
Gradual Typing with
Inference

Jeremy Siek
University of Colorado at Boulder

joint work with Manish Vachharajani

Overview
• Motivation

• Background

• Gradual Typing

• Unification-based inference

• Exploring the Solution Space

• Type system (specification)

• Inference algorithm (implementation)

Why Gradual Typing?

• Static and dynamic type systems have
complimentary strengths.

• Static typing provides full-coverage error
checking, efficient execution, and
machine-checked documentation.

• Dynamic typing enables rapid
development and fast adaption to
changing requirements.

• Why not have both in the same language?

Java Python

Goals for gradual typing

• Treat programs without type annotations as
dynamically typed.

• Programmers may incrementally add type
annotations to gradually increase static
checking.

• Annotate all parameters and the type system
catches all type errors.

4

Goals for gradual typing

• Treat programs without type annotations as
dynamically typed.

• Programmers may incrementally add type
annotations to gradually increase static
checking.

• Annotate all parameters and the type system
catches all type errors.

4

dynamic static

Goals for gradual typing

• Treat programs without type annotations as
dynamically typed.

• Programmers may incrementally add type
annotations to gradually increase static
checking.

• Annotate all parameters and the type system
catches all type errors.

4

dynamic staticgradual

The Gradual Type System

5

• Classify dynamically typed expressions
with the type ‘?’

• Allow implicit coercions to ? and from ?
with any other type

• Extend coercions to compound types
using a new consistency relation

Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

?

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

int?

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

int? int ⇒ ?

Parameters with no type annotation
are given the dynamic type ‘?’.

6

Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

int ⇒ ?

Parameters with no type annotation
are given the dynamic type ‘?’.

6

int x int → int

Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

int ⇒ ?

Parameters with no type annotation
are given the dynamic type ‘?’.

6

int x int → int

?

Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

? ⇒ int

int ⇒ ?

Parameters with no type annotation
are given the dynamic type ‘?’.

6

int x int → int

?

Coercions between
compound types

7

(λf:int→int. f 1) (λx. 1)

Coercions between
compound types

7

(λf:int→int. f 1) (λx. 1)

? → int

Coercions between
compound types

7

(λf:int→int. f 1) (λx. 1)

? → int

? → int ⇒ int → int

Detect static type errors

8

(λf:int→int. f 1) 1

int ⇒ int → int

Type system: replace = with ~

Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ‘ σ‘ ~ σ
Γ ⊢ e1 e2 : τ

9

Type system: replace = with ~

Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ‘ σ‘ ~ σ
Γ ⊢ e1 e2 : τ

9

• Definition: a type is consistent, written ~, with
another type when they are equal where
they are both defined.

• Examples:

The consistency relation

int ~ int int ~ bool ? ~ int int ~ ?

? → bool ~ ? → int

10

int → ? ~ ? → bool

The consistency relation

11

τ1 → τ2 ~ τ3 → τ4

τ1 ~ τ3 τ2 ~ τ4

τ ~ ?? ~ τ

τ ~ τ

τ1 ~ τ2

Compiler inserts run-time checks

Γ ⊢ e1 ⇒ e’1 : σ → τ
 Γ ⊢ e2 ⇒ e’2 : σ‘ σ‘ ~ σ
Γ ⊢ e1 e2 ⇒ e’1 〈σ⇐σ‘〉 e’2 : τ

(λa:int. (λx. x + 1) a) 1
⇒
(λa:int. (λx. 〈int⇐?〉x + 1) 〈?⇐int〉a) 1

Example:

12

Recent Developments

• Integration with objects (Siek & Taha, ECOOP’07)

• Space-efficiency (Herman et al, TFP’07)

• Blame tracking (Wadler & Findler, Scheme’07)

• In JavaScript (Herman & Flanagan, ML’07)

13

Why Inference?

• Interesting research question: how does the
dynamic type interact with type variables?

• Practical applications

• Help programmers migrate dynamically
typed code to statically typed code

• Explain how gradual typing can be
integrated with functional languages with
inference (ML, Haskell, etc.)

14

STLC with type vars:
Specification

15

Γ ⊢ e : τStandard STLC judgment:

An STLC term with type variables is
well typed if there exists an S such that

S(Γ) ⊢ S(e) : S(τ)
e.g., (λx:int. (λy:α. y) x)

S = {α ↦ int}

Inference Algorithm

16

λx:int. (λy:α. y) x

α → α = int → β

constraint generation

unification

S = {α ↦ int, β ↦ int}

Huet’s Unification

17

α → α = int → β

Huet’s Unification

17

α → α = int → β

!

!

!

int "

Huet’s Unification

17

α → α = int → β

!

!

!

int "

!

