
Harmless Advice∗

Daniel S. Dantas David Walker

Princeton University

ddantas@cs.princeton.edu dpw@cs.princeton.edu

Abstract
This paper develops a simple object calculus withharmless
aspect-oriented advice. A piece of harmless advice is a com-
putation that, like ordinary aspect-oriented advice, executes
when control reaches a designated control-flow point. How-
ever, unlike ordinary advice, harmless advice is designed
to obey a weak non-interference property. Harmless advice
may change the termination behavior of computations and
use I/O, but it does not otherwise influence the final result
of computations that trigger it. A simple type and effect sys-
tem related to information-flow type systems helps enforce
harmlessness. We have proven that harmless advice does not
interfere with the mainline computation.

1. Introduction
Aspect-oriented programming languages (AOPL) such as
AspectJ [15] allow programmers to specify bothwhatcom-
putation to perform as well aswhento perform it. For ex-
ample, AspectJ makes it easy to implement a profiler that
records statistics concerning the number of calls to each
method: Thewhat in this case is the computation that does
the recording and thewhenis the instant of time just prior to
execution of each method body. In aspect-oriented terminol-
ogy, the specification ofwhat to do is calledadviceand the
specification ofwhento do it is called apoint cut. A collec-
tion of point cuts and advice organized to perform a coherent
task is called anaspect.

The profiler described above could be implemented with-
out aspects by inserting the profiling code into the body of

∗ This research was supported in part by ARDA Grant no. NBCHC030106,
NSF grants CCR-0238328 and CCR-0208601, and an Alfred P. Sloan Fel-
lowship. Opinions, findings, conclusions, and recommendations expressed
throughout this work are not necessarily the views of the NSF, ARDA or
Sloan foundation and no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FOOL 2005 15 January 2005, Long Beach, California
Copyright c© 2005 ACM . . . $5.00

each method directly. However, when the programmer does
the insertion manually, at least two problems can occur. First,
it is no longer easy to adjustwhen the appropriate advice
should be run, as the programmer must explicitly extract
and relocate the profiling code. Second, the profiled code
becomes “tangled” with the rest of the code involved in the
main computation. In other words, the main computation
source code is interleaved with profiling code, making the
program more difficult to read and maintain. The problem
gets much worse when code for several different tasks such
as profiling, debugging, distribution, access control and oth-
ers is all mixed together in the same place. Aspects make it
easy to maintain program code that does tasks such as de-
bugging, profiling and security checking.

Aspect-oriented programming already has a significant
following in software engineering circles, has recently been
featured in Communications of the ACM [3], has its own
annual conference (AOSD), a workshop on foundations
(FOAL), and is a significant new focus of a variety of tra-
ditional object-oriented programming language conferences
including ECOOP, OOPSLA, and FOOL. However, despite
the recent popular success of AOPL, they suffer from some
potentially serious drawbacks. The central concern is that
although AOPL like AspectJ deliver a new form of modular-
ity, they also undermine existing modularity and abstraction
mechanisms. For instance, since AspectJ’s advice can ex-
amine private fields of classes, AspectJ does not support any
form of representation independence or information hiding.
In addition, it is easy to write advice that modifies critical
data invariants of an advised computation. Such modifica-
tions may make it difficult or impossible to understand the
advice or the advised computation in isolation.

The overall goal of our research is to develop language
technology and type systems that facilitate reasoning about,
and programming with, aspects. However, in this particu-
lar paper, we explore one element of the overall problem:
How to design useful, butharmlessaspect-oriented advice.
A harmless piece of advice is similar to Clifton and Leavens’
notion of observer[6] — it is a computation that, like or-
dinary aspect-oriented advice, executes whenever mainline
control reaches a designated control-flow point. Unlike ordi-
nary aspect-oriented advice, harmless advice is constrained
to prevent it frominterferingwith the underlying computa-

tion. Since harmless advice does not interfere with the main-
line computation, it can be added to a program at any point in
the development cycle without fear that important program
invariants will be disrupted. In addition, programmers that
develop, debug or enhance mainline code can safely ignore
harmless advice, if there is any present.

In principle, one could devise many variants of harmless
advice depending upon exactly what it means tointerfere
with the underlying computation. At the most extreme end,
changing the timing behavior of a program constitutes inter-
ference and consequently, only trivial advice is harmless. A
slightly less extreme viewpoint is one taken by secure pro-
gramming languages such as Jif [18] and Flow Caml [20].
These languages ignore some kinds of interference such as
changes to the timing behavior and termination behavior of
programs, arguing that these kinds of interference will have
a minimal impact on security. However, overall, they con-
tinue to place very restrictive constraints on programs, pro-
hibiting I/O in high security contexts, for instance. Allowing
unchecked I/O would make it possible to leak secret infor-
mation at too great a rate.

In our case, an appropriate balance point between useabil-
ity and interference prevention is even more relaxed than in
secure information-flow systems. We say that computation
A does notinterferewith computation B if A does not in-
fluence the final value produced by B. Computation A may
change the timing and termination behavior of B (influenc-
ing whether or not B does indeed return a value) and it may
perform I/O. In practice, of course, I/O by A may change the
result eventually produced by B. However, we are willing
to live with this relatively minor danger as disallowing I/O
eliminates too many useful forms of advice.

Our notion of harmless, non-interfering advice continues
to support many of the most common aspect-oriented appli-
cations, include the following.

• Profiling. Harmless advice can maintain its own state sep-
arate from the mainline computation to gather statistics
concerning the number of times different procedures are
called. When the program terminates, the harmless ad-
vice can print out the profiling statistics.

• Invariant checking and security. Harmless advice can
check invariants at run-time, maintain access control ta-
bles, perform resource accounting, and terminate pro-
grams that disobey dynamic security policies.

• Program tracing and monitoring. Harmless advice can
print out all sorts of debugging information includ-
ing when procedures are called and what data they are
passed.

• Persistence and backups. Harmless advice can back up
data onto persistent secondary storage or make logs of
events that occurred during program execution for later
analysis or security auditing.

Hence, while not all applications of aspects and aspect-
oriented programming can be simulated using harmless ad-
vice, enough important applications appear to fall into this
category to make it a useful abstraction.

In the rest of this paper, we develop a preliminary theory
of harmless advice following the same strategy as used in
previous work by Walker, Zdancewic and Ligatti [22] (here-
after referred to as WZL). More specifically, we first develop
a core calculus at an intermediate level of abstraction. The
calculus contains primitive notions of point cuts and harm-
less advice and comes equipped with a type system designed
to enforce data integrity constraints. These integrity con-
straints help guarantee that harmless advice really is harm-
less. The type system is inspired in part by information-flow
type systems for security, but it is somewhat simpler and less
strict. We hope our simplifications will make it easier to use
in practice than existing information-flow type systems. We
have proven that the system satisfies a weak non-interference
property. The proof adapts the syntactic technique used by
Simonet and Pottier in their proof of non-interference of
Flow Caml [20].

After developing the core language, we define a higher-
level surface language that is more amenable to program-
ming. In particular, the high-level language isoblivious[12]
and therefore truly “aspect-oriented,” whereas the core lan-
guage is not.1 The high-level language allows programmers
to define aspects that are collections of state, objects and ad-
vice. Each aspect operates in a separate static protection do-
main and does not interfere with the mainline computation or
the other aspects. The semantics of the high-level language
are defined via translation into the core language. The trans-
lation rules are type-directed and directly define a type sys-
tem for the surface language.

At the end of this paper, we discuss related work in this
area and conclude.

2. Core Language
Our core language is a typed lambda calculus containing
strings, booleans, tuples, references and simple objects. The
two main features of interest in the language are labeled
control-flow points and advice, both of which are slight
variants of related constructs introduced by WZL.

Labelsl , which are drawn from some countably infinite
set, mark points in a computation at which advice may be
triggered. For instance, execution ofl[e1];e2 proceeds by
first evaluatinge1 until it reduces to a valuev and at this
point, any advice associated with the labell executes withv
as an input. Once all advice associated withl has completed
execution, control returns to the marked point and evaluation
continues withe2. Notice that a marked pointl[e1] has type
unit and that no data are returned from the triggered advice.

