Harmless Advice*

Daniel S. Dantas David Walker

Princeton University
ddantas@cs.princeton.edu dpw@cs.princeton.edu

Abstract each method directly. However, when the programmer does
the insertion manually, at least two problems can occur. First,

This paper develops a simple object calculus vignmless on X . i
it is no longer easy to adjusthenthe appropriate advice

aspect-oriented advice. A piece of harmless advice is a com- -
putation that, like ordinary aspect-oriented advice, executesShould be run, as the programmer must explicitly extract
when control reaches a designated control-flow point. How- 2nd relocate the profiling code. Second, the profiled code
ever, unlike ordinary advice, harmless advice is designed begomes tangl_ed with the rest of the code_lnvolved In t_he
to obey a weak non-interference property. Harmless adviceMain computation. In other words, the main computation

may change the termination behavior of computations and SCUrce code is interleaved with profiling code, making the
use 1/0, but it does not otherwise influence the final result Program more difficult to read and maintain. The problem

of computations that trigger it. A simple type and effect sys- 98tS much worse when code for several different tasks such
tem related to information-flow type systems helps enforce as profiling, debugging, distribution, access control and oth-

harmlessness. We have proven that harmless advice does néi's 1S all mixed together in the same place. Aspects make it
interfere with the mainline computation. easy to maintain program code that does tasks such as de-

bugging, profiling and security checking.
1. Introduction Aspect-oriented programming already has a significant

. . following in software engineering circles, has recently been
Aspect-oriented programming languages (AOPL) SUCh aStea4req in Communications of the ACM [3], has its own

AspectJ [15] allow programmers to specify bethatcom- annual conference (AOSD), a workshop on foundations

putaltlonAto perform I? S vyeII ashen.to plerform it Fo:‘.lex- h (FOAL), and is a significant new focus of a variety of tra-
ample, spgctg makes it easy to implement a profiler that ;| object-oriented programming language conferences
records statistics concerning the number of calls to eachincluding ECOOP, OOPSLA, and FOOL. However, despite
nr":ethod: g_he/vha(tjmh;ms C_asﬁ IS the corr;p_utau_on th?‘t does the recent popular success of AOPL, they suffer from some
the recording an thenenis the instant o t'm?JUSt p“°”9 potentially serious drawbacks. The central concern is that
execution of egch _method body. In aspect—oru_anted terminol- although AOPL like AspectJ deliver a new form of modular-
gy, Fhe s'pecmcanon oivhgt.to do is calIgdadwceand the ity, they also undermine existing modularity and abstraction
s_pecmca'glon oivhento do_ Itis calle_d goint cut A collec- mechanisms. For instance, since AspectJ’s advice can ex-
tion of point cuts and advice organized to perform a coherent amine private fields of classes, Aspect] does not support any

taskr:s call;d adlaspegé d ab Id be imol d with form of representation independence or information hiding.
The profiler described above could be implemented with- |, addition, it is easy to write advice that modifies critical

out aspects by inserting the profiling code into the body of data invariants of an advised computation. Such modifica-

*This research was supported in part by ARDA Grant no. NBCHC030106, tion; may make i_t difficult or im.pOS.Sil.i)le to_ understand the

NSF grants CCR-0238328 and CCR-0208601, and an Alfred P. Sloan Fel- advice or the advised computation in isolation.

lowship. Opinions, findings, conclusions, and recommendations expressed The overall goa' of our research is to deve'op |anguage

throughout this work are not necessarily the views of the NSF, ARDA or o .

Sloan foundation and no official endorsement should be inferred. teChnOIogy and_ type _SyStems that facilitate r_easo_nlng apOUt’
and programming with, aspects. However, in this particu-
lar paper, we explore one element of the overall problem:
How to design useful, butarmlessaspect-oriented advice.

A harmless piece of advice is similar to Clifton and Leavens’

Permission to make digital or hard copies of all or part of this work for personal or : i R H _

classroom use is granted without fee provided that copies are not made or distributedn_c'tlon of 0bserve_zr[6] it I_S a ComPUtatlon that, like Or .

for profit or commercial advantage and that copies bear this notice and the full citation d|nary aspect-orlented advice, executes whenever mainline

on the first page. To copy otherwise, to republish, to post on servers or to redistribute ; _ ; ; i

1o lists, requires prior specific permission and/or a fee. control reache; a deS|gn§ted control-flow pqlnt._ Unlike orQ|

FOOL 2005 15 January 2005, Long Beach, California nary aspect-oriented advice, harmless advice is constrained

Copyright© 2005 ACM ... $5.00 to prevent it frominterfering with the underlying computa-

tion. Since harmless advice does not interfere with the main- Hence, while not all applications of aspects and aspect-
line computation, it can be added to a program at any point in oriented programming can be simulated using harmless ad-
the development cycle without fear that important program vice, enough important applications appear to fall into this
invariants will be disrupted. In addition, programmers that category to make it a useful abstraction.

develop, debug or enhance mainline code can safely ignore In the rest of this paper, we develop a preliminary theory

harmless advice, if there is any present. of harmless advice following the same strategy as used in
In principle, one could devise many variants of harmless previous work by Walker, Zdancewic and Ligatti [22] (here-
advice depending upon exactly what it meansnterfere after referred to as WZL). More specifically, we first develop

with the underlying computation. At the most extreme end, a core calculus at an intermediate level of abstraction. The
changing the timing behavior of a program constitutes inter- calculus contains primitive notions of point cuts and harm-
ference and consequently, only trivial advice is harmless. A less advice and comes equipped with a type system designed
slightly less extreme viewpoint is one taken by secure pro- to enforce data integrity constraints. These integrity con-
gramming languages such as Jif [18] and Flow Caml [20]. straints help guarantee that harmless advice really is harm-
These languages ignore some kinds of interference such agess. The type system is inspired in part by information-flow
changes to the timing behavior and termination behavior of type systems for security, but itis somewhat simpler and less
programs, arguing that these kinds of interference will have strict. We hope our simplifications will make it easier to use

a minimal impact on security. However, overall, they con- in practice than existing information-flow type systems. We
tinue to place very restrictive constraints on programs, pro- have proven that the system satisfies a weak non-interference
hibiting 1/0 in high security contexts, for instance. Allowing property. The proof adapts the syntactic technique used by
unchecked I/O would make it possible to leak secret infor- Simonet and Pottier in their proof of non-interference of
mation at too great a rate. Flow Caml [20].

In our case, an appropriate balance point between useabil- After developing the core language, we define a higher-
ity and interference prevention is even more relaxed than in level surface language that is more amenable to program-
secure information-flow systems. We say that computation ming. In particular, the high-level languageoislivious[12]

A does notinterfere with computation B if A does not in- and therefore truly “aspect-oriented,” whereas the core lan-
fluence the final value produced by B. Computation A may guage is not. The high-level language allows programmers
change the timing and termination behavior of B (influenc- to define aspects that are collections of state, objects and ad-
ing whether or not B does indeed return a value) and it may vice. Each aspect operates in a separate static protection do-
perform I/O. In practice, of course, I/0O by A may change the main and does not interfere with the mainline computation or
result eventually produced by B. However, we are willing the other aspects. The semantics of the high-level language
to live with this relatively minor danger as disallowing I1/O are defined via translation into the core language. The trans-
eliminates too many useful forms of advice. lation rules are type-directed and directly define a type sys-

Our notion of harmless, non-interfering advice continues tem for the surface language.
to support many of the most common aspect-oriented appli- At the end of this paper, we discuss related work in this
cations, include the following. area and conclude.

