

Gradual Typing with Inference

Jeremy Siek
University of Colorado at Boulder

joint work with Manish Vachharajani

Overview

- Motivation
- Background
 - Gradual Typing
 - Unification-based inference
- Exploring the Solution Space
- Type system (specification)
- Inference algorithm (implementation)

Why Gradual Typing?

- Static and dynamic type systems have complimentary strengths.
- Static typing provides full-coverage error checking, efficient execution, and machine-checked documentation.
- Dynamic typing enables rapid development and fast adaption to changing requirements.
- Why not have both in the same language?

Java

Python

Goals for gradual typing

- Treat programs without type annotations as dynamically typed.
- Programmers may incrementally add type annotations to gradually increase static checking.
- Annotate all parameters and the type system catches all type errors.

Goals for gradual typing

- Treat programs without type annotations as dynamically typed.
- Programmers may incrementally add type annotations to gradually increase static checking.
- Annotate all parameters and the type system catches all type errors.

Goals for gradual typing

- Treat programs without type annotations as dynamically typed.
- Programmers may incrementally add type annotations to gradually increase static checking.
- Annotate all parameters and the type system catches all type errors.

The Gradual Type System

- Classify dynamically typed expressions with the type ‘?’
- Allow implicit coercions *to* ? and *from* ? with any other type
- Extend coercions to compound types using a new *consistency relation*

Coercions to and from ‘?’

$$(\lambda a:\text{int}. (\lambda x. x + 1) a) 1$$

Parameters with no type annotation
are given the dynamic type ‘?’.

Coercions to and from ‘?’

?

|

$(\lambda a:\text{int. } (\lambda x. x + 1) a) 1$

Parameters with no type annotation
are given the dynamic type ‘?’.

Coercions to and from ‘?’

$$\begin{array}{ccc} ? & & \text{int} \\ | & & | \\ (\lambda a:\text{int}. (\lambda x. x + 1) a) & 1 \end{array}$$

Parameters with no type annotation
are given the dynamic type ‘?’.

Coercions to and from ‘?’

?

int

int \Rightarrow ?

|

|

$(\lambda a:\text{int}. (\lambda x. x + 1) a) 1$

Parameters with no type annotation
are given the dynamic type ‘?’.

Coercions to and from ‘?’

int \Rightarrow ?

$(\lambda a:\text{int}. (\lambda x. x + 1) a) 1$

|

int \times int \rightarrow int

Parameters with no type annotation
are given the dynamic type ‘?’.

Coercions to and from ‘?’

?

int \Rightarrow ?

|

$(\lambda a:\text{int}. (\lambda x. x + 1) a) 1$

|

int \times int \rightarrow int

Parameters with no type annotation
are given the dynamic type ‘?’.

Coercions to and from ‘?’

$$\begin{array}{ccc} ? & & \text{int} \Rightarrow ? \\ | & & | \\ (\lambda a:\text{int}. (\lambda x. x + 1) a) 1 & & \text{int} \times \text{int} \rightarrow \text{int} \quad ? \Rightarrow \text{int} \end{array}$$

Parameters with no type annotation
are given the dynamic type ‘?’.

Coercions between compound types

$$(\lambda f:\text{int} \rightarrow \text{int}. \ f \ 1) \ (\lambda x. \ 1)$$

Coercions between compound types

$$\begin{array}{c} ? \rightarrow \text{int} \\ | \\ (\lambda f:\text{int} \rightarrow \text{int}. \ f \ 1) \ (\lambda x. \ 1) \end{array}$$

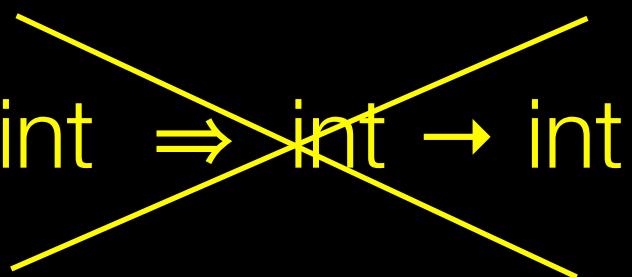
Coercions between compound types

$$\begin{array}{c} ? \rightarrow \text{int} \\ | \\ (\lambda f:\text{int} \rightarrow \text{int}. \ f \ 1) \ (\lambda x. \ 1) \end{array}$$
$$? \rightarrow \text{int} \Rightarrow \text{int} \rightarrow \text{int}$$

Detect static type errors

$$(\lambda f:\text{int} \rightarrow \text{int}. \ f \ 1) \ 1$$

int \Rightarrow int \rightarrow int



Type system: replace $=$ with \sim

$$\frac{\Gamma \vdash e_1 : \sigma \rightarrow \tau \quad \Gamma \vdash e_2 : \sigma' \quad \sigma' \sim \sigma}{\Gamma \vdash e_1 e_2 : \tau}$$

Type system: replace $=$ with \sim

$$\frac{\Gamma \vdash e_1 : \sigma \rightarrow \tau \quad \Gamma \vdash e_2 : \sigma' \quad \sigma' \sim \sigma}{\Gamma \vdash e_1 e_2 : \tau}$$

The consistency relation

- Definition: a type is *consistent*, written \sim , with another type when they are equal where they are both defined.
- Examples:

$\text{int} \sim \text{int}$

$\text{int} \not\sim \text{bool}$

$\text{?} \sim \text{int}$

$\text{int} \sim \text{?}$

$\text{int} \rightarrow \text{?} \sim \text{?} \rightarrow \text{bool}$

$\text{?} \rightarrow \text{bool} \not\sim \text{?} \rightarrow \text{int}$

The consistency relation

$$\frac{? \sim \tau}{}$$

$$\frac{\tau \sim ?}{}$$

$$\boxed{\tau_1 \sim \tau_2}$$

$$\frac{\tau \sim \tau}{}$$

$$\frac{\tau_1 \sim \tau_3 \quad \tau_2 \sim \tau_4}{\tau_1 \rightarrow \tau_2 \sim \tau_3 \rightarrow \tau_4}$$

Compiler inserts run-time checks

$$\frac{\Gamma \vdash e_1 \Rightarrow e'_1 : \sigma \rightarrow \tau \quad \Gamma \vdash e_2 \Rightarrow e'_2 : \sigma' \quad \sigma' \sim \sigma}{\Gamma \vdash e_1 e_2 \Rightarrow e'_1 \langle \sigma \Leftarrow \sigma' \rangle e'_2 : \tau}$$

Example:

$(\lambda a:\text{int}. (\lambda x. x + 1) a) 1$

\Rightarrow

$(\lambda a:\text{int}. (\lambda x. \langle \text{int} \Leftarrow ? \rangle x + 1) \langle ? \Leftarrow \text{int} \rangle a) 1$

Recent Developments

- Integration with objects (Siek & Taha, ECOOP'07)
- Space-efficiency (Herman et al, TFP'07)
- Blame tracking (Wadler & Findler, Scheme'07)
- In JavaScript (Herman & Flanagan, ML'07)

Why Inference?