1 The fact that the core language is not oblivious in no way limits the pro-
gramming model. At some point an oblivious language is always compiled
into a non-oblivious language.

This stands in contrast to earlier work by WZL, in which la-
bels marked control-flow points where data exchange could
occur.

Harmless advice{pcd.x → e} is a computation that is
triggered whenever execution reaches the control-flow point
described by the pointcut designatorpcd. When advice is
triggered, the value at the control-flow point is bound tox,
which may be used within the body of the advicee. The
advice body may have “harmless” effects (such as I/O), but
it does not return any data to the mainline computation and
consequentlye is expected to have type unit.

Languages such as AspectJ often contain rich sublan-
guages for designating control-flow points. However, it is
easier to study the fundamentals of labeled control-flow
points and harmless advice in a setting with the simplist
possiblepcds. Consequently, we will start our investigation
in a setting wherepcds are simply sets of labels{l1, . . . , lk}
and advice is written as{{l1, . . . , lk}.x→ e}.

For simplicity, the core language contains a single con-
struct⇑ a to activate new advicea. When control reaches a
label in the advice’s point cut designator, the advice body
will execute after any previously activated piece of advice.
The following example shows how advice activation works
(assuming that there is no other advice associated with label
l in the environment).

⇑ {{l}.x→ printint x; print ” : hello ”};
⇑ {{l}.y→ print ”world”};
l[3]

prints 3 : hello world

The expressionnew : τ allows programs to generate a
fresh label with typeτ. Labels are considered first class
values, so they may be passed to functions or stored in data
structures before being used to mark control-flow points. For
example, we might write

let pt = new : intin
⇑ {{pt}.x→ print ”hello ”};
⇑ {{pt}.y→ print ”world”};
pt[3]

to allocate a new label and use it in two pieces of advice.

2.1 Types for Enforcing Harmlessness

In order to protect the mainline computation from interfer-
ence from advice, we have devised a type and effect system
for the calculus we informally introduced in the previous
section. The type system operates by ascribing a protection
domainp to each expression in the language. These protec-
tion domains are organized in a lattice L= (Protections,≤)
whereProtectionsis the set of possible protection domains
andp≤ q specifies thatp should not interfere withq. Alter-
natively, one might say that data inq have higher integrity
than data inp. In our examples, we often assume there are
high, med andlow protection levels withlow < med < high.

Syntax In order to allow programmers to specify protec-
tion requirements we have augmented the syntax of the core
language described in the previous section with a collection
of protection annotations. The formal syntax appears below.

p∈ Protections l ∈ Labels s ∈ Strings
τ ::= unit | string | bool | τ1× ...× τn

| τ →p τ | [mi :pi τi]1..n

| advicep | τ labelp | τ refp | τ pcdp
v ::= () | s | true | false | (~v)

| λpx : τ.e | [mi = ςpxi .ei]1..n | {v.x→p e}
| l | r | {~l}p

e ::= v | x | e1;e2 | print e
| if e1 then e2 else e3

| (~e) | split(~x)= ein e
| e e | e.m | {e.x→p e} | ⇑ e
| newp : τ | e[e]
| refp e | ! e | e := e
| {~e}p | e∪p e | p<e>

The values include unit values and string and boolean
constants. Programmers may also use n-ary tuples. Func-
tions are annotated with the protection domainp in which
they execute. This protection domain also shows up in the
type of the function. Objects are collections of methods, with
each method taking a single parameter (self). Methods and
object types are also annotated with protection domains. Ad-
vice values{v.x →p e} are annotated with their protection
domain as well. Labelsl and reference locationsr do not
appear in initial programs; they only appear as programs ex-
ecute and generate new labels and new references.

Most of the expression forms are fairly standard. For in-
stance, in addition to values and variables, we allow ordinary
expression forms for sequencing, printing strings, condition-
als, tuples, function calls, and method invocations. Expres-
sions for introducing and eliminating advice were explained
in the previous section. The expressionsnewp : τ andrefp e
allocate labels that can be placed in protection domainp and
references associated with protection domainp respectively.
The last commandp<e> is a typing coercion that changes the
current protection domain to the lower protection domainp.

Typing The main typing judgment in our system has the
form Γ; p ` e : τ. It states that in the contextΓ, expression
e has typeτ and may influence computations occurring in
protection domainsp or lower. A related judgmentΓ ` v : τ
checks that valuev has typeτ. Since values by themselves
do not have effects that influence the computations, this
latter judgment is not indexed by a protection domain. The
contextΓ maps variables, labels and reference locations to
their types. We use the notationΓ,x : τ to extendΓ so that it
mapsx to τ. Whenever we extendΓ in this way, we assume
thatx does not already appear in the domain ofΓ. Since we
also treat all terms as equivalent up to alpha-renaming of
bound variables, it will always be possible to find a variable

x that does not appear inΓ when we need to. Figures 1
and 2 contain the rules for typing expressions and values
respectively.

The main goal of the typing relation is to guarantee that
no values other than values with unit type (which have no
information content) flow from a low protection domain to a
high protection domain, although arbitrary data can flow in
the other direction. This goal is very similar to, but not ex-
actly the same as in, standard information flow systems such
as Jif and Flow Caml. The latter systems actually do allow
flow of values from low contexts to high contexts, but mark
all such values with a low-protection type. Jif and Flow Caml
typing rules make it impossible to use these low-protection
objects in the high-protection context (without raising the
protection of the context). In our system, we simply cut off
the flow of low-protection values to high-protection contexts
completely (aside from the unit value). We are able to do
this in our setting, as there is a greater syntactic separation
between high-integrity code (the mainline computation) and
low-integrity code (the advice, written elsewhere) than there
might be in a standard secure information-flow setting. We
believe this is the right design choice for us because it sim-
plifies the type system as we do not have to annotate basic
data such as booleans, strings or tuples with information flow
labels.

Most of the value typing rules are straightforward. For
instance, the rule for functionsλpx : τ.e, states that the body
of the function must be checked under the assumption that
the code operates in protection domainp. The resulting
type has the shapeτ →p τ′. Checking our simple objects
is similar: the type checker must verify that each method
operates correctly in the declared protection domain. Labels
and references are given types by the context. In the current
calculus, point-cut designators are sets of labels. Unlike the
other values, the rules for typing advice are fairly subtle. We
will discuss these rules in a moment together with the rules
for typing labeled control-flow points.

The first few expression typing rules (see Figure 2) are
standard rules for type systems that track information flow.
The rule for if deviates slightly from the usual rule for track-
ing information flow. Normally, types for booleans will con-
tain a security level and the branches of the if will be checked
at a level equal to the join of the current security level and
the level of the boolean. However, in our system, any data,
including booleans, manufactured by code at levelp con-
tains levelp information. Consequently, the branches of the
if statement may be safely checked at levelp. The typing
rules for function calls and method invocations require that
the function or method in question be safe to run at the cur-
rent protection levelp.

The typing rules for references enforce the usual integrity
constraint found in information-flow systems. When in pro-
tection domainp, we are allowed to dereference references
in protection domainp′ when p is less than or equal top′.

We are allowed to store to references in protection domain
p′ only if our current domainp is greater than or equal top′.

The last rule in Figure 2 is a typing coercion that changes
the protection level. It is legal for the protection level to
be lowered fromp to p′ when no information flows back
from the computatione to be executed. We prevent this
information flow by constraining the result type ofe to be
unit. One might wonder whether the following dual rule,
which allows one to raise the protection level is sound in our
system:

·; p′ ` e : τ ` p≤ p′

Γ; p` p′ >e< : τ

This rule raises the protection domain for the expressione
and allows information to flow out of the expression, but
does not allow any information to flow in. In the context of
the features we have looked at so far, this rule appears sound,
but in combination with the context-sensitive advice we will
introduce in Section 2.3, it is not. Fortunately, the rule does
not appear useful in our application and we have omitted it.2

The last component of our type system involves the rules
for typing advice and marking control-flow points. If we
want to ensure that low-protection code cannot interfere with
high-protection code by manipulating advice and control-
flow labels, we must be sure that low-protection code cannot
do either of the following:

1. Declare and activate high-protection advice. For in-
stance, assumer is a high-protection reference with type
int refhigh andl is a label that has been placed in high-
protection code. If we allow{l .x→high r := 3+x} << e
to appear in low-protection code, then this low privilege
code can indirectly cause writes to the referencer.

