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Overview
• Motivation

• Background

• Gradual Typing

• Unification-based inference

• Exploring the Solution Space

• Type system (specification)

• Inference algorithm (implementation)



Why Gradual Typing?

• Static and dynamic type systems have 
complimentary strengths. 

• Static typing provides full-coverage error 
checking, efficient execution, and 
machine-checked documentation.

• Dynamic typing enables rapid 
development and fast adaption to 
changing requirements.

• Why not have both in the same language?

Java Python



Goals for gradual typing

• Treat programs without type annotations as 
dynamically typed.

• Programmers may incrementally add type 
annotations to gradually increase static 
checking.

• Annotate all parameters and the type system 
catches all type errors.
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Goals for gradual typing

• Treat programs without type annotations as 
dynamically typed.

• Programmers may incrementally add type 
annotations to gradually increase static 
checking.

• Annotate all parameters and the type system 
catches all type errors.
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The Gradual Type System
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• Classify dynamically typed expressions 
with the type ‘?’

•  Allow implicit coercions to ? and from ? 
with any other type

• Extend coercions to compound types 
using a new consistency relation



Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

Parameters with no type annotation 
are given the dynamic type ‘?’.

6



Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

?

Parameters with no type annotation 
are given the dynamic type ‘?’.

6



Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1

int?

Parameters with no type annotation 
are given the dynamic type ‘?’.

6
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Coercions to and from ‘?’
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int x int → int



Coercions to and from ‘?’
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Coercions to and from ‘?’

(λa:int. (λx. x + 1) a) 1
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Parameters with no type annotation 
are given the dynamic type ‘?’.
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Coercions between 
compound types
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(λf:int→int.  f 1) (λx. 1)



Coercions between 
compound types
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(λf:int→int.  f 1) (λx. 1)

? → int



Coercions between 
compound types
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(λf:int→int.  f 1) (λx. 1)

? → int

? → int  ⇒  int → int



Detect static type errors
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(λf:int→int.  f 1) 1

int  ⇒  int → int



Type system: replace = with ~

Γ ⊢ e1 : σ → τ      Γ ⊢ e2 : σ‘      σ‘ ~ σ
Γ ⊢ e1 e2 : τ
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• Definition: a type is consistent, written ~, with 
another type when they are equal where 
they are both defined.

• Examples:

The consistency relation

int ~ int int ~ bool ? ~ int int ~ ?

? → bool ~ ? → int
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int → ?  ~  ? → bool



The consistency relation
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τ1 → τ2  ~  τ3 → τ4

τ1 ~ τ3 τ2 ~ τ4

τ ~ ?? ~ τ

τ ~ τ

τ1 ~ τ2



Compiler inserts run-time checks

Γ ⊢ e1 ⇒ e’1 : σ → τ
      Γ ⊢ e2 ⇒ e’2 : σ‘          σ‘ ~ σ
Γ ⊢ e1 e2 ⇒ e’1 〈σ⇐σ‘〉 e’2 : τ

(λa:int. (λx. x + 1) a) 1 
⇒
(λa:int. (λx. 〈int⇐?〉x + 1) 〈?⇐int〉a) 1

Example:
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Recent Developments

• Integration with objects (Siek & Taha, ECOOP’07)

• Space-efficiency (Herman et al, TFP’07)

• Blame tracking (Wadler & Findler, Scheme’07)

• In JavaScript (Herman & Flanagan, ML’07)
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Why Inference?

• Interesting research question: how does the 
dynamic type interact with type variables?

• Practical applications

• Help programmers migrate dynamically 
typed code to statically typed code

• Explain how gradual typing can be 
integrated with functional languages with 
inference (ML, Haskell, etc.)
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STLC with type vars:
Specification
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Γ ⊢ e : τStandard STLC judgment:

An STLC term with type variables is 
well typed if there exists an S such that

S(Γ) ⊢ S(e) : S(τ)
e.g., (λx:int. (λy:α. y) x)

S = {α ↦ int}



Inference Algorithm
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λx:int. (λy:α. y) x

α → α = int → β

constraint generation

unification

S = {α ↦ int, β ↦ int}



Huet’s Unification
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α → α = int → β



Huet’s Unification
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α → α = int → β

!

!

!

int "
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Huet’s Unification
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α → α = int → β

!

!

!

int "

!

! int "

!

int !