- Interesting research question: how does the dynamic type interact with type variables?
- Practical applications
 - Help programmers migrate dynamically typed code to statically typed code
 - Explain how gradual typing can be integrated with functional languages with inference (ML, Haskell, etc.)

STLC with type vars: Specification

Standard STLC judgment:

$$\boxed{\Gamma \vdash e : \tau}$$

An STLC term with type variables is **well typed** if there exists an S such that

$$S(\Gamma) \vdash S(e) : S(\tau)$$

e.g., $(\lambda x:\text{int}. (\lambda y:\alpha. y) x)$

$$S = \{\alpha \mapsto \text{int}\}$$

Inference Algorithm

$$\lambda x:\text{int}. (\lambda y:\alpha. y) x$$

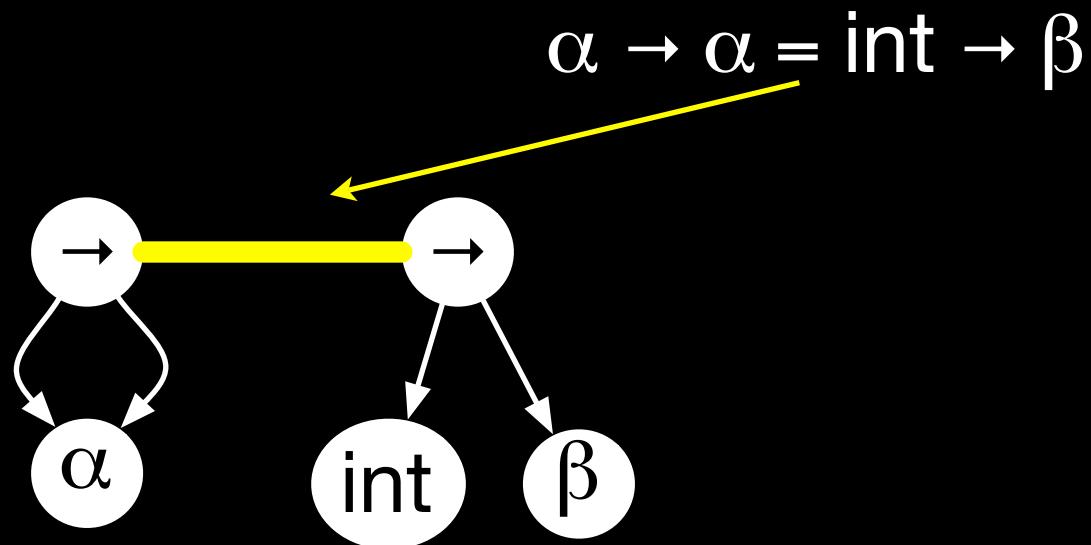
↓ constraint generation
 $\alpha \rightarrow \alpha = \text{int} \rightarrow \beta$

