Gradual Typing with
Inference

Jeremy Siek
University of Colorado at Boulder

joint work with Manish Vachharajani

Overview

® Motivation
® Background

® Gradual Typing

e Unification-based inference
® Exploring the Solution Space
® Type system (specification)

® |nference algorithm (implementation)

Why Gradual Typing!?

® Static and dynamic type systems have
complimentary strengths.

® Static typing provides full-coverage error
checking, efficient execution, and
machine-checked documentation.

\ ® Dynamic typing enables rapid
3y development and fast adaption to
changing requirements.

® Why not have both in the same language!

Goals for gradual typing

® Treat programs without type annotations as
dynamically typed.

® Programmers may incrementally add type
annotations to gradually increase static
checking.

® Annotate all parameters and the type system
catches all type errors.

Goals for gradual typing

® Treat programs without type annotations as
dynamically typed.

® Programmers may incrementally add type
annotations to gradually increase static
checking.

® Annotate all parameters and the type system
catches all type errors.

dynamic static

Goals for gradual typing

® Treat programs without type annotations as
dynamically typed.

® Programmers may incrementally add type
annotations to gradually increase static
checking.

® Annotate all parameters and the type system
catches all type errors.

| |
l< =

dynamic gradual static

4

The Gradual Type System

® Classify dynamically typed expressions
with the type 7’

® Allow implicit coercions to ? and from ?
with any other type

® Extend coercions to compound types
using a new consistency relation

Coercions to and from ‘?’

(Aa:int. (AX. x + 1) a) 1

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

7

(Aa:int. (AX. x + 1) a) 1

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

7 iNt

(Aa:int. (AX. x + 1) a) 1

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

7 Nt int = ?

(Aa:int. (AX. x + 1) a) 1

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’
int = 7

(Aa:int. (AX. x + 1) a) 1

Nt x Int = Int

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

7 int = ?

(Aa:int. (AX. x + 1) a) 1

Nt x Int = Int

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

7 int = ?

(Aa:int. (AX. x + 1) a) 1

Nntxint—=int 7 = Int

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions between
compound types

(Af:iint—=int. 1) (Ax. 1)

Coercions between
compound types

? = Int

(Af:iint—=int. 1) (Ax. 1)

Coercions between
compound types

? = Int

(Af:iint—=int. 1) (Ax. 1)

? > int = int - int

Detect static type errors

(AMf:iint—int. f1) 1

i%t

Type system: replace = with ~

I’ HFe:0—-71 I'— e: O o'~0

I'Hee: T

Type system: replace = with ~

F'e:0-2T Ik e:o

I'Hee: T

The consistency relation

® Definition: a type is consistent, written ~, with
another type when they are equal where
they are both defined.

® Examples:
Nt ~ int int 4+ bool ? ~int int ~ ?

int = ? ~ ? — bool ? = bool 4+ ? = int

The consistency relation

T ~ T

Compiler inserts run-time checks

I HFei=¢e1:0—-T
I'— eo= e’5: 0 O'~0

' erexo= €1(0<=CG)e2: T

Example:

(Aa:int. (AX. x + 1) a) 1

=

(Aa:int. (AX. (int<=?7)x + 1) (?<=int)a) 1

12

Recent Developments

Integration with objects (Siek & Taha, ECOOP’07)
Space-efficiency (Herman et al, TFP’07)

Blame tracking (Wadler & Findler, Scheme’07)
In JavaScript (Herman & Flanagan, ML07)

Why Inference!

® |nteresting research question: how does the
dynamic type interact with type variables?

® Practical applications

® Help programmers migrate dynamically
typed code to statically typed code

® Explain how gradual typing can be
integrated with functional languages with
inference (ML, Haskell, etc.)