!

int



Huet’s Unification

• When merging nodes, the algorithm needs 
to decide which label to keep

• In this setting, non-type variables trump type 
variables
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!
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int



Gradual Typing with Inference

• Setting: STLC with α and ?.

• To migrate from dynamic to static, 
change ? to α and the inferencer will tell 
you the solution for α or give an error.
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λ f:?. λ x:?. f x x

λ f:α. λ x:?. f x x



Syntactic Sugar
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λ f. λ x. f x x

?



Syntactic Sugar
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λ f. λ x. f x x

λ f:?. λ x:?. f x x
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Syntactic Sugar
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λ f. λ x. f x x

λ f:?. λ x:?. f x x λ f:α. λ x:β. f x x

?



Non-solution #1
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Well typed in gradual type system
 after substitution

S(Γ) ⊢ S(e) : S(τ)

(λ f:α. f 1) 1

Problem: the following is accepted

S = {α ↦ ?}



Non-solution #2
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Forbid ?s from appearing in a solution S 

Problem: sometimes this forces cast errors at runtime

λx:?. (λ y:α. y) x λx:?. (λ y:int. y) x

λx:?. (λ y:int. y) 〈int⇐?〉x



Non-solution #2
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Forbid ?s from appearing in a solution S 

Problem: sometimes this forces cast errors at runtime
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Non-solution #3
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Treat each ? as a different type variable
then check for well typed in STLC after substitution

λ f:int → bool → int. λ x:?. f x x

Problem: the following is rejected

λ f:int → bool → int. λ x:α. f x x



Non-solution #4
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Treat each occurrence of ? in a 
constraint as a different type variable

Problem: if no type vars in the program,
the resulting type should not have type vars 

λ f:int → ?. λ x:int. (f x)

int → ? = int → β int → α = int → β



Lessons

• Need to restrict the occurrences of ? in 
solutions

• But can’t completely outlaw the use of ?

• Idea: a solution for α at least as informative 
as any of the types that constrain α 
constrain

• i.e., the solution for α must be an upper 
bound of all the types that constrain α
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Information Ordering
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?

int → ?

int ? → ?

? → int

int → int

bool

τ1 ⊑ τ2

semi-lattice



Type System

• But what does it mean for a type to 
constrain α?
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λf:α→α. λg:(?→int)→int. g f

? → intα → α



Type System

• But what does it mean for a type to 
constrain α?
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? → intα → α

? ⊑ S(α)



Type System

• But what does it mean for a type to 
constrain α?
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λf:α→α. λg:(?→int)→int. g f

? → intα → α

? ⊑ S(α)
int ⊑ S(α)



Type System

• The typing judgment:

• Consistent-equal:

• Consistent-less:
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S; Γ ⊢ e : τ

S ⊨ τ ≃ τ

S ⊨ τ ⊑ τ



Type System
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S; Γ ⊢ e1 : τ1     S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β       (β fresh)

S; Γ ⊢ e1 e2 : β

S; Γ ⊢ e : τ



Type System
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S; Γ ⊢ e1 : τ1     S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β       (β fresh)

S; Γ ⊢ e1 e2 : β

S; Γ ⊢ e : τ



Consistent-equal
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S ⊨ τ ≃ τ

S ⊨ τ1 → τ2  ≃  τ3 → τ4

S ⊨ τ1 ≃ τ3 S ⊨ τ2 ≃ τ4

S ⊨ τ ≃ ?S ⊨ ? ≃ τ

S ⊨ γ ≃ γ

S ⊨ α ≃ τ
S ⊨ τ ⊑ S(α)

S ⊨ τ ≃ α
S ⊨ τ ⊑ S(α)



Consistent-less
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S ⊨ τ ⊑ τ

S ⊨ τ1 → τ2  ⊑  τ3 → τ4

S ⊨ τ1 ⊑ τ3 S ⊨ τ2 ⊑ τ4

S ⊨ ? ⊑ τ

S ⊨ γ ⊑ γ

S ⊨ α ⊑ τ
S ⊨ S(α) = τ



Properties

• When there are no type variables in the 
program, the type system acts like the 
original gradual type system

• When there are no ? in the program, the 
type system acts like the STLC with 
variables
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Inference Algorithm
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λf:α→α. λg:(?→int)→int. g f

(? → int) → int  ≃ (α → α) → β

constraint generation

unification for ≃

S = {α ↦ int, β ↦ int}



Unification for ≃

• Can’t use the standard substitution-based 
version because we need to see all the 
unificands before deciding on the solution