↓ unification
 $S = \{\alpha \mapsto \text{int}, \beta \mapsto \text{int}\}$

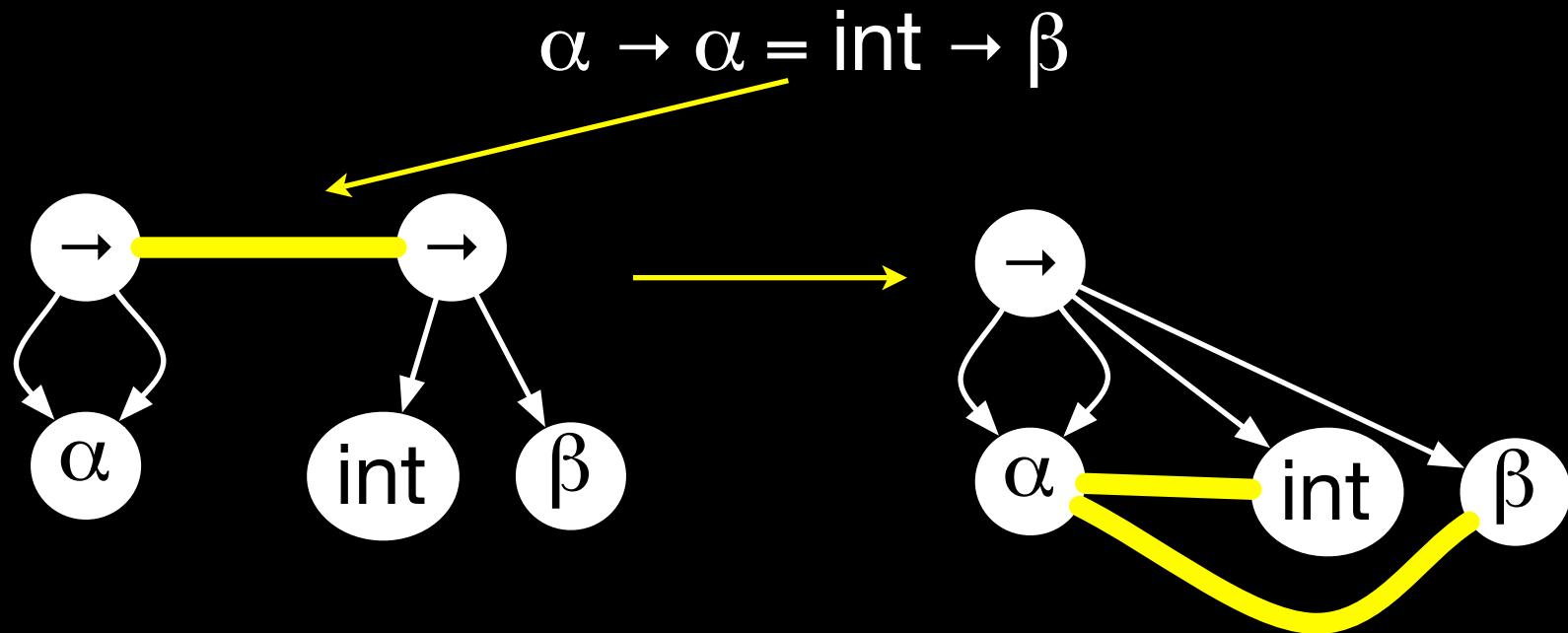
Huet's Unification

$$\alpha \rightarrow \alpha = \text{int} \rightarrow \beta$$

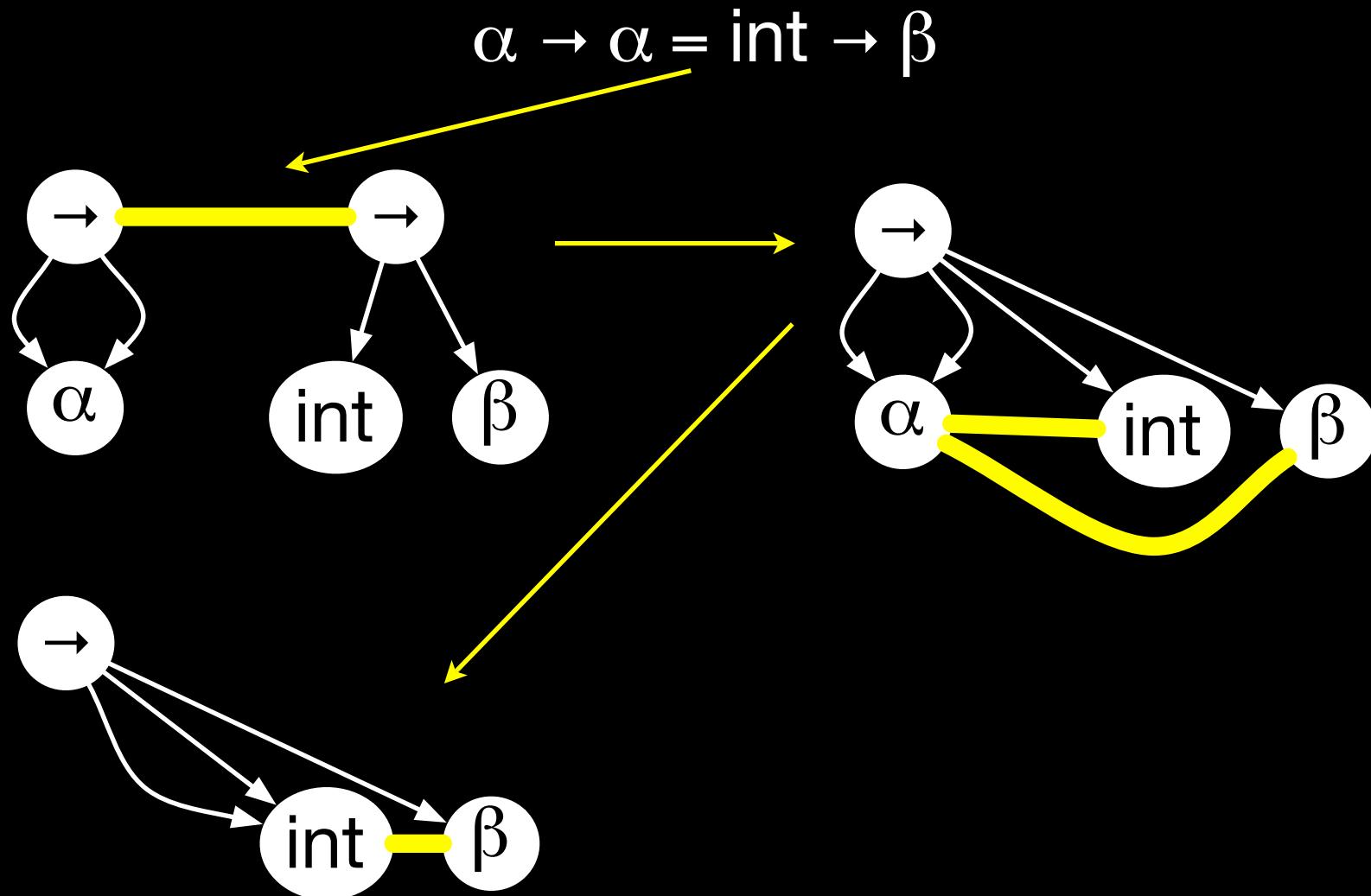
Huet's Unification



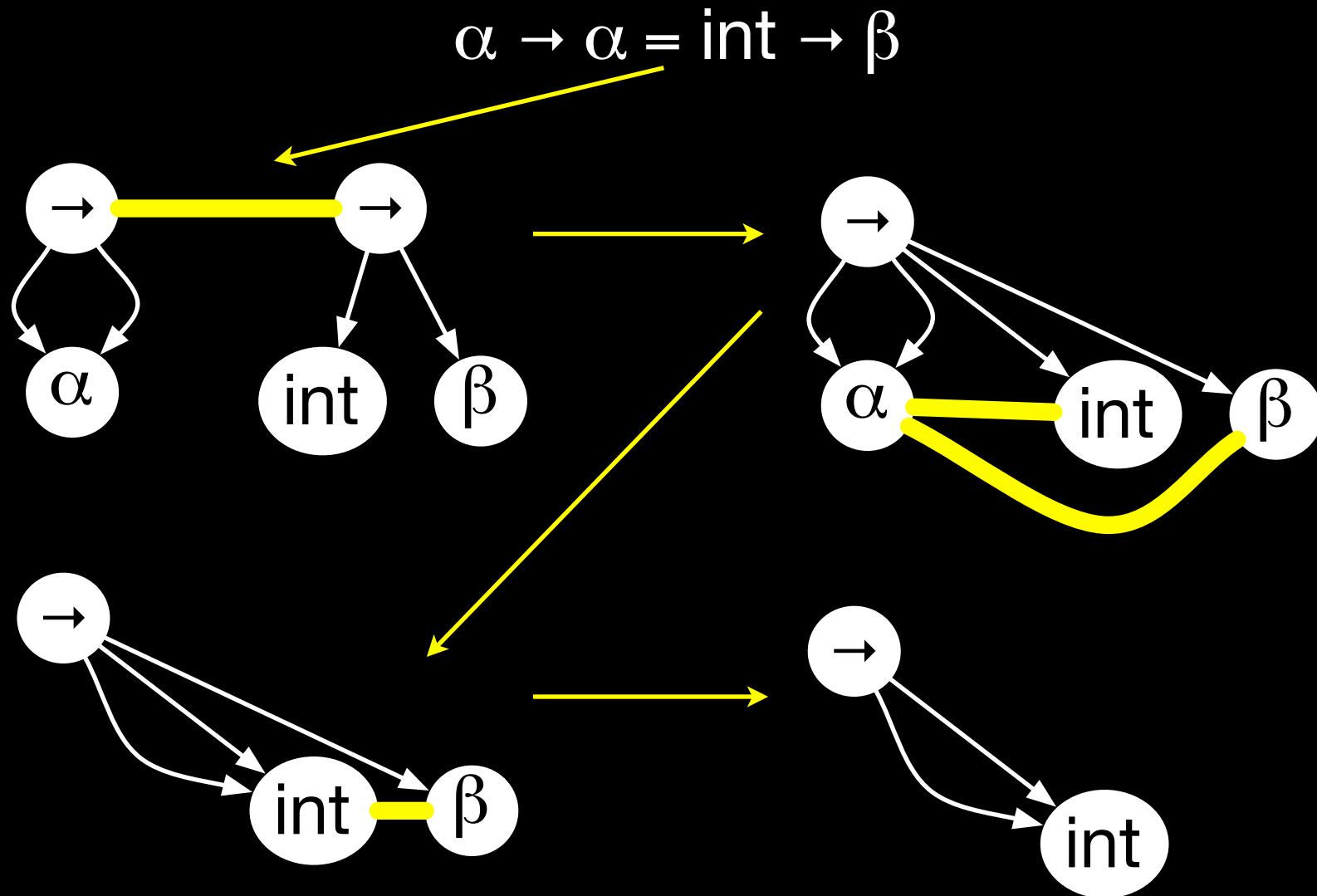
Huet's Unification



Huet's Unification

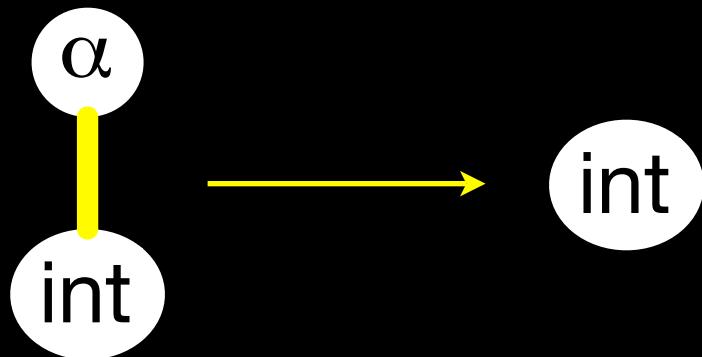


Huet's Unification



Huet's Unification

- When merging nodes, the algorithm needs to decide which label to keep
- In this setting, non-type variables trump type variables



Gradual Typing with Inference

- Setting: STLC with α and $?$.
- To migrate from dynamic to static, change $?$ to α and the inferencer will tell you the solution for α or give an error.