2. Core Language

¢ Profiling. Harmless advice can maintain its own state sep- Our core language is a typed lambda calculus containing
arate from the mainline computation to gather statistics strings, booleans, tuples, references and simple objects. The
concerning the number of times different procedures are two main features of interest in the language are labeled
called. When the program terminates, the harmless ad-control-flow points and advice, both of which are slight
vice can print out the profiling statistics. variants of related constructs introduced by WZL.

e Invariant checking and security. Harmless advice can Labelsl, which are drawn from some countably infinite
check invariants at run-time, maintain access control ta- set, mark points in a computation at which advice may be
bles, perform resource accounting, and terminate pro- triggered. For instance, execution Idie;]1; e, proceeds by
grams that disobey dynamic security policies. first evaluatinge; until it reduces to a valug and at this

* Program tracing and monitoring. Harmless advice can Point, any advice associated with the labekecutes wittv
print out all sorts of debugging information includ- @s aninput. Once all advice associated Wittas completed

ing when procedures are called and what data they are€xecution, control returns to the marked point and evaluation
passed. continues withe,. Notice that a marked poihfe;] has type

« Persistence and backups. Harmless advice can back udlnlt and that no data are returned from the triggered advice.

H £
data onto persistent Secondary storage or make IOgS OllThe fact that the core language is not oblivious in no way limits the pro-

events_that occurred du_r_ing program execution for later gramming model. At some point an oblivious language is always compiled
analysis or security auditing. into a non-oblivious language.

This stands in contrast to earlier work by WZL, in which la-
bels marked control-flow points where data exchange could
occur.

Harmless advicelpcd.x — e} is a computation that is
triggered whenever execution reaches the control-flow point
described by the pointcut designatecd. When advice is
triggered, the value at the control-flow point is boundkto
which may be used within the body of the advieeThe
advice body may have “harmless” effects (such as 1/0), but
it does not return any data to the mainline computation and
consequentle is expected to have type unit.

Languages such as Aspect] often contain rich sublan-
guages for designating control-flow points. However, it is
easier to study the fundamentals of labeled control-flow
points and harmless advice in a setting with the simplist
possiblepcds. Consequently, we will start our investigation
in a setting whergcds are simply sets of labeld,...,Ix}
and advice is written a{ly,...,lx}.x — €}.

For simplicity, the core language contains a single con-
struct{} a to activate new advica. When control reaches a
label in the advice’s point cut designator, the advice body
will execute after any previously activated piece of advice.

Syntax In order to allow programmers to specify protec-

tion requirements we have augmented the syntax of the core
language described in the previous section with a collection
of protection annotations. The formal syntax appears below.

p € Protections | € Labels s € Strings

T = unit | string | bool | T1 X ... X T
Top T | [MipTltT
advicep | Tlabelp | Trefp | Tped,
% O | s | true | false | (V)
Apx:T.e | [m=¢pX.at" | {vx—per
e] (T
e V| X]| e;e | printe

if e; then & else g3

(® | split(X) =eine
ee|em]| {ex—pet | fre
newp: T | ele]

refpe | le| e=e

{&p | eUpe | pee>

The values include unit values and string and boolean
constants. Programmers may also use n-ary tuples. Func-

The foII_owmg exampl_e shows how a_ldwce act_lvatlon yvorks tions are annotated with the protection dompim which
(assuming that there is no other advice associated with Iabel,[hey execute. This protection domain also shows up in the

| in the environment).

{} {{|} X — printint x; print ”: hello"};
f+ {{l}.y — print "world"};
I [3]

prints 3: hello world

The expressiomew : T allows programs to generate a
fresh label with typet. Labels are considered first class
values, so they may be passed to functions or stored in dat
structures before being used to mark control-flow points. For
example, we might write

let pt =new:intin

1 {{pt} X — print "hello "};
{ {{pt}.y — print "world"};
pt[3]

to allocate a new label and use it in two pieces of advice.

2.1 Types for Enforcing Harmlessness
In order to protect the mainline computation from interfer-

type of the function. Objects are collections of methods, with
each method taking a single parameter (self). Methods and
object types are also annotated with protection domains. Ad-
vice values{v.x — €} are annotated with their protection
domain as well. Labels and reference locationsdo not
appear in initial programs; they only appear as programs ex-
ecute and generate new labels and new references.

Most of the expression forms are fairly standard. For in-
stance, in addition to values and variables, we allow ordinary

aexpression forms for sequencing, printing strings, condition-

als, tuples, function calls, and method invocations. Expres-
sions for introducing and eliminating advice were explained
in the previous section. The expressiars, : T andrefp e
allocate labels that can be placed in protection dorpaind
references associated with protection donparaspectively.
The last commang<e> is a typing coercion that changes the
current protection domain to the lower protection domain

Typing The main typing judgment in our system has the
form I'; p - e: 1. It states that in the contekt, expression
e has typet and may influence computations occurring in

ence from advice, we have devised a type and effect systenprotection domaing or lower. A related judgmerfi - v: T

for the calculus we informally introduced in the previous

checks that valug has typet. Since values by themselves

section. The type system operates by ascribing a protectiondo not have effects that influence the computations, this

domainp to each expression in the language. These protec-
tion domains are organized in a lattice=L(Protections<)
whereProtectionsis the set of possible protection domains
andp < g specifies thap should not interfere witlg. Alter-
natively, one might say that data ipnhave higher integrity
than data inp. In our examples, we often assume there are
high, med andlow protection levels with ow < med < high.

latter judgment is not indexed by a protection domain. The
contextl maps variables, labels and reference locations to
their types. We use the notatidnx : T to extend™ so that it
mapsx to 1. Whenever we extend in this way, we assume
thatx does not already appear in the domain oSince we
also treat all terms as equivalent up to alpha-renaming of
bound variables, it will always be possible to find a variable

