notes05-dataflow-correctness.pdf
http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/notes/notes05-dataflow-correctness.pdf
http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/notes/notes05-dataflow-correctness.pdf
http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/notes/notes05-dataflow-correctness.pdf


Proof. of monotonicity of the above flow function
Assume σ1 � σ2
Since � is defined point-wise, σ1pyq �simple σ2pyq and σ1pzq �simple σ2pzq

Case pσ1pyq � e^ σ1pzq � Kq _ pσ1pzq � e^ σ1pyq � Kq
Since σ1pyq �simple σ2pyq and σ1pzq �simple σ2pzq, we get
pσ2pyq � e,J^ σ2pzq � Kq _ pσ2pzq � e,J^ σ2pyq � Kq

6 fP vx :� y � zwpσ2q �

$'&
'%

σ2rx ÞÑ es if pσ2pyq � e^ σ2pzq � Kq _

pσ2pzq � e^ σ2pyq � Kq

σ2rx ÞÑ Js otherwise
Since � is defined point-wise, e �simple e, e �simple J, and σ1 � σ2, we get
fP vx :� y � zwpσ1q � σ1rx ÞÑ es � fP vx :� y � zwpσ2q

[The other cases of this proof (casing on the flow function cases for σ1) are left as an exercise]

2.3 Local Soundness

The key to designing a sound analysis is to make sure that the flow functions are locally sound.
We can formalize this as a local soundness property:

Local Soundness A flow function f is locally sound iff P $ ci ; ci�1 and
αpciq � σni and fvP rniswpσniq � σni�1 implies αpci�1q �
σni�1

In English: if we take any concrete execution of a program instruction, map the input machine
state to the abstract domain using the abstraction function, find that the abstracted input state is
described by the analysis input information, and apply the flow function, we should get a result
that correctly accounts for what happens if we map the actual concrete output machine state to
the abstract domain.

Another way of saying this is that the manipulation of the abstract state done by the flow
function of the analysis should reflect the manipulation of the concrete machine state done by the
executing instruction.

2.3.1 Proving Local Unsoundness of Parity Analysis

We will specify an input state ci for the unsound flow function below and show using that input
state that the flow function is not locally sound:

fP vx :� y � zwpσq � σrx ÞÑ es

Proof. of local unsoundness of the above flow function
Consider ci � E,n � tx ÞÑ 0, y ÞÑ 3, z ÞÑ 5u, n
where P pnq � I � x :� y � z
Then σni � αpEq � tx ÞÑ e, y ÞÑ o, z ÞÑ ou
and ci�1 � E1, n1 � tx ÞÑ 15, y ÞÑ 3, z ÞÑ 5u, n� 1 by step-arith
Also, σni�1 � fP vx :� y � zwpσniq � σnirx ÞÑ es � tx ÞÑ e, y ÞÑ o, z ÞÑ ou
and αpci�1q � αpE1q � tx ÞÑ o, y ÞÑ o, z ÞÑ ou
Therefore, since � is defined point-wise and o �simple e, we get
αpci�1q � tx ÞÑ o, y ÞÑ o, z ÞÑ ou � tx ÞÑ e, y ÞÑ o, z ÞÑ ou � σni�1

3



2.3.2 Proving Local Soundness of Parity Analysis

We can show that the flow functions for parity analysis are locally sound. For brevity, we only
show an interesting local soundness proof case for the flow function for the multiplication of two
variables assigned to another variables, ie. x :� y � z; the rest are analogous:

Here is the multiplication flow function for parity analysis:

fP vx :� y � zwpσq �

$'''''''&
'''''''%

σrx ÞÑ Ks if σpyq � K _ σpzq � K

σrx ÞÑ es if pσpyq � e^ σpzq � Kq _ pσpzq � e^ σpyq � Kq

σrx ÞÑ os if σpyq � o^ σpzq � o

σrx ÞÑ Js if pσpyq � J ^ σpzq � e,Kq _ pσpzq � J ^ σpyq � e,Kq

Proof. of local soundness of the above flow function
Assume ci � E,n and αpEq � σni

Then ci�1 � Erx ÞÑ ks, n� 1 for some k such that Epyq � Epzq � k by rule step-arith
Now αpci�1q � αpErx ÞÑ ksq � αpEqrx ÞÑ αsimplepkqs by the definitions of α and αsimple

Case k mod 2 � 0
Then αsimplepkq � e and Epyq mod 2 � 0_ Epzq mod 2 � 0
Thus pαsimplepEpyqq � e^ αsimplepEpzqq � Kq _

pαsimplepEpzqq � e^ αsimplepEpyqq � Kq

Since αpEq � σni , we get
pαsimplepEpyqq � e �simple σnipyq ^ αsimplepEpzqq � K �simple σnipzqq _
pαsimplepEpzqq � e �simple σnipzq ^ αsimplepEpyqq � K �simple σnipyqq

From this we get pσnipyq � e,J^ σnipzq � Kq _ pσnipzq � e,J^ σnipyq � Kq

6 σni�1 � fP vx :� y � zwpσniq �

$''&
''%

σnirx ÞÑ es if pσnipyq � e^ σnipzq � Kq _

pσnipzq � e^ σnipyq � Kq

σnirx ÞÑ Js otherwise

Since � is defined point-wise, αpEq � σni , e �simple e, and e �simple J, we get
αpci�1q � αpEqrx ÞÑ es � σni�1

Case k mod 2 � 0
[Similar to the previous case and left up to the reader to prove as an exercise]

4


	Reminders
	Program Analysis Correctness
	Soundness
	Showing Unsoundness of Parity Analysis
	Local Soundness to Global Soundness

	Monotonicity
	Proving Monotonicity of Parity Analysis

	Local Soundness
	Proving Local Unsoundness of Parity Analysis
	Proving Local Soundness of Parity Analysis