2. Mark a control-flow point with a label that triggers high-
protection advice. For instance, assume that{l .x→high

r := 3+ x} is an active piece of high-protection advice
which writes to the high-protection referencer. Placing
the labell in low-protection code allows low-protection
code to determine via its control-flow, when the high-
protection advice will run and write tor.

In order to properly protect high-protection code in the
face of these potential errors, we do the following.

1. Add protection levels to advice types (e.g.,advicehigh),
which will allow us to prevent advice from being acti-
vated in the illegal contexts. (eg. low-protection contexts)

2. Add protection levels to label types (e.g.,string labelhigh)
which will allow us to prevent labels being placed in il-
legal spots. (eg. low-protection contexts)

2 There may well be some strategy that allows us to add this rule together
with the context-sensitive advice of Section 2.3. However, the naive ap-
proach does not appear to work. Rather then complicating the type structure
or operational semantics for something we do not need, we leave it out.

Γ `() : unit Γ ` s : string

Γ ` true : bool Γ ` false : bool

(Γ ` vi : τi)1≤i≤n

Γ `(~v) : τ1× ...× τn

Γ,x : τ; p` e : τ′

Γ ` λpx : τ.e : τ →p τ′

((Γ,x : [mi :pi τi]1..n); p j ` ej : τ j)(1≤ j≤n)

Γ ` [mi = ςpi xi .ei]1..n : [mi :pi τi]1..n

Γ ` v : τ pcdp Γ,x : τ; p′ ` e : unit ` p′ ≤ p

Γ ` {v.x→p′ e} : advicep′

Γ(l) = τ labelp

Γ ` l : τ labelp

Γ(r) = τ refp

Γ ` r : τ refp

(Γ ` vi : τ labelpi)
(1≤i≤n) (` p≤ pi)(1≤i≤n)

Γ ` {~l}p : τ pcdp

Figure 1. Value Typing

One might hope that it would be possible to simplify the
system and add protection levels to only one of the two
constructs, but doing so leads to unsoundness.

Five typing rules in the middle of Figure 2 give the well-
formedness conditions for advice and labels. Notice that in
the rule for typing advice introduction, the protection level
of the advice, and therefore the protection level the body of
the advice must operate under, is connected to the protection
level of the label that triggers it. Notice also that when
marking a control-flow point with a label, the protection
level of the label is connected to the protection level of
the expression at that point. Finally, given a high-protection
piece of advice, this advice cannot be launched from low-
protection code. The result of these constraints is that when
in a low-protection zone, there is no way to cause execution
of high-protection advice.

2.2 Operational Semantics

The definition of the operational semantics for our language
largely follows earlier work by WZL. In particular, we use
a context-based semantics. The top-level operational judg-
ment has the form(S,A, p,e) 7−→ (S′,A′, p,e′) whereScol-
lects the labelsl that may be used to mark control-flow
points and also maps reference locationsr to values. The
meta-variableA represents an advice store, which is a list
of advice. The current protection level of the code isp. The
protection level does not influence execution of the code, and
could be omitted, but is useful to consider in our noninter-
ference proof. Most of the real work is done by the auxiliary

Γ ` v : τ
Γ; p` v : τ

Γ(x) = τ
Γ; p` x : τ

Γ; p` e1 : unit Γ; p` e2 : τ
Γ; p` e1;e2 : τ

Γ; p` e : string
Γ; p` print e : unit

Γ; p` e1 : bool Γ; p` e2 : τ Γ; p` e3 : τ
Γ; p` ife1thene2elsee3 : τ

(Γ; p` ei : τi)1≤i≤n

Γ; p`(~e) : τ1× ...× τn

Γ; p` e1 : τ1× ...× τn Γ,(~x :~t); p` e2 : τ
Γ; p` split(~x)= e1 in e2 : τ

Γ; p` e1 : τ1 →p τ2 Γ; p` e2 : τ1

Γ; p` e1 e2 : τ2

Γ; p` e : [mi :pi τi]1..n 1≤ j ≤ n p= p j

Γ; p` e.mj : τ j

Γ; p` e1 : τ pcdp′ Γ,x : τ; p′′ ` e2 : unit ` p′′ ≤ p′

Γ; p` {e1.x→p′′ e2} : advicep′′

Γ; p` e : advicep′ ` p′ ≤ p

Γ; p`⇑ e : unit

` p′ ≤ p
Γ; p` newp′ : τ : τ labelp′

Γ; p` e1 : τ labelp Γ; p` e2 : τ
Γ; p` e1[e2] : unit

Γ; p` e : τ ` p′ ≤ p
Γ; p` refp′ e : τ refp′

Γ; p` e : τ refp′ ` p≤ p′

Γ; p`!e : τ

Γ; p` e1 : τ refp′ Γ; p` e2 : τ ` p′ ≤ p

Γ; p` e1 := e2 : τ

(Γ; p` ei : τ labelpi)
(1≤i≤n) (` p′ ≤ pi)(1≤i≤n)

Γ; p` {~e}p′ : τ pcdp′

Γ; p` e1 : τ pcdp′′ ` p′ ≤ p′′

Γ; p` e2 : τ pcdp′′′ ` p′ ≤ p′′′

Γ; p` e1∪p′ e2 : τ pcdp′

Γ; p′ ` e : unit ` p′ ≤ p

Γ; p` p′<e> : unit

Figure 2. Expression Typing

relation(S,A, p,e) 7−→β (S′,A′, p,e′). The additional syntac-
tic categories are given below.

A ::= · | A,{v.x→p e}
S ::= · | S, r = e | S, l

E ::= E;e | print E | if E then e2 else e3

| (vi , ...,vi ,E,ei+2, ...,en)
| split(~x)= E in e
| E e | v E | E.m
| {E.x→p e} | ⇑ E
| E[e] | l[E]
| refp E | ! E | E := e | r := E
| {v1, . . . ,vi ,E,ei+2, . . . ,en}p | E∪p e | v∪p E

The definitions of these relations can be found in Fig-
ure 3. Notice that the rule for marked control-flow points de-
pends upon an auxiliary functionA [[A]]l[v] = e. This func-
tion selects all advice inA that is triggered by the labell and
combines their bodies to form the expressione. The advice
composition function can be found in Figure 4.