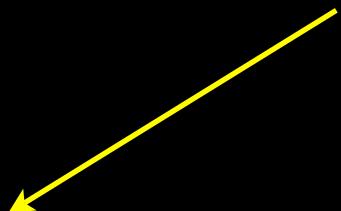
$$\begin{array}{c} \lambda f:?. \lambda x:?. f x x \\ \downarrow \\ \lambda f:\alpha. \lambda x:?. f x x \end{array}$$

Syntactic Sugar

$\lambda f. \lambda x. f x x$

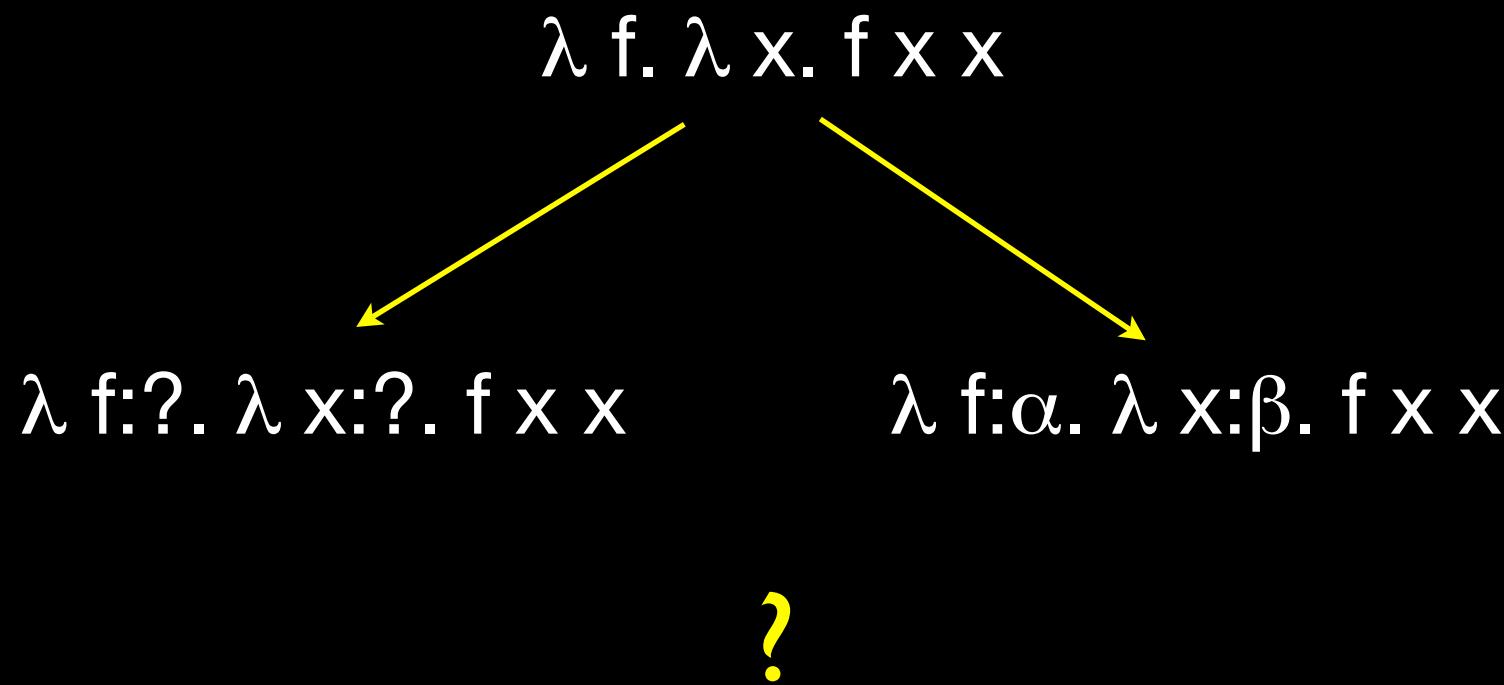
?

Syntactic Sugar

$$\lambda f. \lambda x. f x x$$

$$\lambda f:?. \lambda x:?. f x x$$

?

Syntactic Sugar



Non-solution #1

Well typed in gradual type system
after substitution

$$S(\Gamma) \vdash S(e) : S(\tau)$$

Problem: the following is accepted

$$(\lambda f:\alpha. f\ 1)\ 1$$

$$S = \{\alpha \mapsto ?\}$$

Non-solution #2

Forbid ?s from appearing in a solution S

Problem: sometimes this forces cast errors at runtime

$$\lambda x:?. (\lambda y:\alpha. y) x$$
$$\lambda x:?. (\lambda y:\text{int}. y) x$$
$$\lambda x:?. (\lambda y:\text{int}. y) \langle \text{int} \Leftarrow ? \rangle x$$

Non-solution #2

Forbid `?`s from appearing in a solution S

Problem: sometimes this forces cast errors at runtime

$$\lambda x:?. (\lambda y:\alpha. y) x \longrightarrow \lambda x:?. (\lambda y:\text{int}. y) x$$

$$\lambda x:?. (\lambda y:\text{int}. y) \langle \text{int} \Leftarrow ? \rangle x$$

Non-solution #3

Treat each `?` as a different type variable
then check for well typed in STLC after substitution

Problem: the following is rejected

$$\lambda f:\text{int} \rightarrow \text{bool} \rightarrow \text{int}. \lambda x:?. f x x$$

$$\lambda f:\text{int} \rightarrow \text{bool} \rightarrow \text{int}. \lambda x:\alpha. f x x$$

Non-solution #4

Treat each occurrence of $?$ in a constraint as a different type variable

Problem: if no type vars in the program, the resulting type should not have type vars