x that does not appear ih when we need to. Figures 1 We are allowed to store to references in protection domain
and 2 contain the rules for typing expressions and values p’ only if our current domairp is greater than or equal {g.
respectively. The last rule in Figure 2 is a typing coercion that changes
The main goal of the typing relation is to guarantee that the protection level. It is legal for the protection level to
no values other than values with unit type (which have no be lowered fromp to p’ when no information flows back
information content) flow from a low protection domaintoa from the computatiore to be executed. We prevent this
high protection domain, although arbitrary data can flow in information flow by constraining the result type eto be
the other direction. This goal is very similar to, but not ex- unit. One might wonder whether the following dual rule,
actly the same as in, standard information flow systems suchwhich allows one to raise the protection level is sound in our
as Jif and Flow Caml. The latter systems actually do allow system:
flow of values from low contexts to high contexts, but mark
all such values with a low-protection type. Jif and Flow Caml spre:t Fp<p
typing rules make it impossible to use these low-protection Mpkp>e<:t
objects in the high-protection context (without raising the
protection of the context). In our system, we simply cut off This rule raises the protection domain for the expression
the flow of low-protection values to high-protection contexts and allows information to flow out of the expression, but
completely (aside from the unit value). We are able to do does not allow any information to flow in. In the context of
this in our setting, as there is a greater syntactic separationthe features we have looked at so far, this rule appears sound,
between high-integrity code (the mainline computation) and but in combination with the context-sensitive advice we will
low-integrity code (the advice, written elsewhere) than there introduce in Section 2.3, it is not. Fortunately, the rule does
might be in a standard secure information-flow setting. We not appear useful in our application and we have omittéd it.
believe this is the right design choice for us because it sim- ~ The last component of our type system involves the rules
plifies the type system as we do not have to annotate basicfor typing advice and marking control-flow points. If we
data such as booleans, strings or tuples with information flow want to ensure that low-protection code cannot interfere with
labels. high-protection code by manipulating advice and control-
Most of the value typing rules are straightforward. For flow labels, we must be sure that low-protection code cannot
instance, the rule for functiongx : T.e, states that the body do either of the following:
of the function must be checked under the assumption that))) .)
the code operates in protection domain The resulting 1. Declare and aptlvatg h|gh-proFect|on adwce.. For in-
type has the shape —, . Checking our simple objects stance, assumeis a high-protection reference Wlt{h type
is similar: the type checker must verify that each method 1Bt Tefnign andl is alabel that has been placed in high-
operates correctly in the declared protection domain. Labels ~ Protection code. If we allowfl X —pign 1 := 3+x} <<
and references are given types by the context. In the current {0 @Ppear in low-protection code, then this low privilege
calculus, point-cut designators are sets of labels. Unlike the ~ €0de can indirectly cause writes to the reference
other values, the rules for typing advice are fairly subtle. We 2. Mark a control-flow point with a label that triggers high-
will discuss these rules in a moment together with the rules ~ protection advice. For instance, assume tfiat —yign
for typing labeled control-flow points. r := 3+ x} is an active piece of high-protection advice
The first few expression typing rules (see Figure 2) are ~ Which writes to the high-protection referencePlacing
standard rules for type systems that track information flow. the labell in low-protection code allows low-protection
The rule for if deviates slightly from the usual rule for track- code to determine via its control-flow, when the high-
ing information flow. Normally, types for booleans will con- protection advice will run and write ta
tain a security level and the branches of the if will be checked
at a level equal to the join of the current security level and
the level of the boolean. However, in our system, any data,
including booleans, manufactured by code at lgvelon-
tains levelp information. Consequently, the branches of the
if statement may be safely checked at lepelThe typing
rules for function calls and method invocations require that
the function or method in question be safe to run at the cur-
rent protection levep.
The typing rules for references enforce the usual integrity
constraint found in information-flow systems. When in pro- 3)
. . There may well be some strategy that allows us to add this rule together
tection domalrp, we are allowed to dereference references with the context-sensitive advice of Section 2.3. However, the naive ap-

in protection domairp’ whenp is less than or equal tp'. proach does not appear to work. Rather then complicating the type structure
or operational semantics for something we do not need, we leave it out.

In order to properly protect high-protection code in the
face of these potential errors, we do the following.

1. Add protection levels to advice types (eaflyicenign),
which will allow us to prevent advice from being acti-
vated in the illegal contexts. (eg. low-protection contexts)

2. Add protection levels to label types (e gtring labely;gn)
which will allow us to prevent labels being placed in il-
legal spots. (eg. low-protection contexts)

M= :unit It s:string M-v:t rx) =t
Mpkv:t MpkEx:t

[+ true :bool [+ false:bool Fpke:unit pFep:T

(I v pisi=n rx:tupke:v Mprese:t
FEMWM Ty X...XTh FEApx:te:t —p U

I, pFe:string
[, pF print e:unit

(T x: [Mep T ") py b gy 1 1y)(si=n
MEm =cpx.al™": mip ™" [pheiibool Tiphe:t lipheg:t
[pHifejtheneyelsees: T

rEv:itped, rLx:t;,pPre:uwnit Fp<p

M-{vx—y e} advicey (T ptg)=
M pF@:11X...XTy

M(l1) =11labelp M(r) =trefy
M1:11labelp Fr:trefy Mpre:tax..xty ILK:Dpke:t
M pFsplit(X=e ine:1

(MF v T labelp)1SI<M (1 p< p)Qsisn)
r+ {F}p ' Tped,

MpFe:ty —p T2 MNpke:my
rpFee:t

Figure 1. Value Typing Mpke:rmipTmlt" 1<j<n p=p;
I pkem;:Tj

One might hope that it would be possible to simplify the Mphe:tpedy Fx:Tp'Feiunit Fp’<pf
system and add protection levels to only one of the two
constructs, but doing so leads to unsoundness.

Five typing rules in the middle of Figure 2 give the well- Mipteiadvicey Hp<p
formedness conditions for advice and labels. Notice that in —
the rule for typing advice introduction, the protection level
of the advice, and therefore the protection level the body of
the advice must operate under, is connected to the protection
level of the label that triggers it. Notice also that when
marking a control-flow point with a label, the protection
level of the label is connected to the protection level of
the expression at that point. Finally, given a high-protection M prele] junit
piece of advice, this advice cannot be launched from low-) _ ,
protection code. The result of these constraints is that when [:PFe:T Fp'<p Tipre:trefy Fp<p

Ipk{er.x—y &} :advicey

[pHfe:unit

FP<p
I pFnewy ! T:Tlabely

lNpre:tlabel, I;pFe:t

in a low-protection zone, there is no way to cause execution [;pFrefye:trefy MpkHle:t

of high-protection advice.
Mphe:trefy MpFe:T FpP<p

2.2 Operational Semantics Mpre=e:1

The definition of the operational semantics for our language , ,
largely follows earlier work by WZL. In particular, we use (T;ph @ :Tlabely)3S<M (b pf < pp(isis=n)
a context-based semantics. The top-level operational judg- Fpt {8 p:Tpcdy

ment has the forniS A, p,e) — (S, A, p,€) whereS col-

lects the labeld that may be used to mark control-flow F;pher:Tpedy Fp<p

points and also maps reference location® values. The Mphe: Tpedy Fp < p”

meta-variableA represents an advice store, which is a list
of advice. The current protection level of the codgighe
protection level does not influence execution of the code, and
could be omitted, but is useful to consider in our noninter-
ference proof. Most of the real work is done by the auxiliary

M prelUye:Tpedy

Mpre:unit FpP<p
I pk p'<e> :unit

Figure 2. Expression Typing

relation(S A, p,e) — (S, A, p,€). The additional syntac-
tic categories are given below.
A =
S =

- | A{vx—pe}r
| Sr=e] sl
E = E;e| printE | if Etheneyelsees
| v,V E ep2,...6n)

| split(X=Eine
|

|

|

|

|

Ee| vVE | Em
{Ex—pet | TTE
Elel | I[E]

refpE | /E | Ei=e | r:=E
{v1,...,i,E,&12,....&n}p | EUpe | VUpE
The definitions of these relations can be found in Fig-
ure 3. Notice that the rule for marked control-flow points de-
pends upon an auxiliary functiofi[A], ,; = e This func-
tion selects all advice iA that is triggered by the labebnd
combines their bodies to form the express®ihe advice
composition function can be found in Figure 4.