2.3 Context-Sensitive Advice

The advice defined in previous sections could not analyze
the call stack from which it was activated. Programming
languages such as AspectJ allow this flexibility via special
pointcut designators such as CFlow. In this section, we de-
scribe a fully general facility for analysis of information on
the current call stack. Our new mechanism is inspired by ear-
lier work by WZL, but is more general and fits better with
the functional programming paradigm. The following defi-
nitions describe the syntactic extensions to our calculus:

τ ::= ... | stack

v ::= ... | · | l[v] :: v

e ::= ... | stack() | store e[e] in e
| case eof(pat⇒ e | ⇒ e)

pat ::= nil | e[x] :: pat
| :: pat | x

vpat ::= nil | {~l}p[x] :: vpat
| :: vpat | x

E ::= ... | store E[e] in e | store l[E] in e
| store l[v] in E
| case E of(pat⇒ e | ⇒ e)
| case v of(E pat⇒ e | ⇒ e)

E pat ::= ... | E[x] :: pat | {~l}p[x] :: E pat
| :: E pat

F ::= ... | [] | E[F] | p < F >

(S,A, p,e) 7−→β (S′,A′, p,e′)

(S,A, p,e) 7−→(S′,A′, p,e′)

(S,A, p,e) 7−→(S′,A′, p,e)

(S,A, p,E[e]) 7−→(S′,A′, p,E[e′])

(S,A, p′,e) 7−→(S′,A′, p′,e′)

(S,A, p, p′<e>) 7−→(S′,A′, p, p′<e′>)

(S,A, p,();e) 7−→β (S,A, p,e)

(S,A, p,print s) 7−→β (S,A, p,())

(S,A, p,if truethene1elsee2) 7−→β (S,A, p,e1)

(S,A, p,if f alsethene1elsee2) 7−→β (S,A, p,e2)

(S,A, p,split(~x)=(~v)in e) 7−→β (S,A, p,e{~v/~x})

(S,A, p,λpx : t.e v) 7−→β (S,A, p,e{v/x})

(S,A, p, [mi = ςpi xi .ei]1..n.mj) 7−→β
(S,A, p,ej{[mi = ςpi xi .ei]1..n/x j})

(S,A, p,⇑ {v.x→p′ e1}) 7−→β (S,(A,{v.x→p′ e1}), p,())

(l /∈ S) (S,A, p,newp′ : τ) 7−→β ((S, l),A, p, l)

l ∈ S A [[A]]l[v] = e

(S,A, p, l[v]) 7−→β (S,A, p,e)

(r /∈ S) (S,A, p,refp′ v) 7−→β ((S, r = v),A, p, r)

(S,A, p, ! r) 7−→β (S,A, p,S(r))

(S,A, p, r := v) 7−→β ((S, r = v),A, p,v)

(S,A, p,{~l1}p′ ∪p′′ {~l2}p′′′) 7−→β (S,A, p,{~l1 ~l2}p′′)

(S,A, p, p′<()>) 7−→β (S,A, p,())

Figure 3. Operational Semantics

A [[·]]l[v] =()

l[v] |= v′ A [[A]]l[v] = e

A [[{v′.x→p e′},A]]l[v] = p<e′{v/x}>;e

l[v]6|=v′ A [[A]]l[v] = e

A [[{v′.x→p e′},A]]C = e

l ∈ {~l}p

l[v] |= {~l}p

Figure 4. Aspect Composition

In order to program with context-sensitive advice, pro-
grammers grab the current stack using thestack() com-
mand. Data is explicitly allocated on the stack using the
commandstore e1[e2] in e3, wheree1 is a label ande2

represents a value associated with the label.e2 is typically
used to store the value passed into the control flow point
marked by the label. Thestore command evaluatese1 to a
label l ande2 to a valuev2, placesl[v2] on the stack, eval-
uatese3 to a valuev3 and finally removesl[v2] from the
stack and returnsv3. The programmer may examine a stack
data structure using thecase eof(pat⇒ e | ⇒ e) com-
mand, which matches the stacke against the patternpat. If
there is a match, the first branch is executed; otherwise, the
second branch is executed. There are patterns that match the
empty stack (e.g.,·), patterns that match a stack starting with
any label in a particular set (e.g.,{~l}p[x] :: pat) wherex is
bound to the value associated with the label on the top of the
stack if it is in the label set, patterns that match a stack start-
ing with anything at all (e.g.,:: pat), and patterns involving
stack variables (e.g.,x).

The typing rules for these extensions appear in Figure 5.
There are three sets of rules in this figure. The first two ex-
tend the value typing and expression typing relations respec-
tively. The last set of rules gives types to patterns where the
type of a pattern is a contextΓ that describes the types of the
variables bound within the pattern.

The rules for evaluating these new expressions appear in
Figure 6. Again, there are three sets of rules. The first defines
a new set of top-level evaluation rules, and the second adds
additionalβ-evaluation rules. Notice that the top-level rule
for evaluating the stack primitive uses an auxiliary function
S(F) that extracts the current stack of values fromF con-
texts, which contains evaluation contextE’s, andp<F> con-
texts. Here, we use the notationst@X to append the object
X to the bottom of the stackst. The last set of rules conclude
in judgments with the formst |= vpat⇒ sub. These rules
describe the circumstances under which a stackst matches
an (evaluated) patternvpat and generates a substitution of
values for variablessub.

Γ ` v : τ

Γ ` · : stack

Γ ` l : τ labelp Γ ` v1 : τ Γ ` v2 : stack

Γ ` l[v1] :: v2 : stack

Γ; p` e : τ

Γ; p` stack() : stack

Γ; p` e1 : τ′ labelp′ Γ; p` e2 : τ′ Γ; p` e3 : τ
Γ; p` store e1[e2] in e3 : τ

Γ; p` e1 : stack
Γ; p` pat⇒ Γ′ Γ,Γ′; p` e2 : τ Γ; p` e3 : τ

Γ; p` case e1 of(pat⇒ e2 | ⇒ e3) : τ

Γ; p` pat⇒ Γ

Γ; p` nil⇒ ·
Γ; p` e : τ pcdp′ Γ; p` pat⇒ Γ′

Γ; p` e[x] :: pat⇒ Γ′,x : τ

Γ; p` pat⇒ Γ′

Γ; p` :: pat⇒ Γ′ Γ; p` x⇒ ·,x : stack

Figure 5. Advanced Point-cut Designator Typing

For the most part, it is relatively straightforward to reas-
sure oneself that these extensions will not disrupt the non-
interference properties that our language possesses. How-
ever, there is one major subtlety to consider: thestack()
primitive. In order for this primitive to be safe, it must be
the case that whenever it is activated in a high-level context,
there is no low-level data on the stack, which could influ-
ence execution in that high-level context. Fortunately, this
is indeed the case. The only way to switch protection lev-
els from one evaluation context to the next is via the con-
text p<E>, which lowers the protection level. Consequently,
any use of thestack()command is done in the context that
looks likep1<E1[p2<E2[p3<E3>]>]> wherep3≤ p2≤ p1. So
while a low-level expression can read high-level data via the
stack() command and subsequentscase expressions, the
opposite is not possible. We are safe.

2.4 Core Language Meta-theory

To prove non-interference, we use the technique developed
by Simonet and Pottier [20]. In the interests of space, we
only sketch the high-level details of the proof. We first divide
protection domains into two groups, high (H) and low (L).

(S,A, p,e) 7−→top(S′,A′, p,e′)

(S,A, p,e) 7−→(S′,A′, p,e′)

(S,A, p,e) 7−→top(S′,A′, p,e′)

(S,A, p,F [stack()]) 7−→top(S,A, p,F [S(F)])

where :

S([]) = ·
S(store l[v] in F) = S(F)@(l[v])

S(p < F >) = S(F)
S(E[F]) = S(F)

whenE 6= store l[v] in F

(S,A, p,e) 7−→β (S,A, p,e)

(S,A, p,store v1[τ] in v2) 7−→β (S,A, p,v2)

v |= vpat⇒ sub

(S,A, p,case v of(vpat⇒ e1 | ⇒ e2)) 7−→β
(S,A, p,sub(e1))

v 6|= vpat⇒ sub

(S,A, p,case v of(vpat⇒ e1 | ⇒ e2)) 7−→β
(S,A, p,e2)

v |= vpat⇒ sub

· |= nil⇒ ·

l ∈ {~l}p v2 |= vpat⇒ sub

l[v1] :: v2 |= {~l}p[x] :: vpat⇒ sub,{v1/x}

v2 |= vpat⇒ sub

l[v1] :: v2 |= :: vpat⇒ sub

v |= x⇒{v/x}

Figure 6. Advanced Point-cut Designator Evaluation

dom(S)= dom(Γ)
∀r ∈ dom(S). Γ(r)= τ refp Γ ` S(r) : τ for some p,τ

∀l ∈ dom(S). Γ(r)= τ refp for some p,τ
` S: Γ

Γ ` · ok
Γ ` a : advicep for some p Γ ` A ok

Γ ` A,a ok

` S: Γ Γ ` A ok Γ; p` e : τ for some τ
`(S,A, p,e)ok

Figure 7. Abstract Machine Judgement

The low-protection group is a downward-closed subset of
protection domains and the high-protection group contains
all other protection domains. We wish to ensure that low-
protection code cannot interfere with the behavior of high-
protection code.