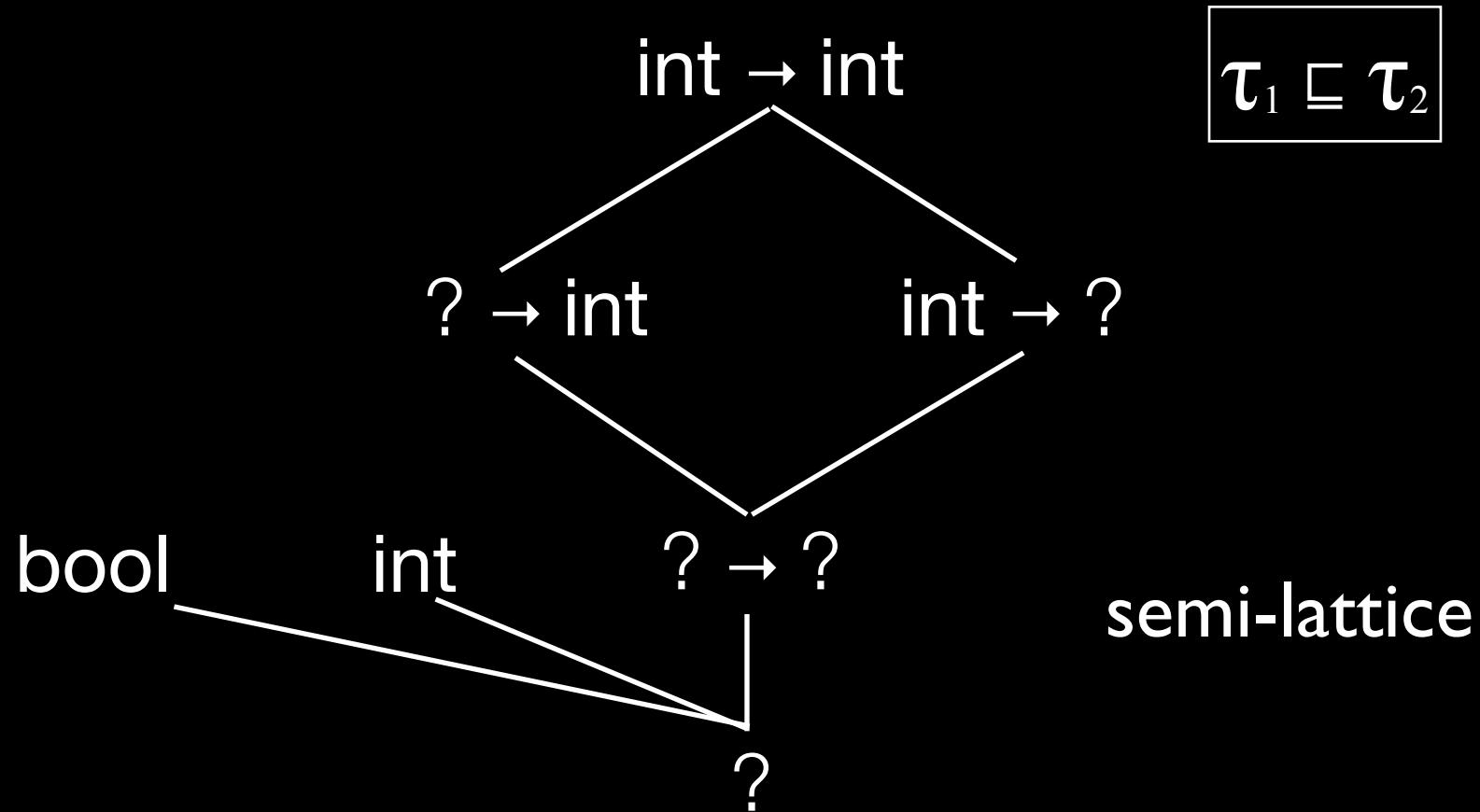
$$\lambda f:\text{int} \rightarrow ?. \lambda x:\text{int}. (f x)$$

$$\text{int} \rightarrow ? = \text{int} \rightarrow \beta \xrightarrow{\quad} \text{int} \rightarrow \alpha = \text{int} \rightarrow \beta$$

Lessons

- Need to restrict the occurrences of α in solutions
- But can't completely outlaw the use of α
- Idea: a solution for α at least as informative as any of the types that constrain α
- i.e., the solution for α must be an upper bound of all the types that constrain α

Information Ordering



Type System

- But what does it mean for a type to constrain α ?

$$\lambda f:\alpha \rightarrow \alpha. \lambda g:(? \rightarrow \text{int}) \rightarrow \text{int}. g f$$
$$\alpha \rightarrow \alpha \quad ? \rightarrow \text{int}$$

Type System

- But what does it mean for a type to constrain α ?

$$\lambda f:\alpha \rightarrow \alpha. \lambda g:(? \rightarrow \text{int}) \rightarrow \text{int}. g f$$
$$\overbrace{\alpha \rightarrow \alpha} \quad ? \rightarrow \text{int}$$
$$? \sqsubseteq S(\alpha)$$

Type System

- But what does it mean for a type to constrain α ?

$$\lambda f:\alpha \rightarrow \alpha. \lambda g:(? \rightarrow \text{int}) \rightarrow \text{int}. g f$$
$$\begin{array}{c} \overbrace{\alpha \rightarrow \alpha} \\ \overbrace{? \rightarrow \text{int}} \end{array}$$
$$? \sqsubseteq S(\alpha)$$
$$\text{int} \sqsubseteq S(\alpha)$$

Type System

- The typing judgment:

$$S; \Gamma \vdash e : \tau$$

- Consistent-equal:

$$S \vDash \tau \simeq \tau$$

- Consistent-less:

$$S \vDash \tau \sqsubseteq \tau$$

Type System

$$S; \Gamma \vdash e : \tau$$
$$S; \Gamma \vdash e_1 : \tau_1 \quad S; \Gamma \vdash e_2 : \tau_2$$
$$S \models \tau_1 \simeq \tau_2 \rightarrow \beta \quad (\beta \text{ fresh})$$

$$S; \Gamma \vdash e_1 e_2 : \beta$$

Type System

$$S; \Gamma \vdash e : \tau$$
$$S; \Gamma \vdash e_1 : \tau_1 \quad S; \Gamma \vdash e_2 : \tau_2$$
$$S \models \tau_1 \simeq \tau_2 \rightarrow \beta \quad (\beta \text{ fresh})$$

$$S; \Gamma \vdash e_1 e_2 : \beta$$

Consistent-equal

$$\frac{}{S \models ? \simeq \tau}$$

$$\frac{}{S \models \tau \simeq ?}$$

$$S \models \tau \simeq \tau$$

$$\frac{S \models \tau \sqsubseteq S(\alpha)}{S \models \alpha \simeq \tau}$$

$$\frac{S \models \tau \sqsubseteq S(\alpha)}{S \models \tau \simeq \alpha}$$

$$\frac{}{S \models \gamma \simeq \gamma}$$

$$\frac{S \models \tau_1 \simeq \tau_3 \quad S \models \tau_2 \simeq \tau_4}{S \models \tau_1 \rightarrow \tau_2 \simeq \tau_3 \rightarrow \tau_4}$$

Consistent-less

$$S \models ? \sqsubseteq \tau$$

$$S \models \tau \sqsubseteq \tau$$

$$\frac{S \models S(\alpha) = \tau}{S \models \alpha \sqsubseteq \tau}$$

$$\frac{}{S \models \gamma \sqsubseteq \gamma} \qquad \frac{S \models \tau_1 \sqsubseteq \tau_3 \quad S \models \tau_2 \sqsubseteq \tau_4}{S \models \tau_1 \rightarrow \tau_2 \sqsubseteq \tau_3 \rightarrow \tau_4}$$