34

(? → int) → int  ≃ (α → α) → β



Unification for ≃
• Need to compute the least upper bound

• Otherwise spurious casts are inserted

35

λx:?. (λ y:α. y) x λx:?. (λ y:int. y) x

λx:?. (λ y:int. y) 〈int⇐?〉x



Unification for ≃
• Need to compute the least upper bound

• Otherwise spurious casts are inserted
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λx:?. (λ y:α. y) x λx:?. (λ y:int. y) x

λx:?. (λ y:int. y) 〈int⇐?〉x



Merging Labels

• Type variables are trumped by non-type 
variables (including the dynamic type)

• The dynamic type is trumped by concrete 
types (e.g., int, bool, →)
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!

?

?

?

int

int



Unification for ≃
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(? → int) → int  ≃ (α → α) → β



Unification for ≃
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(? → int) → int  ≃ (α → α) → β
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?

!
!

var

!

var
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Unification for ≃
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Unification for ≃
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Unification for ≃

37
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Unification for ≃
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(? → int) → int  ≃ (α → α) → β

!

int

!



Properties

• The time complexity of unification for ≃ is 
O(m α(n)) for a graph with n nodes and m 
edges

• Soundness: if (S,τ) = infer(Γ, e) then               
S*; Γ ⊢ e : τ.

• Completeness: if S; Γ ⊢ e : τ then there is 
a S’, τ’, and R such that (S’, τ’) = infer(Γ, e) 
and R•S’ ⊑ S and R•S’*(τ’) ⊑ S(τ).
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Related Work

• Java + Dynamic (Gray & Findler & Flatt)

• Optional types (LISP, Dylan, etc.)

• BabyJ: gradual typing in a nominal setting(Anderson 
& Drossopoulou)

• Quasi-static types (Thatte)

• Soft typing (Cartwright & Fagan, Wright & 
Cartwright, Flanagan & Felleisen,  Aiken & 
Wimmers & Lakshman)

• Dynamic typing (Henglein)
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Conclusion

• Gradual typing provides a combination of 
dynamic and static typing in the same 
language, under programmer control.

• We present a type system for gradually 
typed programs with type variables.

• We present a unification-based inference 
algorithm that only requires a small change 
to Huet’s algorithm to handle ?s.
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Type System
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S; Γ ⊢ e1 : τ1     S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β       (β fresh)

S; Γ ⊢ e1 e2 : β



Type System

42

S; Γ ⊢ e1 : τ1     S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β       (β fresh)

S; Γ ⊢ e1 e2 : β



Non-solution
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S; Γ ⊢ e1 : τ1     S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → τ3

S; Γ ⊢ e1 e2 : τ3

λ f:int → int. λ g:int → bool. f (g 1)

Problem: the following is accepted 
because we can choose τ3 = ?



Solution
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S; Γ ⊢ e1 : τ1     S; Γ ⊢ e2 : τ2

S ⊨ τ1 ≃ τ2 → β       (β fresh)

S; Γ ⊢ e1 e2 : β

λ f:int → int. λ g:int → bool. f (g 1)

S ⊨ int → bool ≃ int → β1

S ⊨ int → int ≃ β1 → β2

S ⊨ bool ⊑  β1

S ⊨ int ⊑ β1



Inference Algorithm
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λf:(?→int)→(int→?)→int. λy:α. f y y

(?→int)→ (int→?)→int  ≃ α → β1

constraint generation

unification for ≃

S = {α ↦ int→int, β1 ↦ (int→int)→int, β2 ↦ int}

β1  ≃ α → β2



Unification for ≃
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(?→int) → (int→?)→int  ≃ α → β1

β1  ≃ α → β2



Unification for ≃
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(?→int) → (int→?)→int  ≃ α → β1

!

!

!

!

!
var

!2

var

"

?

var

!1
!

int

?

β1  ≃ α → β2



Unification for ≃
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β1  ≃ α → β2
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!
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!2
?

var

!1
!

int

?

var
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Unification for ≃
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β1  ≃ α → β2
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!

!
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! var

"2
?

!

int

?



Unification for ≃
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β1  ≃ α → β2
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!

!

"1

! var 

"2

? int

?



Unification for ≃
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Unification for ≃
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Unification for ≃
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Unification for ≃
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(?→int) → (int→?)→int  ≃ α → β1

β1  ≃ α → β2