2.3 Context-Sensitive Advice

The advice defined in previous sections could not analyze
the call stack from which it was activated. Programming
languages such as AspectJ allow this flexibility via special
pointcut designators such as CFlow. In this section, we de-
scribe a fully general facility for analysis of information on
the current call stack. Our new mechanism is inspired by ear-
lier work by WZL, but is more general and fits better with
the functional programming paradigm. The following defi-
nitions describe the syntactic extensions to our calculus:

T == .. | stack
v = .| - | I1IVluv
e = .. | stack(Q) | storeele] ine
| caseeof(pat=e| _=e)
pat := nil | e[x] :: pat
| _opat]x
vpat = nil | {I}p[x] ::vpat
| _:ovpat| X
E == .. | storeE[e] ine | storel[E] ine
| storel[v] inE
| caseEof(pat=e| _=¢€)
| casevof(Epat=e| _=e)
Epat == .. | E[X]:pat| {I}p[x] ::Epat
| _:Epat
F == .| 0O]EF]|p<F>

(SaAv p, e =B (S7A,7 p7e()
(SA p,&)— (S,A,p,€)

(SA p,e)— (S,A,p,e)
(SA p,E[e) — (S,A,p,E[e]

(SAp,e)— (S,A,p,€)
(S A, p,p<e>) — (S, A, p,p'<e>)

(SA,p,0;8) —p(SAPp,e)
(SA p,print 8) —p (SA p,())

(SA p,iftruethene;else€) —p (SA p,e1)
(S A, p,if falsethenejelseer) —p (SA p, &)
(S A, p,split (X) = (V) ine) —p (S A, p,e{V/X})
(SA p,Apx:t.eV) —g (SA p,e{v/x})

(SA,p,[M =¢px.a]""m) —g
(SA p.e{[m=cyx.a>"/x;H

(SA PN {vx—py) —p (SA{vX—ye}),p,0)

(¢S (SA pnevy 1 ——p((SD,Ap,D
lesS ’q[[Aﬂl[v] =e
(SA p,I V) —3 (SA p,©
(r¢S (SAprefyV)—p((Sr=V),Apn

(SA P! 1) 3 (SA P,SI))
(SA P i=V)—p (ST=V),A p,V)
(SA P {I1}y Up {2}) —p (SA p, {1 12} y)

(SA P, P<O>»—p (SA P, ()

Figure 3. Operational Semantics

Al g =0

M EV A = e -
A[{V x—p €},A], o = p<€{v/x}>;e I-:stack

MEl:tlabelp MEwviit THvistack
ME1Lve] @i vo:stack

IRV A =e
AV x—peF Alc=e

| e {T}p

1IV] = {1}p [pt stack() : stack

Figure 4. Aspect Composition Mphe:Tlabely ipre:T Tiphes:t
I pFstoree;[e] ines: T

In order to program with context-sensitive advice, pro-
grammers grab the current stack using gwck() com-
mand. Data is explicitly allocated on the stack using the
commandstore e [&] in €3, wheree; is a label ande, M ptcasee of (pat=e | -=&):T
represents a value associated with the lagels typically

used to store the value passed into the control flow point |I;pt pat=T

marked by the label. Thetore command evaluates to a

[pker:stack
I pkpat=T' rr.pre:t Mptes:t

labell ande;, to a valuev,, placed [v»] on the stack, eval- M pre:tpedy [;pk pat= r
uateses to a valuevs and finally removed [v»] from the M pFnil= - Mprelx] = pat=T,x:1
stack and returngs. The programmer may examine a stack

data structure using thease eof (pat=-e | _=-e) com- Fpk pat=T’

mand, which matches the staelagainst the patterpat. If
there is a match, the first branch is executed; otherwise, the
second branch is executed. There are patterns that match the
empty stack (e.g:), patterns that match a stack starting with _ _ _ .
any label in a particular set (e.dl}p[X] :: pat) wherex is Figure 5. Advanced Point-cut Designator Typing
bound to the value associated with the label on the top of the
stack if it is in the label set, patterns that match a stack start- For the most part, it is relatively straightforward to reas-
ing with anything at all (e.g.,:: pat), and patterns involving sure oneself that these extensions will not disrupt the non-
stack variables (e.gx). interference properties that our language possesses. How-
The typing rules for these extensions appear in Figure 5. ever, there is one major subtlety to consider: theack()
There are three sets of rules in this figure. The first two ex- primitive. In order for this primitive to be safe, it must be
tend the value typing and expression typing relations respec-the case that whenever it is activated in a high-level context,
tively. The last set of rules gives types to patterns where thethere is no low-level data on the stack, which could influ-
type of a pattern is a contektthat describes the types of the ence execution in that high-level context. Fortunately, this
variables bound within the pattern. is indeed the case. The only way to switch protection lev-
The rules for evaluating these new expressions appear inels from one evaluation context to the next is via the con-
Figure 6. Again, there are three sets of rules. The first definestext p<E>, which lowers the protection level. Consequently,
a new set of top-level evaluation rules, and the second addsany use of thestack() command is done in the context that
additionalB-evaluation rules. Notice that the top-level rule looks like p1<E;[p2<Ez[ps<Es>]>]> whereps < pz < p;. So
for evaluating the stack primitive uses an auxiliary function while a low-level expression can read high-level data via the
S(F) that extracts the current stack of values frénton- stack() command and subsequesitase expressions, the
texts, which contains evaluation cont&s, andp<F> con- opposite is not possible. We are safe.
texts. Here, we use the notatist@X to append the object
X to the bottom of the stacit. The last set of rules conclude
in judgments with the fornst = vpat=- suh These rules To prove non-interference, we use the technique developed
describe the circumstances under which a ssickatches by Simonet and Pottier [20]. In the interests of space, we
an (evaluated) pattermpat and generates a substitution of only sketch the high-level details of the proof. We first divide
values for variablesuh protection domains into two groups, higH)Y and low ().

M pk_:pat=T1’ I pFX=-,X:stack

2.4 Core Language Meta-theory

(SA.P,&) —top (S, p,€))]

(SAp.e)— (S,Ap.€)
(SvAv p7 e) '—’top (SaA/a pae()

(S A, p,FlstackO]) —r1op (SA, p,F[S(F)]D

where :
S = -
S(storel[vl inF) = SF) @ ULv])
S(p<F>) = SF)

SEE[FD) = SF)
whenE # storel[v] inF

(SAP.&)—p(SAPE)|

(SA, p,store Vi [T1] in V) ——p (S A, p,V2)

V |= vpat=- sub

(S A, p,caseVof (vpat=€; | _= &) —p
(S A, p,sube1))

Vv [vpat= sub
(SA, p,caseVof (vpat=-€, | _=€)) 3

(SA,p.e)

-Enil=-

S {r}p Vo |= vpat=- sub
I v vz = {T}p[X] :: vpat= sub {vi/x}

vp = vpat=sub
I lvi] v = _ i vpat= sub

VEx= {v/x}

Figure 6. Advanced Point-cut Designator Evaluation

dom(S) =dom(IN)
VredomS).F(r)=trefp, '-Sr):1for some p,T
VI € dom(S). I'(r) = trefp for some P,T

FS:T

NFa:advicep for some p ['-Aok
M- ok - Aaok

FS:I THFAok I;pke:Tforsomet
F(SA p,e ok

Figure 7. Abstract Machine Judgement

The low-protection group is a downward-closed subset of
protection domains and the high-protection group contains
all other protection domains. We wish to ensure that low-
protection code cannot interfere with the behavior of high-
protection code.