Properties

- When there are no type variables in the program, the type system acts like the original gradual type system
- When there are no ? in the program, the type system acts like the STLC with variables

Inference Algorithm

$$\lambda f:\alpha \rightarrow \alpha. \lambda g:(? \rightarrow \text{int}) \rightarrow \text{int}. \ g \ f$$

↓ **constraint generation**

$$(? \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$

↓ **unification for \simeq**

$$S = \{\alpha \mapsto \text{int}, \beta \mapsto \text{int}\}$$

Unification for \simeq

- Can't use the standard substitution-based version because we need to see all the unificands before deciding on the solution

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$

Unification for \simeq

- Need to compute the *least* upper bound
- Otherwise spurious casts are inserted

$$\lambda x:?. (\lambda y:\alpha. y) x$$
$$\lambda x:?. (\lambda y:\text{int}. y) x$$
$$\lambda x:?. (\lambda y:\text{int}. y) \langle \text{int} \Leftarrow ? \rangle x$$

Unification for \simeq

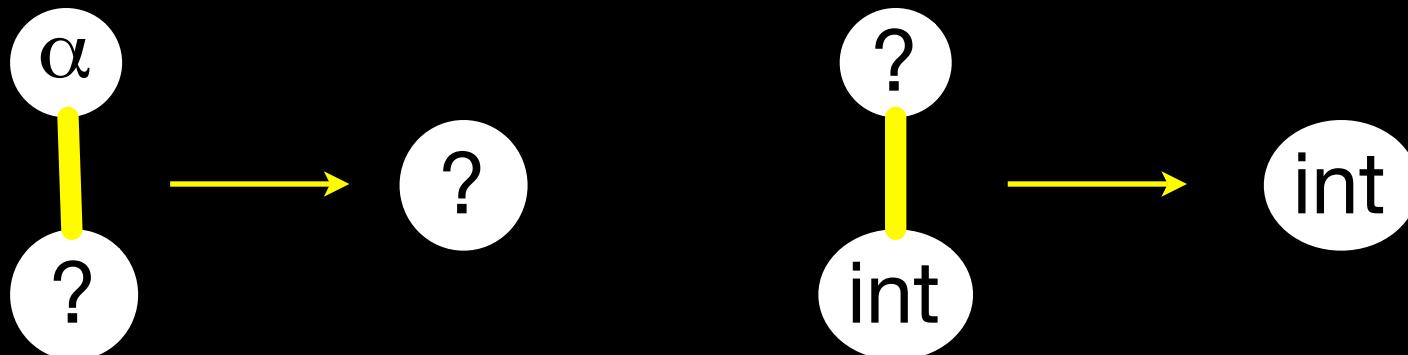
- Need to compute the *least* upper bound
- Otherwise spurious casts are inserted

$$\lambda x:?. (\lambda y:\alpha. y) x \longrightarrow \lambda x:?. (\lambda y:\text{int}. y) x$$

$$\lambda x:?. (\lambda y:\text{int}. y) \langle \text{int} \Leftarrow ? \rangle x$$

Merging Labels

- Type variables are trumped by non-type variables (including the dynamic type)
- The dynamic type is trumped by concrete types (e.g., int, bool, \rightarrow)