We define a new language (Core2) that simulates execu-
tion of two of our original programs (the original language
is henceforth referred to asCore1). Core2 is exactly the
same asCore1 except that it includes a bracket expression
p<e1|e2>, wherep is a low-protection label and theei are
Core1 expressions. TheCore2 expression

p<print ‘‘hi’’ | print ‘‘bi’’>;x+3

represents the twoCore1 programs

p<print ‘‘hi’’>;x+3

p<print ‘‘bi’’>;x+3

All differences between the twoCore1 expressions must
appear within brackets.

To relateCore1 to Core2, we define the projection func-
tion | |i where i∈ 1,2.|p<e1|e2>|i is p<ei> and| |i is a homo-
morphism on all other expressions. Sincep<e1|e2> in Core2
simulates the simultaneous execution of two low-protection
original Core1 expressions, the projection function extracts
one of these two executions.

As with expressions, we add corresponding bracket con-
structs for the contents of the reference/label storeSand the
aspect storeA. Moreover, if advicea is activated in only
the left instance of the simultaneously executingCore1 pro-
grams, the aspect store of theCore2 program that simulates
them will contain< a|void>. The projection function works
similarly for the reference/label store and the aspect store as
it does for expressions.

Therefore, theCore2 machine state(S,A, p,e) symbol-
izes the current state of the two simultaneously executing
Core1 programs where the i-th projection|(S,A, p,e)|i =
(|S|i , |A|i , p, |e|i) is the state of the i-thCore1 program.

We now prove thatCore2 is the simulation of twoCore1
programs who differ only in their low-protection sections
using soundness and completeness theorems.

The soundness theorem states that since an expression in
Core2 is the representation of two simultaneously executing
Core1 programs, then if theCore2 expression steps to a new
expression, then the two simultaneously executingCore1
programs (the projections of theCore2 expression) must
each take the same respective steps.

THEOREM 2.1 (Soundness).For i ∈1,2, if (S,A, p,e) 7−→∗
top

(S′,A′, p,e′) then|(S,A, p,e)|i 7−→∗
top |(S′,A′, p,e′)|i

The completeness theorem states that if twoCore1 pro-
grams step to values, then the representation inCore2 that
simulates them simultaneously must step to the correspond-
ing value.

THEOREM 2.2 (Completeness).Assume|(S,A, p,e)|i 7−→∗
top

(S′i ,A
′
i , p, |v|i) for all i ∈ 1,2 then there exists(S′,A′, p,v)

such that(S,A, p,e) 7−→∗
top(S′,A′, p,v)

To continue we prove that the type system ofCore2
is sound with respect to our operational semantics using
Progress and Preservation theorems. This strategy requires
that we extend the typing relation to cover all of the run-
time terms in the language as well as the other elements of
the abstract machine (i.e., the code store and aspect store). A
Core1 configuration(S,A, p,e) is well-typed if it satisfies
the judgement̀ (S,A, p,e) ok specified in Figure 7. The
judgement for aCore2 configuration is similar except if the
stores and the expression contain brackets, the protection
domains associated with the brackets must be low.

THEOREM 2.3 (Progress).If ` (S,A, p,e)ok then either e
is a value, or there exists(S′,A′, p,e′)such that
(S,A, p,e) 7−→top(S′,A′, p,e′).

THEOREM 2.4 (Preservation).If `(S,A, p,e)ok and
(S,A, p,e) 7−→top(S′,A′, p,e′) then`(S′,A′, p,e′)ok.

The next lemma states that if a high-protectionCore2
expression steps to an (integer) value, then the corresponding
Core1 projections (which differ only in low protection code)
step to equal values.

LEMMA 2.1 (Equivalent Execution inCore2). If high ∈ H
and ·;high` e : int and(·, ·,high,e) 7−→∗

top(S′,A′,high,v)
then|v|1 = |v|2.

Finally, for the non-interference proof, we assume a high-
protectionCore1 expressione steps to a value. We add a
low-protection expressionp<e′> wherep∈ L to e so thate
with the low-protection code ande alone are executed si-
multaneously and their resulting values compared. This is
achieved by constructing theCore2 expressionp<e′|()>;e
where the left projection ise with the low-protection code
and the right projection steps toe alone. Using the sound-
ness, completeness, preservation theorems, and the equiva-
lent execution inCore2 lemma, we show that bothe with

the added low-protection code ande alone step to the same
value. Therefore the low-protection code did not interfere
with execution.

THEOREM 2.5 (Noninterference).If high ∈ H and low∈
L and ` low ≤ high and e is a core language expres-
sion where ·;high ` e : int and ·; low ` e′ : unit and
(·, ·,high, low<e′>;e) 7−→∗

top(S1,A1,high,v1)and
(·, ·,high, low<()>;e) 7−→∗

top(S2,A2,high,v2) then v1 = v2.

3. Source Language
Our core calculus is intended to be used as a semantic inter-
mediate language rather than as a source-level programming
language of its own. The main reason for this is that core
calculus sits at a convenient level of abstraction for formu-
lating a semantics, but programmers would almost certainly
complain that it is inconvenient to have to mark control-flow
labels in code, to allocate values on the stack by hand, and
to deal with the low-level core calculus notion of advice. In
addition, the core calculus does not actually define a pol-
icy concerning whether or not advice can interfere with each
other or the mainline computation. Rather, it defines a way
for a programmer (or compiler) to assign different protec-
tion levels to code and a mechanism (the type system) that
can check that there is no interference between the appropri-
ate protection levels.

In order to show how the core calculus can be used, we
define a simple source language and show how to translate
it into the core calculus. This source language consists of a
sequence of ordinary declarations,aspects, which are collec-
tions of advice declarations and ordinary declarations, and
a mainline program. The translation from the source into
the core places the state and code for each aspect into its
own protection domain. The mainline code and initial dec-
larations get their own protection domain, which sits above
the protection domains for the aspects in the security lattice.
Consequently, the translation specifies the non-interference
policy that we wish to enforce, namely that no aspect inter-
feres with any other aspect and that no aspect interferes with
the mainline computation. The syntax of the source language
appears below.

τ ::= unit | string | bool
| [mi :pi τi →pi τi]1..n | τ refp | stack

v ::= () | s | true | false

e ::= v | x | e;e | print e
| if ethen eelse e
| let dsin e
| e.m(e)
| ! e | e := e
| case eof(pat⇒ e | ⇒ e)

pat ::= nil | {o.mi}1..n[x,y,n] :: pat | :: pat | x

d ::= (stringx = e)
| (boolx = e)
| (refx = e)
| (objecto = [mi : τi → τ′i = ς xi .λyi .ei]1..n)

ds ::= . | d ds

a ::= (before {o.mi}1..n(x,y,s,n)= e)
| (after {o.mi}1..n(x,y,s,n)= e)

as ::= . | d as | a as

aspcts ::= . | p : {as} aspcts

prog ::= ds aspcts e

The types of the source language objects are a restricted
form of the internal language types. In particular, source
language object types are the composition of a core language
object and function type. Also, since programmers in the
source language do not explicitly manipulate labels, there
are no label types in the source language.

Most of the source language expressions and values
mimic the core language expressions and values, although
there are a few differences. For instance, none of the run-
time-only values such as labels, reference locations, or stack
values need appear in the collection of source values as the
source language is not executed directly.3 Also, for conve-
nience, we allow a local let declaration in expressions, which
programmers can use to allocate values with basic type, ref-
erences or objects. Note that we use the meta-variableo to
stand for program variables bound to objects. We use the
meta-variablex to stand for any kind of program variable.