We define a new languagédre2) that simulates execu-
tion of two of our original programs (the original language
is henceforth referred to a®rel). Core2 is exactly the
same a%orel except that it includes a bracket expression
p<ei|ex>, wherep is a low-protection label and theg are
Corel expressions. Theore2 expression

p<print ‘‘hi’’ | print ‘‘bi’’>;x+3
represents the tworel programs

p<print ¢‘hi’’>;x+3
p<print ‘‘bi’’>;x+3

All differences between the twOorel expressions must
appear within brackets.

To relateCore1 to Core2, we define the projection func-
tion| |y where i€ 1,2.|p<ey|ex>]; is p<g> and| |; is a homo-
morphism on all other expressions. Sinmsee; |e2> in Core?2
simulates the simultaneous execution of two low-protection
original Corel expressions, the projection function extracts
one of these two executions.

As with expressions, we add corresponding bracket con-
structs for the contents of the reference/label s&aed the
aspect storéd. Moreover, if advicea is activated in only
the left instance of the simultaneously executinge1 pro-
grams, the aspect store of tbere2 program that simulates
them will contain< alvoid >. The projection function works
similarly for the reference/label store and the aspect store as
it does for expressions.

Therefore, theCore2 machine stat€S A, p,e) symbol-
izes the current state of the two simultaneously executing
Corel programs where the i-th projectiddS A, p,e)|; =
(|Sli,|Ali, p, |€]i) is the state of the i-tlore1 program.

We now prove thatore2 is the simulation of tw@ore1 the added low-protection code aadlone step to the same
programs who differ only in their low-protection sections value. Therefore the low-protection code did not interfere
using soundness and completeness theorems. with execution.

The soundness theorem states that since an expression in))

Core2 is the representation of two simultaneously executing 1 HEOREM 2.5 (Noninterference)f high € H and lowe
Corel programs, then if theore2 expression stepsto anew L and = low < high and e is a core language expres-

expression, then the two simultaneously executinge1 sion yvhere-;high -e:int and -;low - € : unit and
programs (the projections of theore2 expression) must (- highlow<e>;e) ’—>t$p(sl7A17h'.gh’V1) and
each take the same respective steps. (-, high, low<()>;€) ——1{op (S, A2, high, v2) then v = v,.

THEOREM2.1 (SoundnessFori€ 1,2,if (SA, p,e) g
(S,A,p.&) then|(S A, p,&)]i —iop [(S, A, p.&)] 3. Source Language
Our core calculus is intended to be used as a semantic inter-

ramse gtc;mrt’(l)et/iﬂf;’: t:;]ee%r?& Srteat?essteh;;g;iﬁz ?rzca)\t mediate language rather than as a source-level programming
9 P ’ P language of its own. The main reason for this is that core

simulates them simultaneously must step to the correspond- . : .
ing value calculus sits at a convenient level of abstraction for formu-

lating a semantics, but programmers would almost certainly
THEOREM 2.2 (Completenesspssumeé(S A, p,e)|; ——top complain that it is inconvenient to have to mark control-flow

(S,A, p,|v]i) for all i € 1,2 then there exist§S,A’, p,v) labels in code, to allocate values on the stack by hand, and
such that(S A, p,€) ——,, (S, A, p,V) to deal with the low-level core calculus notion of advice. In
To continue we prove that the type system Gafre2 addition, the core calculus does not actually define a pol-

is sound with respect to our operational semantics using I€Y concerning whether or not advice can interfere with each
Progress and Preservation theorems. This strategy require§ther or the mainline computation. Rather, it defines a way
that we extend the typing relation to cover all of the run- for & programmer (or compiler) to assign different protec-
time terms in the language as well as the other elements oftion levels to code and a mechanism (the type system) that
the abstract machiné€., the code store and aspect store). A €an check Fhat there is no interference between the appropri-
Corel configuration(S,A, p,e) is well-typed if it satisfies &€ protection levels.

the judgement- (S A, p,e) ok specified in Figure 7. The In order to show how the core calculus can be used, we
judgement for @ore2 configuration is similar except if the ~ define a simple source language and show how to translate

stores and the expression contain brackets, the protectiorit into the core calculus. This source language consists of a
domains associated with the brackets must be low. sequence of ordinary declaratioaspectswhich are collec-

) tions of advice declarations and ordinary declarations, and
THEOREM2.3 (Progress)if - (SA,p,e) ok theneithere 3 mainline program. The translation from the source into

is a value, or there existsS, A', p,€') such that the core places the state and code for each aspect into its
(SA p,€) —i0p (A, p,€). own protection domain. The mainline code and initial dec-
THEOREM2.4 (Preservation)f I (S A, p,e) ok and larations get their own protection domain, which sits above
(SA P,&) —op (S,A, p,&) then- (S, A, p,€) ok. the protection domains for the aspects in the security lattice.

_)) Consequently, the translation specifies the non-interference
The next lemma states that if a high-protectitore2 gjicy that we wish to enforce, namely that no aspect inter-
expression steps to an (integer) value, then the correspondingees with any other aspect and that no aspect interferes with

Core1 projections (which differ only in low protection code) he mainline computation. The syntax of the source language
step to equal values. appears below.

LEmMMA 2.1 (Equivalent Execution iflore2). If high € H
and-;hight-e: int and (., -, high,&) —{,, (S, A, high,v)

then|v|y = |v]z. T = unit | string | bool

MipTi —p TE" | Trefp | stack

Finally, for the non-interference proof, we assume a high-

protectionCorel expressiore steps to a value. We add a v = O | s | true | false
low-protection expressiop<€> wherep € L to e so thate
with the low-protection code and alone are executed si- e V| x| ee| printe

multaneously and their resulting values compared. This is if etheneelsee

achieved by constructing théore2 expressionp<€e|()>;e let dsine
where the left projection i with the low-protection code em(e)
and the right projection steps talone. Using the sound- le| e:=e

ness, completeness, preservation theorems, and the equiva-
lent execution inCore2 lemma, we show that boté with

caseeof (pat=e | .=

pat = nil | {om}>"[x,y,n] :pat | _::pat | X ref r =0
object math = [
d = (stringXx=e) get:unit->int = Gx.Ay.!r
| (boolx=e€) set:int->unit = (x.Ay.r:=y
| (refx=e) add:int->int = Cx.Ay.
| (objecto=[m:T — T =c¢x.Ayi.a]*™" let z =y + x.get() in
x.set(z); z
ds = .| dds sub:int->int = Cx.Ay.
let z =y - x.get() in
a = (before {0.m}1"n(x,y7s,n):e) x.set(z); Z
| (after {o.m}1"(x,y,s,n) =€)]
tracer: {
as = .|das| aas before {math.add,math.sub}(x,y,s,n) =
print "entering "; print n;
after {math.add,math.sub}(x,y,s,n) =
prog = dsaspcts e print " and leaving\n"
}