STLC with type vars:
Specification

Standard STLC judgment:

I'HFe:T

An STLC term with type variables is
well typed if there exists an S such that

S(I) = S(e) : S(T)

e.g., (Ax:int. (Ay:a. y) X)
S = {arint}

15

Inference Algorithm

ax:int. (Ay:o. y) X
constraint generation
o—-a=Iint-f

l unification

S ={arint, B~ int}

16

Huet’s Unification

o-oa=Iint-f

Huet’s Unification

o-oa=Iint-f

e

oIy

Huet’s Unification
o-oa=Iint-f

e

m@ %@

Huet’s Unification

Huet’s Unlf'catlon

/ N
¢ B0 e o
/k

-0 it

Huet’s Unification

® When merging nodes, the algorithm needs
to decide which label to keep

® |n this setting, non-type variables trump type
variables

) @

Gradual Typing with Inference

e Setting: STLC with o and ?.

e o migrate from dynamic to static,
change ? to a and the inferencer will tell

you the solution for o or give an error.

A2 AX?.TXX

|

Afo. AX?.TXX

19

Syntactic Sugar

AM.AX TXX

Syntactic Sugar

AM.AX TXX

~

A2 AX?. XX

20

Syntactic Sugar

MLAX XX
AME2OAX?2. XX Ao A XP. XX

20

Non-solution #|

WVell typed in gradual type system
after substitution

S(I) = S(e) : S(T)

Problem: the following is accepted

(A fo. 1) 1
S={ar 7}

21

Non-solution #2

Forbid s from appearing in a solution S

Problem: sometimes this forces cast errors at runtime

AX:?. (N Y. y) X AX:?. (N yiint. y) X

AX:?. (A yiint. y) (iInt<=7?)x

22

Non-solution #2

Forbid s from appearing in a solution S

Problem: sometimes this forces cast errors at runtime

A7 (WY y) X —— AX:?. (A yint. y) X

|

AX:?. (A yiint. y) (iInt<=7?)x

22

Non-solution #3

Treat each ? as a different type variable
then check for well typed in STLC after substitution

Problem: the following is rejected

A fiint - bool = Iint. A xX:?. fx X

|

A fiint = bool —» Int. A xX;a. f X X

23

Non-solution #4

Treat each occurrence of ? in a
constraint as a different type variable

Problem: if no type vars in the program,
the resulting type should not have type vars

A fiint - 2. A x:int. (f X)

/

int - ?=int - >int-oa=Iint-f

24

Lessons

Need to restrict the occurrences of ? in
solutions

But can’t completely outlaw the use of

|ldea: a solution for a at least as informative
as any of the types that constrain o
constrain

i.e., the solution for o must be an upper
bound of all the types that constrain o

25

Information Ordering

/Int—{ T, CT
? 5 int }—» ?
bool int ? -7 . .
semi-lattice

?

26

Type System

® But what does it mean for a type to
constrain o/

Ma-o. Ag:(?-int)-int. g f

o — ? o int

27

Type System

® But what does it mean for a type to
constrain o/

Ma-o. Ag:(?-int)-int. g f

|
o — ? o int

? L S(o)

27

Type System

® But what does it mean for a type to
constrain o/

Ma-o. Ag:(?-int)-int. g f

| |
o — ? 5 int
|

? L S(o)
int L S(a)

27

Type System

® The typing judgment:

® Consistent-equal:

® Consistent-less:

28

S:I'FHe:T

SET=T

S

=TLT

S;

S

Type System

S:I'HFe:T

I'HFei:T1 S;I'F ex:1o

=T1=To—~p (P fresh)

S; ' erex: p

px

Type System

S:I'HFe:T

SSI'Hei:T1 S I'F ex: 1

@’ﬁ = T2$ (P fresh)

S; ' erex: p

px

Consistent-equal

SET

I

SE?=T1T SET="

SETCS(@ Sk TC S
SFa=T SET=aq

S=T1:T3 S_T22T4

SEY=Y SET =T =TT

30

Consistent-less

SE?CT SETLET
SES)=T
SEFEaLT

S|=T1£T3 S_TQET4

=YEY SET-TLCT T,

31

Properties

® When there are no type variables in the
program, the type system acts like the
original gradual type system