The source language case expressions analyze stack val-
ues in a similar way to the target, only the patterns are
slightly different, reflecting a particular compilation strat-
egy. More specifically, when compiling a method, we will
allocate automatically on the stack the label corresponding
to the method on top of the stack and a tuple containing a
pointer to self, a pointer to the method argument, and a string
corresponding to the name of the method that was called.
Consequently, the patterns that match stack frames have the
form {o.mi}1..n[x,y,n], where{o.mi}1..n is checked against
the label, andx, y, andn are bound to self, the argument and
the string respectively. The string can be used when printing
out debugging information, profiling information, etc.

Advice in the source language is either before advice
that runs before a method call or after advice that runs
after the method call. Similar to the source-language stack
patterns, when the advice is triggered,x is bound to self,

3 “Execution” of the source occurs by translation of the source into the core
and then execution of the resulting core program.

ref r = 0
object math = [
get:unit->int = ςx.λy.!r
set:int->unit = ςx.λy.r:=y
add:int->int = ςx.λy.

let z = y + x.get() in
x.set(z); z

sub:int->int = ςx.λy.
let z = y - x.get() in
x.set(z); z

]
tracer: {
before {math.add,math.sub}(x,y,s,n) =
print "entering "; print n;
print " with arg "; print (itos y)

after {math.add,math.sub}(x,y,s,n) =
print " and leaving\n"

}
let x = math.add(math.add(1)) in
math.sub(3 - x)

Figure 8. Source Language Example

y is bound to the method argument, andn is bound to a
string corresponding to the method name. The variables is
bound to the stack at the point the advice is triggered. In
the source language, programmers do not explicitly allocate
their own data on the stack, nor do they explicitly grab the
current stack. Code for performing these actions is emitted at
specific points during the translation from source into core.

Finally, as mentioned above, a whole source-language
program (prog) is a collection of declarations (ds) together
with a collection of aspects (aspcts) and a mainline compu-
tation (e). The protection level of the mainline code ismain.
Each aspect is given a distinct namep, which will also serve
as its protection domain when translated into the core calcu-
lus. We assume the translation program operates in the pres-
ence of a security lattice in whichp≤mainfor all aspectsp
in the program. Otherwise, aspects are simply collections of
local declarations and advice (as).

As an example of the basic features of our source lan-
guage, consider the code in Figure 8, where we take the lib-
erty of assuming our language has been augmented with in-
tegers. It declares a math object which has a internal integer
state that can be modified with the set, add, and sub methods.
We write a tracer aspect that prints informative messages be-
fore and after the add and subtract methods are executed.
The mainline computation performs a series of arithmetic
operations on the math object.

3.1 Translation to Core Language

The translation from source into core is defined by a series of
5 mutually recursive judgments. The translation judgments
are generally parameterized by a typing context involving a

point-cut context (P), which contains a collection of declara-
tions that can be used in source-level point-cuts, a standard
type context (Γ), which maps source variables to types, and
a protection level/aspect name (p). The point-cut contextP
contains declarations of the formo.m : (τsel f,τarg,τres, p).
These declarations say that an object namedo with method
mhas been declared and may be advised. The object has the
type τsel f and the method takes an argument with typeτarg

and returns a result with typeτres. The object inhabits pro-
tection domainp.

The form of the translation judgments are as follows.

• The judgmentP;Γ ` v : τ val=⇒ v′ describes the translation
from source language valuesv with type τ to core lan-
guage valuesv′ with typeτ.

• The judgmentP;Γ; p` e : τ exp
=⇒ e′ describes the transla-

tion from source language expressionse with type τ to
core language expressionse′ with typeτ.

• The judgementsplit(Θ,e) is used by the stack case op-
eration. What is extracted from the core language stack is
a tuple containing the object, the argument of the method,
and the name of the method. Thesplit function extracts
the individual elements from these tuples.

• The judgementΓ aΘ⇒ Γ′ takes a context for individual
elements pulled from the stack–the object, the argument
of the method, and the name of the method and returns
a context containing a tuple of those individual elements.
This new context with tuples is what is actually generated
by the pattern translation described in the next section.
This judgement is used in the proof of translation type
safety.

• The judgmentP; p ` pat
pat
=⇒ pat′ a Γ;Θ describes the

translation from source language patternspat to core
language patternspat′ binding variables described byΓ.
Notice that the contextΓ returned describes individual
elements–the object, the argument to the method, and the
name of the method. It is modified byΘ by the judgement
Γ aΘ⇒ Γ′ to generate the new context containing tuples
that the core language patternpat′ actually generates.
Later, thesplit command in the stack case translation
will be used to extract the individual elements from the
tuples.

• The judgmentP;Γ; p ` as;aspcts;e : τ dec=⇒ e′ describes
the translation of declarationsas, aspectsaspctsand
mainline codee. The scope of the declarationsas in-
cludes bothaspctsande. Mainline codee has typeτ and
the expressione′ that results from the translation has type
τ as well.

• The judgment̀ ds aspcts e
prog
=⇒ e′ translates a whole

programprog with a mainline computation producing
values of typeτ into a core language expressione′ with
typeτ.

The definition of these judgments may be found in Fig-
ures 9 and 10. Throughout the translation we use the abbrevi-
ationletx = e1ine2 to stand for(λpx:τ.e2) e1 for some ap-
propriate typeτ and protectionp, which can be determined
from the context.

Most of the translation is rather mundane. The interesting
cases involve object declarations and advice. Object declara-
tions are translated by first allocating two sets of labels, one
set for the control flow points at the beginning of methods,
and one for the control flow points at the end of methods. In
a rather severe abuse of notation, we bind these new labels
to variables with the names “omi,pre” and “omi,post.” Dur-
ing the translation, we maintain the invariant that whenever
o.m :(τsel f,τarg,τres, p) appears in the contextP, the trans-
lated term is well typed in a context including the variables
omi,pre with type(τsel f,τarg,string) labelp andomi,post

with type(τsel f,τres,string)labelp. In the body of each
method of an object, the translation first allocates onto the
stack theomi,pre label with a tuple containing self, the argu-
ment of the method, and a string name corresponding to the
source object and method name4. Then we mark the follow-
ing control-flow point with theomi,pre label for the method,
passing a tuple including self, the argument and the string to
the advice. Next comes the body of the method and finally,
theomi,post label including self, the result and the string.

Before and after advice are translated similarly although
before advice is triggered by theomi,pre label whereas after
advice is triggered byomi,post label. In both cases, the first
action inside the advice body involves extracting the com-
ponents (self, method argument or result, and string name)
from the advice argumentz. Next, the translated advice grabs
the current stack and binds it to the variables. Finally, the ad-
vice executes the translated body. After declaring the advice,
the translated code immediately activates it, placing it after
any previously encountered advice.

3.2 Translation Meta-theory

An important property of the translation is that it pro-
duces well-typed core language expressions. DefineT (o.m :
(τsel f,τarg,τres, p)) to be the contextompre :(τsel f× τarg×
string) labelp,ompost : (τsel f × τres× string) labelp

and letT (P)be the point-wise extension of the previousT
function.

LEMMA 3.1 (Translation Type Safety Lemmas).

• If P; p ` pat
pat
=⇒ pat′ a Γ;Θ and Γ a Θ ⇒ Γ′ then

T (P); p` pat′ ⇒ Γ′.
• If P;Γ ` v : τ val=⇒ v′, thenT (P),Γ ` v′ : τ.

• If P;Γ; p` e : τ exp
=⇒ e′, thenT (P),Γ; p` e′ : τ.

• If P;Γ; p` as;aspcts;e : τ dec=⇒ e′, thenT (P),Γ; p` e′ : τ.

4 Again, there is an abuse of notation here. We assume that we may write
”o.m” for the string equivalent of the object name and method.