! int "

Huet’s Unification

17

α → α = int → β

!

!

!

int "

!

! int "

!

int !

Huet’s Unification

17

α → α = int → β

!

!

!

int "

!

! int "

!

int !

!

int

Huet’s Unification

• When merging nodes, the algorithm needs
to decide which label to keep

• In this setting, non-type variables trump type
variables

18

!

int

int

Gradual Typing with Inference

• Setting: STLC with α and ?.

• To migrate from dynamic to static,
change ? to α and the inferencer will tell
you the solution for α or give an error.

19

λ f:?. λ x:?. f x x

λ f:α. λ x:?. f x x

Syntactic Sugar

20

λ f. λ x. f x x

?

Syntactic Sugar

20

λ f. λ x. f x x

λ f:?. λ x:?. f x x

?

Syntactic Sugar

20

λ f. λ x. f x x

λ f:?. λ x:?. f x x λ f:α. λ x:β. f x x

?

Non-solution #1

21

Well typed in gradual type system
 after substitution

S(Γ) ⊢ S(e) : S(τ)

(λ f:α. f 1) 1

Problem: the following is accepted

S = {α ↦ ?}

Non-solution #2

22

Forbid ?s from appearing in a solution S

Problem: sometimes this forces cast errors at runtime

λx:?. (λ y:α. y) x λx:?. (λ y:int. y) x

λx:?. (λ y:int. y) 〈int⇐?〉x

Non-solution #2

22

Forbid ?s from appearing in a solution S

Problem: sometimes this forces cast errors at runtime

λx:?. (λ y:α. y) x λx:?. (λ y:int. y) x

λx:?. (λ y:int. y) 〈int⇐?〉x

Non-solution #3

23

Treat each ? as a different type variable
then check for well typed in STLC after substitution

λ f:int → bool → int. λ x:?. f x x

Problem: the following is rejected

λ f:int → bool → int. λ x:α. f x x

Non-solution #4

24

Treat each occurrence of ? in a
constraint as a different type variable

Problem: if no type vars in the program,
the resulting type should not have type vars

λ f:int → ?. λ x:int. (f x)

int → ? = int → β int → α = int → β

Lessons

• Need to restrict the occurrences of ? in
solutions

• But can’t completely outlaw the use of ?

• Idea: a solution for α at least as informative
as any of the types that constrain α
constrain

• i.e., the solution for α must be an upper
bound of all the types that constrain α

25

Information Ordering

26

?

int → ?

int ? → ?

? → int

int → int

bool

τ1 ⊑ τ2

semi-lattice

Type System

• But what does it mean for a type to
constrain α?

27

λf:α→α. λg:(?→int)→int. g f

? → intα → α

Type System

• But what does it mean for a type to
constrain α?

27

λf:α→α. λg:(?→int)→int. g f

? → intα → α

? ⊑ S(α)

Type System

• But what does it mean for a type to
constrain α?

27

λf:α→α. λg:(?→int)→int. g f

? → intα → α

? ⊑ S(α)
int ⊑ S(α)

Type System

• The typing judgment:

• Consistent-equal:

• Consistent-less:

28

S; Γ ⊢ e : τ

S ⊨ τ ≃ τ

S ⊨ τ ⊑ τ

Type System

29

S; Γ ⊢ e1 : τ1 S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β (β fresh)

S; Γ ⊢ e1 e2 : β

S; Γ ⊢ e : τ

Type System

29

S; Γ ⊢ e1 : τ1 S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β (β fresh)

S; Γ ⊢ e1 e2 : β

S; Γ ⊢ e : τ

Consistent-equal

30

S ⊨ τ ≃ τ

S ⊨ τ1 → τ2 ≃ τ3 → τ4

S ⊨ τ1 ≃ τ3 S ⊨ τ2 ≃ τ4

S ⊨ τ ≃ ?S ⊨ ? ≃ τ

S ⊨ γ ≃ γ

S ⊨ α ≃ τ
S ⊨ τ ⊑ S(α)

S ⊨ τ ≃ α
S ⊨ τ ⊑ S(α)

Consistent-less

31

S ⊨ τ ⊑ τ

S ⊨ τ1 → τ2 ⊑ τ3 → τ4

S ⊨ τ1 ⊑ τ3 S ⊨ τ2 ⊑ τ4

S ⊨ ? ⊑ τ

S ⊨ γ ⊑ γ

S ⊨ α ⊑ τ
S ⊨ S(α) = τ

Properties

• When there are no type variables in the
program, the type system acts like the
original gradual type system

• When there are no ? in the program, the
type system acts like the STLC with
variables