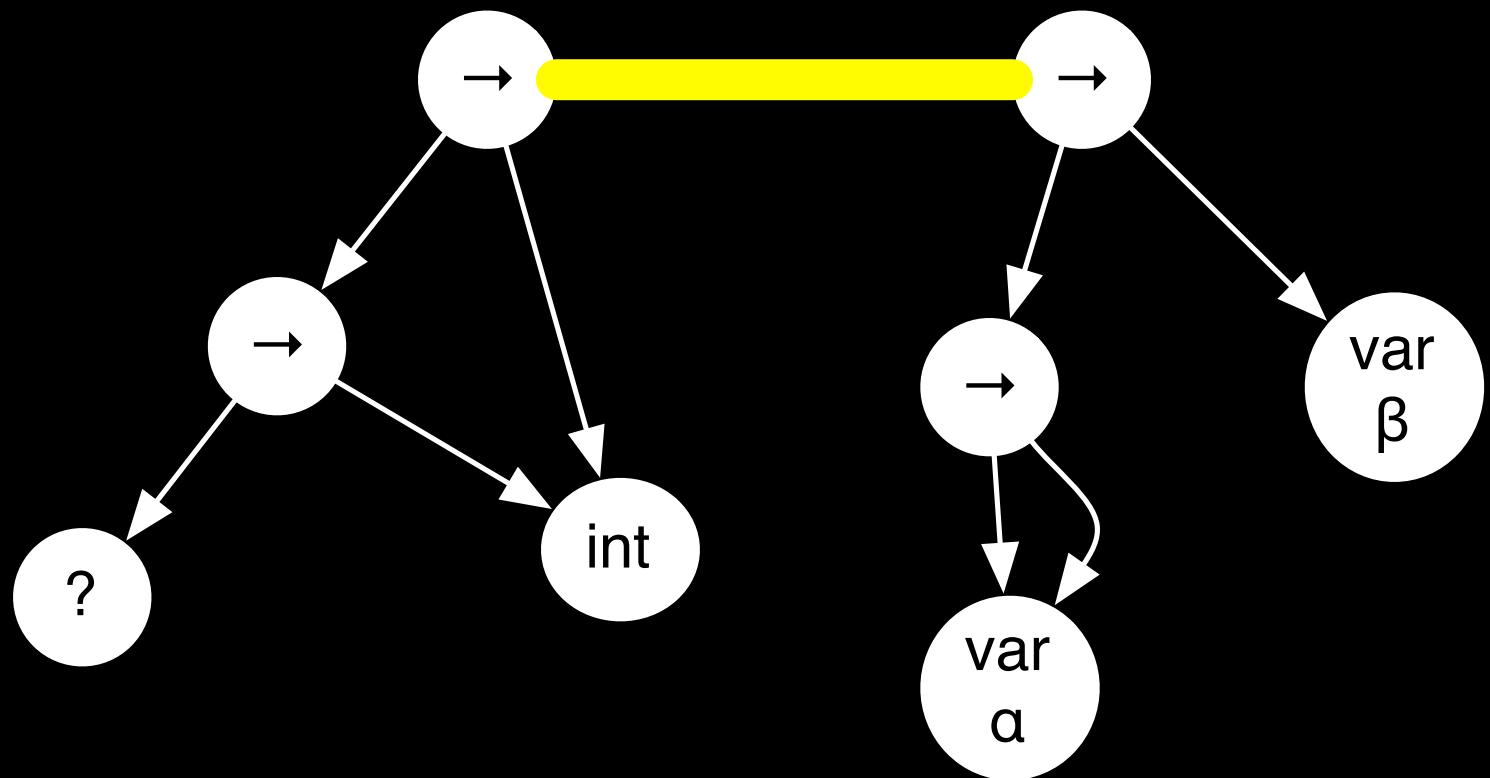


Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$

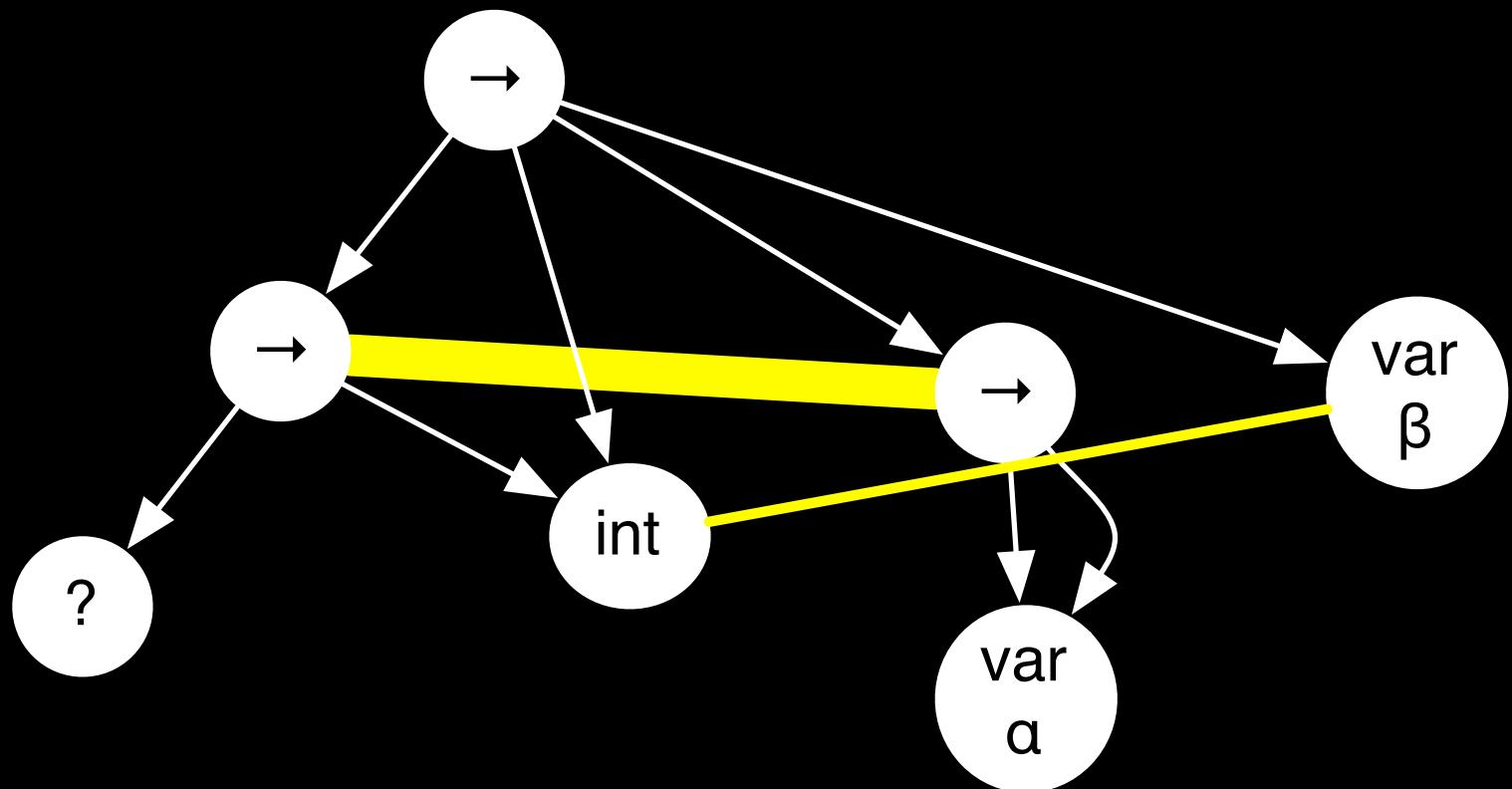
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$



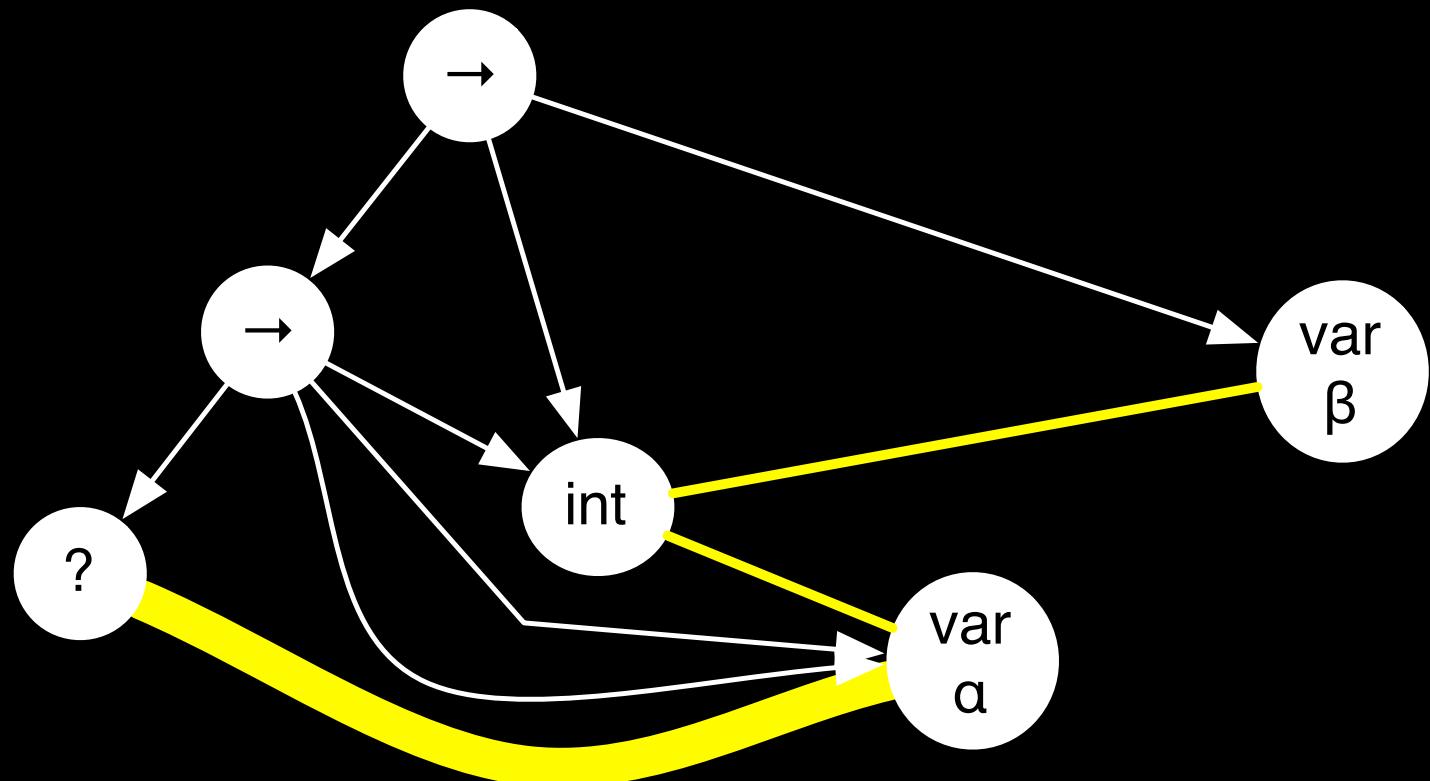
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$