let x = math.add(math.add(1)) in

The types of the source language objects are a restricted math.sub(3 - x)

form of the internal language types. In particular, source
language object types are the composition of a core language
object and function type. Also, since programmers in the
source language do not explicitly manipulate labels, there

are no label types in the source language. y is bound to the method argument, ands bound to a
Most of the source language expressions and valuesstring corresponding to the method name. The varialide
mimic the core language expressions and values, althoughbound to the stack at the point the advice is triggered. In
there are a few differences. For instance, none of the run-the source language, programmers do not explicitly allocate
time-only values such as labels, reference locations, or stackheir own data on the stack, nor do they explicitly grab the
values need appear in the collection of source values as thecurrent stack. Code for performing these actions is emitted at
source language is not executed diregthiso, for conve- specific points during the translation from source into core.
nience, we allow a local let declaration in expressions, which Finally, as mentioned above, a whole source-language
programmers can use to allocate values with basic type, ref-program prog) is a collection of declarationsi§) together
erences or objects. Note that we use the meta-varabde with a collection of aspectsépcty and a mainline compu-
stand for program variables bound to objects. We use thetation). The protection level of the mainline codenimgin
meta-variablesto stand for any kind of program variable. Each aspect is given a distinct namevhich will also serve
The source language case expressions analyze stack valgs its protection domain when translated into the core calcu-
ues in a similar way to the target, only the patterns are |us. We assume the translation program operates in the pres-
slightly different, reflecting a particular compilation strat- ence of a security lattice in whigh< mainfor all aspect®
egy. More specifically, when compiling a method, we will in the program. Otherwise, aspects are simply collections of
allocate automatically on the stack the label corresponding |ocal declarations and advicad].
to the method on top of the stack and a tuple containing a As an example of the basic features of our source lan-
pointer to self, a pointer to the method argument, and a stringguage, consider the code in Figure 8, where we take the lib-
corresponding to the name of the method that was called.erty of assuming our language has been augmented with in-
Consequently, the patterns that match stack frames have thegegers. It declares a math object which has a internal integer
form {o.m}*"[x,y,n], where{o.m}!-" is checked against state that can be modified with the set, add, and sub methods.
the label, anc, y, andn are bound to self, the argument and We write a tracer aspect that prints informative messages be-
the string respectively. The string can be used when printing fore and after the add and subtract methods are executed.
out debugging information, profiling information, etc. The mainline computation performs a series of arithmetic
Advice in the source language is either before advice operations on the math object.
that runs before a method call or after advice that runs
after the method call. Similar to the source-language stack3.1 Translation to Core Language
patterns, when the advice is triggeredis bound to self,

Figure 8. Source Language Example

The translation from source into core is defined by a series of
3“Execution” of the source occurs by translation of the source into the core © Mutually recursive JUd_gmentS- The_tran3|at|0n Judgments
and then execution of the resulting core program. are generally parameterized by a typing context involving a

point-cut context®), which contains a collection of declara- The definition of these judgments may be found in Fig-
tions that can be used in source-level point-cuts, a standardures 9 and 10. Throughout the translation we use the abbrevi-
type context), which maps source variables to types, and ationletx= e ine, to stand for(A,x:1.e>) e for some ap-

a protection level/aspect namp)(The point-cut contexiP propriate typer and protectiorp, which can be determined
contains declarations of the formm : (Tseit, Targ, Tres, P)- from the context.
These declarations say that an object namadth method Most of the translation is rather mundane. The interesting
m has been declared and may be advised. The object has theases involve object declarations and advice. Object declara-
type Tse and the method takes an argument with typg tions are translated by first allocating two sets of labels, one
and returns a result with typges. The object inhabits pro- set for the control flow points at the beginning of methods,
tection domairp. and one for the control flow points at the end of methods. In
The form of the translation judgments are as follows. a rather severe abuse of notation, we bind these new labels

to variables with the names ,..” and “om ,.s:.” Dur-
ing the translation, we maintain the invariant that whenever
¢ The judgmen®;lFv:T 2L \/ describes the translation %M (Tse'f’.Targ’Tres’ P appears n thg contgﬁ, the traps-
from source language valueswith type T to core lan- lated term is well typed in a comext including the variables
guage valueg with typer. om pre With type (Tse”’T.arg’ string) labelp andom pos
. exp) with type (Tseit, Tres, string) labelp. In the body of each
* The judgmen®;I"; pi-e: 1= € describes the transla- athod of an object, the translation first allocates onto the
tion from source language expressi@with type T to stack theom ., label with a tuple containing self, the argu-
core language expressioglanith typeT. ment of the method, and a string name corresponding to the
* The judgementplit(©,e) is used by the stack case op- source object and method nam&hen we mark the follow-
eration. What is extracted from the core language stack is ing control-flow point with theom . label for the method,
a tuple containing the object, the argument of the method, passing a tuple including self, the argument and the string to
and the name of the method. Téelit function extracts the advice. Next comes the body of the method and finally,
the individual elements from these tuples. theom .. label including self, the result and the string.
¢ The judgemenk - © = I takes a context for individual Before and after advice are translated similarly although
elements pulled from the stack—the object, the argumentbefore advice is triggered by tlen . label whereas after
of the method, and the name of the method and returnsadvice is triggered bpm ... label. In both cases, the first
a context containing a tuple of those individual elements. action inside the advice body involves extracting the com-
This new context with tuples is what is actually generated ponents (self, method argument or result, and string name)
by the pattern translation described in the next section. from the advice argumentNext, the translated advice grabs
This judgement is used in the proof of translation type the current stack and binds it to the variaglBinally, the ad-
safety. vice executes the translated body. After declaring the advice,
e The judgmentP; p - pat pat, pat’ - I;© describes the the trans_lated code immediately_ activates it, placing it after
translation from source language pattepat to core &Ny previously encountered advice.
language patterngat’ binding variables described by, _
Notice that the context returned describes individual 32 Translation Meta-theory
elements—the object, the argument to the method, and theAn important property of the translation is that it pro-
name of the method. Itis modified &by the judgement duces well-typed core language expressions. Défitem:
I 40 = I to generate the new context containing tuples (Tseif, Targ, Tres, P)) t0 be the contexdm.e : (Tself X Targ X
that the core language pattepat’ actually generates. string) labelp,OMposs : (Tself X Tres X String) label,
Later, thesplit command in the stack case translation and let7 (P) be the point-wise extension of the previdiis
will be used to extract the individual elements from the function.

tuples.

e The judgmentP;T": p - as aspctse : T dec o describes LEmMA 3.1 (Translation Type Safety Lemmas).
the translation of declarationas aspectsaspctsand olIf P:pk pat 22 pat 4T:@ and T 4 © = I then
mainline codee. The scope of the declaratioms in- T(P): ok pat = ", ’

cludes bottaspctsande. Mainline codee has typet and ' vl '
the expressiod that results from the translation has type ® TPiT VT :Zx\/' thenT(P),M -V : .
T as well. e IfP;M;pFe:T1=2¢, thenT(P),l;pre 1.