® When there are no ? in the program, the
type system acts like the STLC with
variables

32

Inference Algorithm

M.o—-a. Ag:(?-int)-int. g f
l constraint generation
(? - int)-int =(aa-a) = P
l unification for =

S = {arint, § »int}

33

Unification for =

® Can’t use the standard substitution-based
version because we need to see all the
unificands before deciding on the solution

(? - int)->int =(a-a) =P

34

Unification for =

® Need to compute the least upper bound

® Otherwise spurious casts are inserted

AX:?. (N Yo y) X AX:?. (N yiint. y) X

AX:?. (A yiint. y) (Int<="7?)x

35

Unification for =

® Need to compute the least upper bound

® Otherwise spurious casts are inserted

A7 (Yo y) X —— AX:?. (A yiint. y) X

AX:?. (A yiint. y) (Int<="7?)x

35

Merging Labels

® Type variables are trumped by non-type
variables (including the dynamic type)

® The dynamic type is trumped by concrete
types (e.g., int, bool, =)

'SP S

36

Unification for =

(? - int)-int =(aa-a) = P

37

Unification for =

(? - int)-int =(aa-a) = P

" e

r

Unification for =

(? - int)-int =(aa-a) = P

=

o O

Unification for =

(? - int)-int =(aa-a) = P

=

37

Unification for =

(? - int)-int =(aa-a) = P

37

Unification for =

(? - int)-int =(aa-a) = P

% .0o—9

37

Unification for =

(? - int)-int =(aa-a) = P

e

Properties

® The time complexity of unification for = is

O(m a(n)) for a graph with n nodes and m
edges

® Soundness:if (5,T) = infer(I', €) then
SH 1T H e:T.

® Completeness:if S; I' = € : T then there is
a S’,T',and R such that (&', T') = infer(I, €)
and ReS’ L S and ReS™*(T') L S(T).

38

Related Work

Java + Dynamic (Gray & Findler & Flatt)
Optional types (LISP, Dylan, etc.)

Baby]: gradual typing in a nominal setting(Anderson
& Drossopoulou)

Quasi-static types (Thatte)

Soft typing (Cartwright & Fagan,Wright &
Cartwright, Flanagan & Felleisen, Aiken &
Wimmers & Lakshman)

Dynamic typing (Henglein)

39

Conclusion

® Gradual typing provides a combination of
dynamic and static typing in the same
language, under programmer control.

® We present a type system for gradually
typed programs with type variables.

® We present a unification-based inference
algorithm that only requires a small change
to Huet’s algorithm to handle ?s.

40

41

Type System

S;I'Hei:t1 S IT'FH e:t
SET1i=T2e—-fp (P fresh)

S; ' erex: p

42

Type System

S;I'Hei:t1 S IT'FH e:t
SETI =T *@ (P fresh)

S; ' erex: p

42

Non-solution

S;I'Hei:t9 S IT'FH e:to

S

= T1 =To— T3

S;

I'H e1er: T3

Problem: the following is accepted

because we can choose Tz = 7

A fint - Int.

A g:int - bool. f (g 1)

43

Solution

S;I'Hei:t1 S IT'H et
SETi=T2—-p (P fresh)

S;I'Herex: B
A f:int - int. A g:int - bool. f (g 1)
S
S k& int - bool = int - B+ S = bool E B+

—

S Eint - int = B1 - B2 S Eint C B+

44

Inference Algorithm

M (?-int)—=(int->7?)-int. Ay:ia. fyy

l constraint generation

(?-int)- (int-7)-int = o - B+

B1 =a - P2

l unification for =

S = {a » int—int, B1 » (int—int)-int, P2 » int}

45

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

ADEA,

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

Sas o

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

A

%

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

o

N

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

o ®

46

Unification for =

(?-int) - (int-7?)-int = a - P+
B1 =a - P2

46