P;Γ ` v : τ val=⇒ v′

P;Γ `() : unit
val=⇒() P;Γ ` s : string

val=⇒ s

P;Γ ` true : bool
val=⇒ true P;Γ ` false : bool

val=⇒ false

P;Γ; p` e : τ exp
=⇒ e′

P;Γ ` v : τ val=⇒ v′

P;Γ; p` v : τ exp
=⇒ v′

Γ(x)= τ
P;Γ; p` x : τ exp

=⇒ x

P;Γ; p` e1 : unit
exp
=⇒ e′1 P;Γ; p` e2 : τ exp

=⇒ e′2

P;Γ; p` e1;e2 : τ exp
=⇒ e′1;e′2

P;Γ; p` e : string
exp
=⇒ e′

P;Γ; p` print e : unit
exp
=⇒ print e′

P;Γ; p` e1 : bool
exp
=⇒ e′1 P;Γ; p` e2 : τ exp

=⇒ e′2 P;Γ; p` e3 : τ exp
=⇒ e′3

P;Γ; p` ife1thene2elsee3 : τ exp
=⇒ ife′1thene′2elsee′3

P;Γ; p` ds; .;e : τ dec=⇒ e′

P;Γ; p` let dsin e : τ exp
=⇒ e′

P;Γ; p` e1 : [mi :pi τi]1..n exp
=⇒ e′1 τ j = τ →p τ′

P;Γ; p ` e2 : τ exp
=⇒ e′2 ` p j = p

P;Γ; p` e1.mj(e2) : τ′ exp
=⇒ e′1.mj e′2

P;Γ; p` e : τ refp′
exp
=⇒ e′ ` p≤ p′

P;Γ; p`! e : τ exp
=⇒! e′

P;Γ; p` e1 : τ refp′
exp
=⇒ e′1 P;Γ; p` e2 : τ exp

=⇒ e′2 ` p′ ≤ p

P;Γ; p` e1 := e2 : unit
exp
=⇒ e′1 := e′2

P;Γ; p` e1 : stack
exp
=⇒ e′1 P; p` pat

pat
=⇒ pat′ a Γ′;Θ P;Γ,Γ′; p` e2 : τ exp

=⇒ e′2 P;Γ; p` e3 : τ exp
=⇒ e′3

P;Γ; p` case e1 of(pat⇒ e2 | ⇒ e3) : τ exp
=⇒ case e′1 of(pat′ ⇒ split(Θ,e′2) | ⇒ e′3)

split(Θ,e)

split(·,e)= e split(a→(x,y,z),Θ)= split(Θ,split(x,y,z)= a in e)

Γ a Θ ⇒ Γ′

Γ a · ⇒ Γ
Γ a Θ ⇒ Γ′

Γ,x : τ,y : τ′,z : τ′′ a Θ,z→(x,y,z)⇒ Γ′,z :(τ× τ′× τ′′)

P; p` pat
pat
=⇒ pat′ a Γ′;Θ

(P(o.mi)=(τsel f,τarg,τres, pi))(1≤i≤n) P; p` pat
pat
=⇒ pat′ a Γ′;Θ

P; p` { ~o.m}[x,y,n] :: pat
pat
=⇒{ ~ompre}p[z] :: pat′ :

(Γ′,x : τsel f,y : τarg,n : string;Θ,z→(x,y,n))

P; p` nil
pat
=⇒ nil a ·; ·

P; p` pat
pat
=⇒ pat′ a Γ′;Θ

P; p` :: pat
pat
=⇒ :: pat′ a Γ′;Θ P; p` x

pat
=⇒ xa ·,(x : stack); ·

Figure 9. Translation: Part 1

P;Γ; p` as;aspcts;e : τ dec=⇒ e′

P;Γ; p′ ` as; .;() : unit
as=⇒ e′ P;Γ; p` .;aspcts;e : τ dec=⇒ e′′ ` p′ ≤ p

P;Γ; p` .; p′ : {as} aspcts;e : τ dec=⇒ p′<e′>;e′′

P;Γ; p` e : τ exp
=⇒ e′

P;Γ; p` .; .;e : τ dec=⇒ e′

P;Γ; p` e1 : string
exp
=⇒ e′1 P;Γ; p` e1 : bool

exp
=⇒ e′1

P;Γ,x : string; p` as;aspcts;e2 : τ dec=⇒ e′2

P;Γ; p`(stringx = e1)as;aspcts;e2 : τ dec=⇒

P;Γ,x : bool; p` as;aspcts;e2 : τ dec=⇒ e′2

P;Γ; p`(boolx = e1)as;aspcts;e2 : τ dec=⇒
let x = e′1 in e′2 let x = e′1 in e′2

(P;(Γ,x : τsel f,y : τi); p` ei : τ′i
exp
=⇒ e′i)

1≤i≤n

(P,(o.mi :(τsel f,τi ,τ′i , p))1..n);(Γ,o : τsel f); p` as;aspcts;e2 : τ dec=⇒ e′2

P;Γ; p`(objecto = [mi : τi → τ′i = ς xi .λyi .ei]1..n)as;aspcts;e2 : τ dec=⇒
let om1,pre = newp :(τsel f,τ1,string)in ... let omn,pre = newp :(τsel f,τn,string)in
let om1,post = newp :(τsel f,τ′1,string)in ... let omn,post = newp :(τsel f,τ′n,string)in
let o = [mi = ςpxi .λpyi : τi . store omi,pre[(xi ,yi , “o.m′′

i)] in
omi,pre[(xi ,yi , “o.mi“)];
let resi = e′i in
omi,post[(xi , resi , “o.mi“)];
resi

]1..n in e′2

where τsel f = [mi :pτi →p τ′i]1..n

P;Γ; p` e1 : τ exp
=⇒ e′1 P;Γ,x : τ refp; p` as;aspcts;e2 : τ′ dec=⇒ e′2

P;Γ; p`(refx = e1)as;aspcts;e2 : τ′ dec=⇒ let x = refp e′1 in e′2

(P(o.mi)=(τsel f,τarg,τres, pi))(1≤i≤n)

P;(Γ,x : τsel f,y : τarg,s : stack,n : string); p` e1 : unit
exp
=⇒ e′1 P;Γ; p` as;aspcts;e2 : τ dec=⇒ e′2

P;Γ; p`(before { ~o.m}(x,y,s,n)= e1)as;aspcts;e2 : τ dec=⇒
⇑ {{ ~ompre}p.z→p split(x,y,n)= zin

let s= stack()in
e′1};e′2

(P(o.mi)=(τsel f,τarg,τres, pi))(1≤i≤n)

P;(Γ,x : τsel f,y : τres,s : stack,n : string); p` e1 : unit
exp
=⇒ e′1 P;Γ; p` as;aspcts;e2 : τ dec=⇒ e′2

P;Γ; p`(after { ~o.m}(x,y,s,n)= e1)as;aspcts;e2 : τ dec=⇒
⇑ {{ ~ompost}p.z→p split(x,y,n)= zin

let s= stack()in
e′1};e′2

` ds aspcts e
prog
=⇒ e′

.; .;main` ds;aspcts;e : τ dec=⇒ e′

` ds aspcts e
prog
=⇒ e′

Figure 10.Translation: Part II

Using these lemmas, we can now prove translation type
safety.

THEOREM 3.1 (Translation Type Safety).If `ds aspcts e
prog
=⇒

e′, then.;main` e′ : τ for someτ.

4. Related Work
Over the last several years, a number of researchers have be-
gun to build semantic foundations for aspect-oriented pro-
gramming paradigms [23, 9, 13, 14, 17, 21, 22]. This foun-
dational work provides a starting point from which one can
begin to analyze the properties of aspect-oriented programs,
develop principled new programming features, study veri-
fication techniques and derive useful type systems. In this
paper, our semantic foundations were derived directly from
earlier work by Walker, Zdancewic and Ligatti [22]. The
main novelty with respect to this earlier research is the de-
velopment of a type system for ensuring that aspects do not
interfere with each other or the mainline computation.

Clifton and Leavens [6] proposed techniques for Hoare-
style reasoning about aspect-oriented programs usingassis-
tantsandobservers. Their notion of observers is similar to
our conception of harmless advice — observers do not in-
terfere with the mainline computation. However, the details
of our type and effect system are entirely different from their
Hoare logic. One point of interest is that Clifton and Leavens
mention that it is not clear whether their model can “accom-
modate dynamic context join points like CFlow.” Our anal-
ysis of our stack operations, which are sufficient for coding
up CFlow-like primitives, indicates that harmless advice can
indeed safely use these primitives and avoid interfering with
the mainline computation or each other.