e The judgment- ds aspcts €= ¢ translates a whole o If P;["; pkasaspctse: 1 deg €, thenT(P),I;p-€ 1.
programprog with a mainline computation producing

values of typet into a core language expressigwith 4 Again, there is an abuse of notation here. We assume that we may write
typeTt. ”o.m" for the string equivalent of the object name and method.

val

PrFv:ti=vV

val

PO unit =0 P;r’_518tring\':al>s

P;I" I true:bool V:a|> true P, false:bool V:a|> false

Plipre1=¢

PrFv:T2 v roe) =1 P;l;prer:unit =>¢ P;lpre:1=>¢,
PlipkviT=2V Plpkx:T1=2x Pliprese: 1=>¢€;6
P;l';pte:string == ¢ Piriphe ibool 22 ¢ PMipFe:122¢, Pipre:122¢,
P;l';pl—printe:unit%printe’ P;r;pl—ifelthenegelseegitgife(lthene’zelse%

Prpher: mipt)t"=2¢ 1,=1 —p U

PM;prds.erT<Se Pripre:1=5¢ Fpi=p
P;l;pkletdsine: 1% ¢ Pl pke.mj(e): U =% €.m €

Plipre:trefy =>€ Fp<p Ppre:trefy=>¢ Plpre:1=%e Fp<p

PlpHe: 1=21¢ P;T;pFer =& :unit => ¢ := €,

P;l;pte :stack =2 ¢ P;prpatL= pat 41,0 Pl [Mpre:1=2¢, P;lipre:1=2¢,

P;[;pt case e of (pat=e | ,:eg):T%caseeflof(pat’:>split(6,e’2) | _=>€)

split(-,e)=e split(a— (X,y,2),0) = split(O,split (X,y,2) =aine)

r{e=r’
r4.=r rx:ty:17,2:17"40,z— (Xy,2 = z: (1 xTU x1")

P;pt pat£5 pat H17;0

(P(0.M) = (Tself, Targ, Tres, PSS P pt pat 22 pat' 41,0

P;pl- {om} [x,y,n] :: pat 22 {orff,e }plZ] :: pat :
(X Tself, Y- Targ, N string;©,zZ— (X,y,N))

P:pt pat2% pat 4170

pat pat

P:pt nil £ nil 4+ P;pk _:pat= _: pat H";© P;pFx= x--,(x: stack);-

Figure 9. Translation: Part 1

P:l":pl asaspctse: T =S ¢

Piliphas O:umit =S¢ Pliph.aspeseit=5e’ Fp<p Priprert=%¢
P;[;ph.;p : {as} aspctse: 15 p<e>; e Piliph . erT<5e
PiMipleristring =% €) P;[;pter:bool =2 ¢

P;[,x:string; ptasaspctse; :15¢ P;,x:boolp-asaspctse : 15 ¢
P.T;pt (stringx = @) asaspetse; : T=5 P;T;ph (boolX = €1) as aspetse, : T =5
1etX:e’11n% letX:e/lin%

(P;(M,X: Tselt,Y: Ti); pF € : T == g)I=i=n
(P,(o.m; : (Tself, Ti, Tj, PN (M, 0 Tselp); P as aspetses : T dec. g

dec

P;[;pt (objecto=[m i1 — T/ = qxi.)\yi.e.}l“”) asaspctsey . 1—

let OMYy pre = newp : (Tself, Ty, string) in ... let OMypre = newp @ (Tself, Tn,String) in
let OMy posy = newp : (Tself, Tq,String) in ... let OMhypost = newp @ (Tself, T, string) in
let 0= [mM = CpXi.Apyi i Tj. store OM e [(X,Yi,“0.M)] in

om pre [OXi, ¥i,“0.My*)];

letres =€ in

OM post [(Xi, €S, “0.M)];

res

]1..n in dz
where Tself = [m:pTi —p -[ﬂl..n

exp

P.lipre: 1= ¢ P;F,X:Trefp;pkasaspctseg:T’d:ec>d2

P,l';pk (refx=gy) asaspctse, : 1/ 2 et x= refy € iné€,

(P(0.m) = (Tself, Targ, Tres, Pi yy(1<i<n)
P; (I, X Tself,Y : Targ,S: Stack,n: string);pre; i unit =2 & P;I;prasaspctse; : 15 &,

dec

P;I; pt (before {om}(x,y,s,n) = €1) as aspctse; : 1 —
1 {{0Mre}p.z2—p split (X,y,n)=2zin
let s=stack() in

ek e

(P(0.m) = (Tself, Targ, Tres, Pi yy(1<i<n)
P; (I, X: Teelf,Y : Tres,S: Stack, N string); ph e :unit =2 & P;T;ph asaspctse; : 125 ¢,

dec

P;I; pt (after {oim}(x,y,s,n) = e1) asaspctse, : T =
f {{0Npost }p-Z—p split (X,y,n) =zin

let S=stack() in

A

I ds aspcts =% ¢

.;maint- ds aspctse: 15 ¢
+ ds aspcts =% ¢

Figure 10. Translation: Part Il

Using these lemmas, we can now prove translation type other words, strong independence is determined exclusively
safety. by analysis of the point cut designators of the two pieces
of advice and consequently it is orthogonal to our analysis
which (mostly) ignores the point cuts and examines the ad-
vice bodies instead. It would be interesting to explore how
4. Related Work to put thesg two different ideas together. . '
Another interesting line of current research involves find-
Over the last several years, a number of researchers have bql']g ways to add aspect-oriented programming features to
gun to build semantic foundations for aspect-oriented pro- |anguages with module systems, or vice-versa. The goal of
gramming paradigms [23, 9, 13, 14, 17, 21, 22]. This foun- this research is often quite similar to our own work: To find
dational work provides a starting point from which one can mechanisms to protect the internals of a module from out-
begin to analyze the properties of aspect-oriented programsside interference by advice. However, the techniques used
develop principled new programming features, study veri- and resulting properties are quite different. One of the first
fication techniques and derive useful type systems. In this systems to combine aspects and modules effectively was
paper, our semantic foundations were derived directly from [jeberherr, Lorenz and Ovlingeréspectual Collabora-
earlier work by Walker, Zdancewic and Ligatti [22]. The tions[16, 19]. Their proposal allows module programmers
main novelty with respect to this earlier research is the de- to choose the join points (i.e., control-flow points) that they
velopment of a type system for ensuring that aspects do notwill expose to external advice. External advice cannot inter-

THEOREM3.1 (Translation Type Safetylf - ds aspcts 6=
€, then.;maint € : 1 for somet.