32

Inference Algorithm

33

λf:α→α. λg:(?→int)→int. g f

(? → int) → int ≃ (α → α) → β

constraint generation

unification for ≃

S = {α ↦ int, β ↦ int}

Unification for ≃

• Can’t use the standard substitution-based
version because we need to see all the
unificands before deciding on the solution

34

(? → int) → int ≃ (α → α) → β

Unification for ≃
• Need to compute the least upper bound

• Otherwise spurious casts are inserted

35

λx:?. (λ y:α. y) x λx:?. (λ y:int. y) x

λx:?. (λ y:int. y) 〈int⇐?〉x

Unification for ≃
• Need to compute the least upper bound

• Otherwise spurious casts are inserted

35

λx:?. (λ y:α. y) x λx:?. (λ y:int. y) x

λx:?. (λ y:int. y) 〈int⇐?〉x

Merging Labels

• Type variables are trumped by non-type
variables (including the dynamic type)

• The dynamic type is trumped by concrete
types (e.g., int, bool, →)

36

!

?

?

?

int

int

Unification for ≃

37

(? → int) → int ≃ (α → α) → β

Unification for ≃

37

(? → int) → int ≃ (α → α) → β

! !

int
?

!
!

var

!

var

"

Unification for ≃

37

(? → int) → int ≃ (α → α) → β

!

int

?

!
!

var

!

var

"

Unification for ≃

37

(? → int) → int ≃ (α → α) → β

!

int

?

!

var

!

var

"

Unification for ≃

37

(? → int) → int ≃ (α → α) → β

!

int

?

! var

!

Unification for ≃

37

(? → int) → int ≃ (α → α) → β

!

int

! var

!

Unification for ≃

37

(? → int) → int ≃ (α → α) → β

!

int

!

Properties

• The time complexity of unification for ≃ is
O(m α(n)) for a graph with n nodes and m
edges

• Soundness: if (S,τ) = infer(Γ, e) then
S*; Γ ⊢ e : τ.

• Completeness: if S; Γ ⊢ e : τ then there is
a S’, τ’, and R such that (S’, τ’) = infer(Γ, e)
and R•S’ ⊑ S and R•S’*(τ’) ⊑ S(τ).

38

Related Work

• Java + Dynamic (Gray & Findler & Flatt)

• Optional types (LISP, Dylan, etc.)

• BabyJ: gradual typing in a nominal setting(Anderson
& Drossopoulou)

• Quasi-static types (Thatte)

• Soft typing (Cartwright & Fagan, Wright &
Cartwright, Flanagan & Felleisen, Aiken &
Wimmers & Lakshman)

• Dynamic typing (Henglein)
39

Conclusion

• Gradual typing provides a combination of
dynamic and static typing in the same
language, under programmer control.

• We present a type system for gradually
typed programs with type variables.

• We present a unification-based inference
algorithm that only requires a small change
to Huet’s algorithm to handle ?s.

40

41

Type System

42

S; Γ ⊢ e1 : τ1 S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β (β fresh)

S; Γ ⊢ e1 e2 : β

Type System

42

S; Γ ⊢ e1 : τ1 S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β (β fresh)

S; Γ ⊢ e1 e2 : β

Non-solution

43

S; Γ ⊢ e1 : τ1 S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → τ3

S; Γ ⊢ e1 e2 : τ3

λ f:int → int. λ g:int → bool. f (g 1)

Problem: the following is accepted
because we can choose τ3 = ?

Solution

44

S; Γ ⊢ e1 : τ1 S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β (β fresh)

S; Γ ⊢ e1 e2 : β

λ f:int → int. λ g:int → bool. f (g 1)

S ⊨ int → bool ≃ int → β1

S ⊨ int → int ≃ β1 → β2

S ⊨ bool ⊑ β1

S ⊨ int ⊑ β1

Inference Algorithm

45

λf:(?→int)→(int→?)→int. λy:α. f y y

(?→int)→ (int→?)→int ≃ α → β1

constraint generation

unification for ≃

S = {α ↦ int→int, β1 ↦ (int→int)→int, β2 ↦ int}

β1 ≃ α → β2

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

!

!

!

!

!
var

!2

var

"

?

var

!1
!

int

?

β1 ≃ α → β2

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

!

! !

!
var

!2
?

var

!1
!

int

?

var

"

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

!

!

!

!

"1

! var

"2
?

!

int

?

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

!

!

!

!

"1

! var

"2

? int

?

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

!

!

!

!

"1

!? int

"2

?

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

!

!

!

!

"1

?
int

"2

?

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

!

!

!

!

"1

int

"2

Unification for ≃

46

(?→int) → (int→?)→int ≃ α → β1

β1 ≃ α → β2