Several authors have looked specifically at techniques for
explicitly combining several pieces of advice and detect-
ing interference between them. For instance, Bauer, Ligatti
and Walker [4] introduced a calculus that included several
different kinds of aspect combinators (parallel conjunction
and disjunction; sequenced conjunction and disjunction) and
used a type and effect system to prevent interference be-
tween them. The technical machinery used here was ex-
tremely complicated and quite different from the current
work. In contrast to our work here, they did not concern
themselves with the effects these aspects would have on the
mainline computation. Recently, Bauer, Ligatti and Walker
have completed the implementation of a general-purpose,
higher-order language for composing aspects in the context
of Java [5].

In similar work, Douence, Fradet and Südholt [10, 11]
analyze aspects defined by recursion together with parallel
and sequencing combinators. They develop a number of for-
mal laws for reasoning about their combinators and an algo-
rithm that is able to detectstrong independence. Two pieces
of advice are strongly independent when they do not inter-
fere with each other regardless of the contents of the advice
bodies or the contents of the programs they are applied to. In

other words, strong independence is determined exclusively
by analysis of the point cut designators of the two pieces
of advice and consequently it is orthogonal to our analysis
which (mostly) ignores the point cuts and examines the ad-
vice bodies instead. It would be interesting to explore how
to put these two different ideas together.

Another interesting line of current research involves find-
ing ways to add aspect-oriented programming features to
languages with module systems, or vice-versa. The goal of
this research is often quite similar to our own work: To find
mechanisms to protect the internals of a module from out-
side interference by advice. However, the techniques used
and resulting properties are quite different. One of the first
systems to combine aspects and modules effectively was
Lieberherr, Lorenz and Ovlinger’sAspectual Collabora-
tions [16, 19]. Their proposal allows module programmers
to choose the join points (i.e., control-flow points) that they
will expose to external advice. External advice cannot inter-
cept control-flow points that have not been exposed. Aspec-
tual collaborations enjoy a number of important properties
including strong encapsulation, type safety and the possibil-
ity of separately compiling and checking module definitions.
Aldrich [2] has proposed another model for combining as-
pects and modules calledOpen Modules. The central nov-
elty of this proposal is a special module sealing operator
that hides internal control-flow points from external advice.
Aldrich has used logical relations to show that sealed mod-
ules have a powerful implementation-independence prop-
erty [1]. In an earlier report [7], we suggested augment-
ing these proposals with access-control specifications in
the module interfaces that allow programmers to specify
whether or not data at join points may be read or written.
The current report differs from any of this previous research
as it does not suggest that visibility of the interception points
be limited; instead, we suggest limiting the capabilities of
advice. However, it seems quite likely that one could design
a powerful system that combines both ideas.

5. Conclusions
In this paper, we have investigated the idea ofharmless
advice: aspect-oriented advice that does not interfere with
the mainline computation. While strictly less powerful than
ordinary advice, we believe that harmless advice can be used
in many contexts including security monitoring, profiling,
logging, and for some debugging tasks. Harmless advice has
the advantage that it may be added to a program after-the-
fact, in the typical aspect-oriented style, yet programmers
do not have to worry about it corrupting important mainline
data invariants.

There are a number of directions for future research, sev-
eral of which we are currently working on. Our first pri-
ority is to extend the calculus to include additional fea-
tures common to object-oriented languages. In particular,
we are interested in adding Java-style classes to the lan-

guage and granting our aspect language the capability to ex-
ternally extend classes while maintaining appropriate non-
interference properties. In addition, together with Washburn
and Weirich [8], we are investigating how to extend the
calculus with polymorphic functions, polymorphic advice
and type analysis to support safe but flexible type-directed
aspect-oriented programming.

Acknowledgments
Stimulating discussions on aspects and related topics with
Geoff Washburn, Stephanie Weirich and Steve Zdancewic
helped form some of the ideas in this paper.

This research was supported in part by ARDA Grant
no. NBCHC030106, National Science Foundation CAREER
grant No. CCR-0238328 and an Alfred P. Sloan Fellowship.
This work does not necessarily reflect the opinions or policy
of the federal government or Sloan foundation and no official
endorsement should be inferred.

References
[1] J. Aldrich. Open modules: A proposal for modular reasoning

in aspect-oriented programming. InWorkshop on foundations
of aspect-oriented languages, Mar. 2004.

[2] J. Aldrich. Open modules: Reconciling extensibility and in-
formation hiding. InProceedings of the Software Engineering
Properties of Languages for Aspect Technologies, Mar. 2004.

[3] Aspect-oriented programming. In T. Elrad, R. E. Filman, and
A. Bader, editors,Special Issue of Communications of the
ACM, volume 40. ACM Press, Oct. 2001.

[4] L. Bauer, J. Ligatti, and D. Walker. Types and effects for non-
interfering program monitors. InInternational Symposium on
Software Security, Tokyo, Japan, Nov. 2002.

[5] L. Bauer, J. Ligatti, and D. Walker. A language and system for
composing security policies. Technical Report TR-699-04,
Princeton University, Jan. 2004.

[6] C. Clifton and G. T. Leavens. Assistants and observers:
A proposal for modular aspect-oriented reasoning. In
Foundations of Aspect Languages, Apr. 2002.

[7] D. S. Dantas and D. Walker. Aspects, information hiding
and modularity. Technical Report TR-696-04, Princeton
University, Nov. 2003.

[8] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich.
Analyzing polymorphic advice. Technical Report TR-717-04,
Princeton University, Dec. 2004.

[9] R. Douence, O. Motelet, and M. Südholt. A formal definition
of crosscuts. InThird International Conference on Metalevel
architectures and separation of crosscutting concerns, volume
2192 ofLecture Notes in Computer Science, pages 170–186,
Berlin, Sept. 2001. Springer-Verlag.

[10] R. Douence, O. Motelet, and M. Südholt. Detection and
resolution of aspect interactions. Technical Report 4435,
INRIA, Apr. 2002.

[11] R. Douence, O. Motelet, and M. Südholt. Composition, reuse
and interaction analysis of stateful aspects. InConference on

Aspect-Oriented Software Development, pages 141–150, Mar.
2004.

[12] R. E. Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. InWorkshop on
Advanced Separation of Concerns, Oct. 2000.

[13] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of typed
aspect-oriented programs. Unpublished manuscript., 2003.

[14] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. InEuropean Conference
on Object-Oriented Programming, Darmstadt, Germany, July
2003.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. InEuropean
Conference on Object-oriented Programming. Springer-
Verlag, 2001.

[16] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual
collaborations – combining modules and aspects.The
Computer Journal, 46(5):542–565, September 2003.

[17] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation
semantics of aspect-oriented programs. In G. T. Leavens
and R. Cytron, editors,Foundations of Aspect-Oriented
Languages Workshop, pages 17–25, Apr. 2002.

[18] A. Myers and B. Liskov. Jflow: Practical mostly-static
information flow control. InTwenty-Sixth ACM Symposium
on Principles of Programming Languages, pages 226–241,
Jan. 1998.

[19] J. Ovlinger.Modular Programming with Aspectual Collabo-
rations. PhD thesis, Northeastern University, 2003.

[20] F. Pottier and V. Simonet. Information flow inference for ML.
ACM Transactions on Programming Languages and Systems,
25(1):117–158, Jan. 2003.

[21] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice
in higher-order languages. InProceedings of the 2nd
International Conference on Aspect-Oriented Software
Development, pages 158–167, 2003.

[22] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. InACM International Conference on Functional
Programming, Uppsala, Sweden, Aug. 2003.

[23] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In G. T. Leavens and R. Cytron, editors,
Foundations of Aspect-Oriented Languages Workshop, pages
17–25, Apr. 2002. Iowa State University University technical
report 02-06.