interfere with each other or the mainline computation. cept control-flow points that have not been exposed. Aspec-
Clifton and Leavens [6] proposed techniques for Hoare- tual collaborations enjoy a number of important properties
style reasoning about aspect-oriented programs &s8ip- including strong encapsulation, type safety and the possibil-

tantsandobservers Their notion of observers is similar to ity of separately compiling and checking module definitions.
our conception of harmless advice — observers do not in- Aldrich [2] has proposed another model for combining as-
terfere with the mainline Computation. However, the details pects and modules Ca”@pen ModulesThe central nov-
of our type and effect system are entirely different from their elty of this proposal is a special module sealing operator
Hoare logic. One point of interest is that Clifton and Leavens that hides internal control-flow points from external advice.
mention that it is not clear whether their model can “accom- Aldrich has used logical relations to show that sealed mod-
modate dynamic context jOiﬂ points like CFlow.” Our anal- ules have a powerfu| imp|ementati0n-independence prop-
ySiS of our stack operations, which are sufficient for coding erty [_‘]_] In an earlier report [7]’ we Suggested augment-
up CFlow-like primitives, indicates that harmless advice can ing these proposals with access-control specifications in
indeed Safely use these primitives and avoid interfering with the module interfaces that allow programmers to specify
the mainline computation or each other. whether or not data at join points may be read or written.
Several authors have looked specifically at techniques for The current report differs from any of this previous research
explicitly combining several pieces of advice and detect- as it does not suggest that visibility of the interception points
ing interference between them. For instance, Bauer, Ligatti pe limited; instead, we suggest limiting the capabilities of
and Walker [4] introduced a calculus that included several advice. However, it seems quite likely that one could design
different kinds of aspect combinators (parallel conjunction a powerful system that combines both ideas.
and disjunction; sequenced conjunction and disjunction) and
used a type and effect system to prevent interference be- .
tween them. The technical machinery used here was ex-5' Conclusions
tremely complicated and quite different from the current In this paper, we have investigated the ideahafmless
work. In contrast to our work here, they did not concern advice aspect-oriented advice that does not interfere with
themselves with the effects these aspects would have on thehe mainline computation. While strictly less powerful than
mainline computation. Recently, Bauer, Ligatti and Walker ordinary advice, we believe that harmless advice can be used
have completed the implementation of a general-purpose,in many contexts including security monitoring, profiling,
higher-order language for composing aspects in the contextlogging, and for some debugging tasks. Harmless advice has
of Java [5]. the advantage that it may be added to a program after-the-
In similar work, Douence, Fradet andigholt [10, 11] fact, in the typical aspect-oriented style, yet programmers
analyze aspects defined by recursion together with paralleldo not have to worry about it corrupting important mainline
and sequencing combinators. They develop a number of for-data invariants.
mal laws for reasoning about their combinators and an algo- There are a number of directions for future research, sev-
rithm that is able to detestrong independenc@&wo pieces eral of which we are currently working on. Our first pri-
of advice are strongly independent when they do not inter- ority is to extend the calculus to include additional fea-
fere with each other regardless of the contents of the advicetures common to object-oriented languages. In particular,
bodies or the contents of the programs they are applied to. Inwe are interested in adding Java-style classes to the lan-

guage and granting our aspect language the capability to ex- Aspect-Oriented Software Developmesges 141-150, Mar.

ternally extend classes while maintaining appropriate non- 2004.

interference properties. In addition, together with Washburn [12] R. E. Filman and D. P. Friedman. Aspect-oriented program-
and Weirich [8], we are investigating how to extend the ming is quantification and obliviousness. Workshop on
calculus with polymorphic functions, polymorphic advice Advanced Separation of Conceyi@ct. 2000.

and type analysis to support safe but flexible type-directed [13] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of typed
aspect-oriented programming. aspect-oriented programs. Unpublished manuscript., 2003.
Acknowledgments [14] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of

untyped aspect-oriented programs.Buaropean Conference

Stimulating discussions on aspects and related topics with on Object-Oriented Programmin@armstadt, Germany, July

Geoff Washburn, Stephanie Weirich and Steve Zdancewic 2003.

helped form some of the ideas in this paper. [15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
This research was supported in part by ARDA Grant and W. Griswold. An overview of Aspect]. Buropean

no. NBCHC030106, National Science Foundation CAREER Conference on Object-oriented Programmirgpringer-

grant No. CCR-0238328 and an Alfred P. Sloan Fellowship. Verlag, 2001.

This work does not necessarily reflect the opinions or policy [16] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual

of the federal government or Sloan foundation and no official collaborations — combining modules and aspecihe
endorsement should be inferred. Computer Journal46(5):542-565, September 2003.
[17] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation

References semantics of aspect-oriented programs. In G. T. Leavens

[1] J. Aldrich. Open modules: A proposal for modular reasoning and R. Cytron, editorsfFoundations of Aspect-Oriented
in aspect-oriented programming. Workshop on foundations Languages Workshopages 17-25, Apr. 2002.
of aspect-oriented languagedar. 2004. [18] A. Myers and B. Liskov. Jflow: Practical mostly-static

[2] J. Aldrich. Open modules: Reconciling extensibility and in- information flow control. InTwenty-Sixth ACM Symposium
formation hiding. InProceedings of the Software Engineering on Principles of Programming Languagesages 226-241,
Properties of Languages for Aspect Technologi¢ar. 2004. Jan. 1998.

[3] Aspect-oriented programming. In T. Elrad, R. E. Filman, and [19] J. Ovlinger. Modular Programming with Aspectual Collabo-
A. Bader, editorsSpecial Issue of Communications of the rations. PhD thesis, Northeastern University, 2003.

ACM, volume 40. ACM Press, Oct. 2001. [20] F. Pottier and V. Simonet. Information flow inference for ML.

[4] L. Bauer, J. Ligatti, and D. Walker. Types and effects for non- ACM Transactions on Programming Languages and Systems
interfering program monitors. Imternational Symposium on 25(1):117-158, Jan. 2003.

Software SecurityTokyo, Japan, Nov. 2002. [21] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice

[5] L. Bauer, J. Ligatti, and D. Walker. A language and system for in higher-order languages. IRroceedings of the 2nd
composing security policies. Technical Report TR-699-04, International Conference on Aspect-Oriented Software
Princeton University, Jan. 2004, Developmentpages 158-167, 2003.

[6] C. Clifton and G. T. Leavens. Assistants and observers: [22] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
A proposal for modular aspect-oriented reasoning. In aspects. IPACM International Conference on Functional
Foundations of Aspect Languagésor. 2002. Programming Uppsala, Sweden, Aug. 2003.

[7] D. S. Dantas and D. Walker. Aspects, information hiding [23] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
and modularity. Technical Report TR-696-04, Princeton for advice and dynamic join points in aspect-oriented
University, Nov. 2003. programming. In G. T. Leavens and R. Cytron, editors,

[8] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. Foundations of Aspect-Oriented Languages Workshapges

17-25, Apr. 2002. lowa State University University technical

Analyzing polymorphic advice. Technical Report TR-717-04,
report 02-06.

Princeton University, Dec. 2004.

[9] R. Douence, O. Motelet, and Mi@holt. A formal definition
of crosscuts. IThird International Conference on Metalevel
architectures and separation of crosscutting concevotume
2192 ofLecture Notes in Computer Scienpages 170-186,
Berlin, Sept. 2001. Springer-Verlag.

[10] R. Douence, O. Motelet, and M.ugholt. Detection and
resolution of aspect interactions. Technical Report 4435,
INRIA, Apr. 2002.

[11] R. Douence, O. Motelet, and Miigholt. Composition, reuse
and interaction analysis of stateful aspectsCbmference on