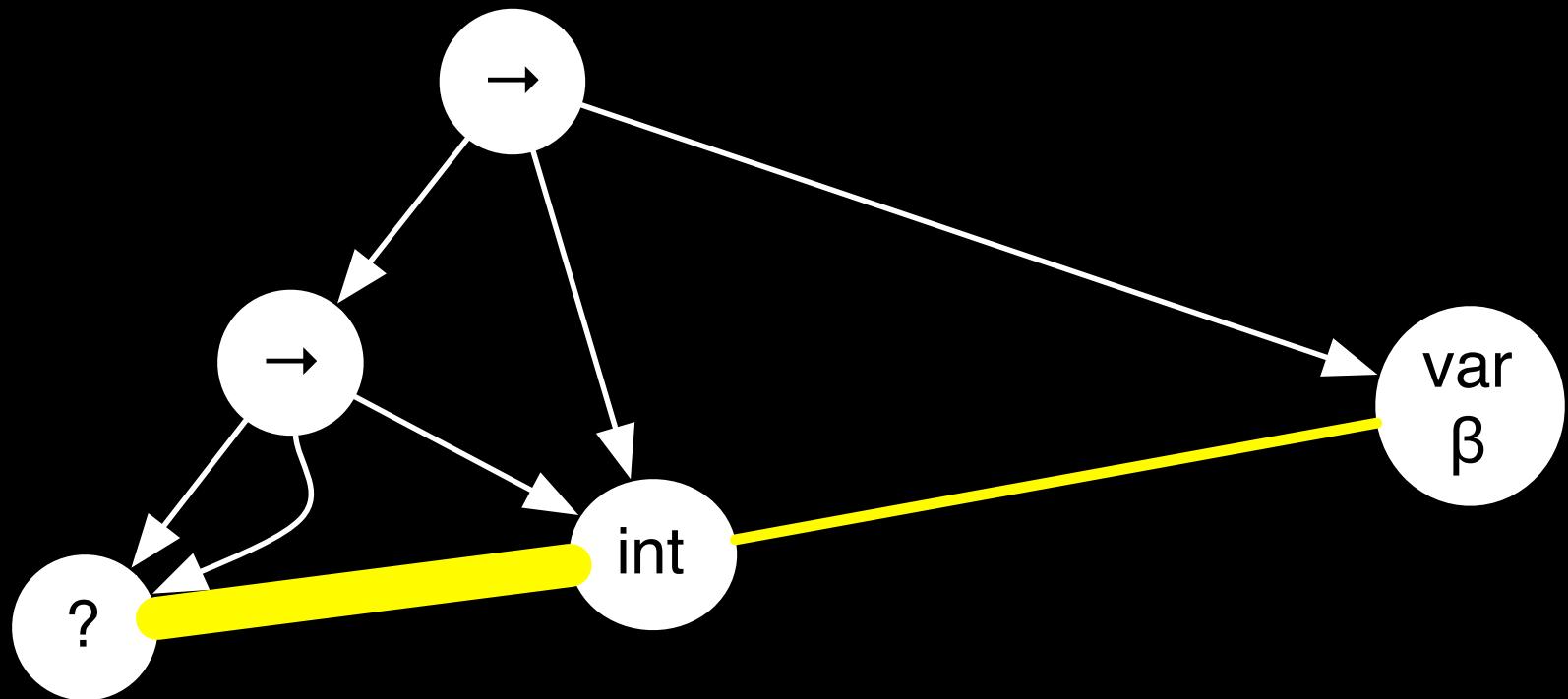
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$



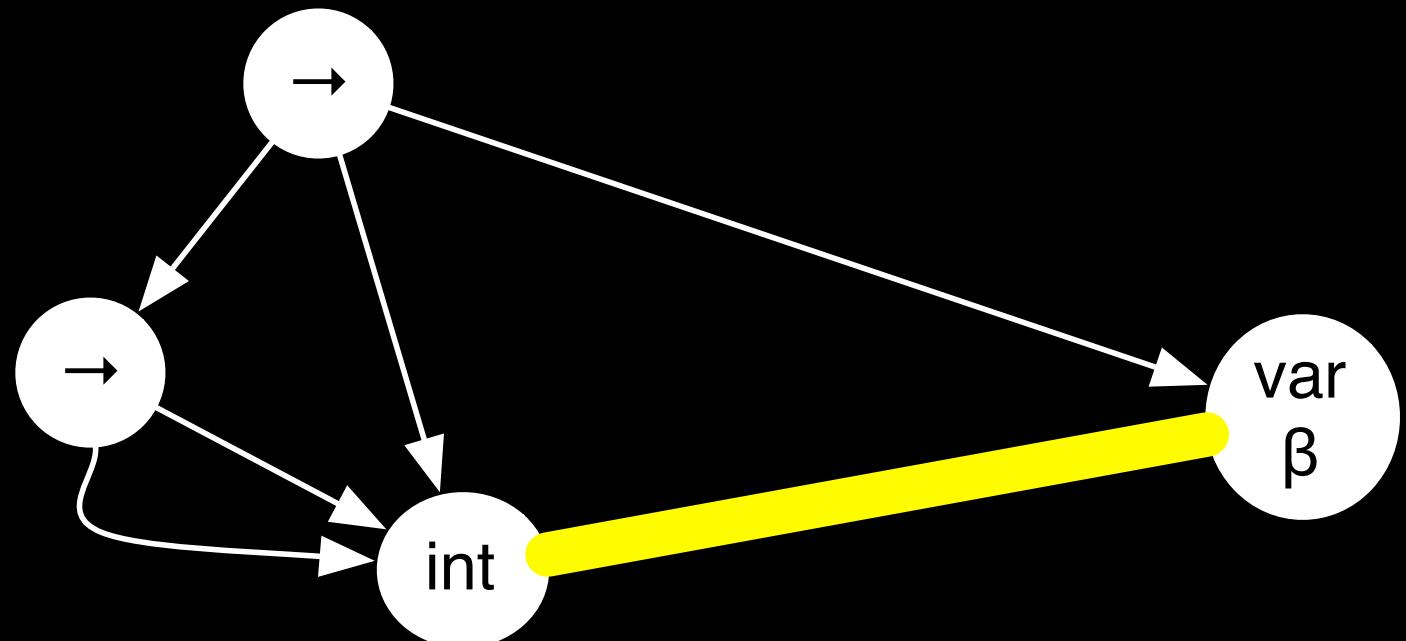
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$



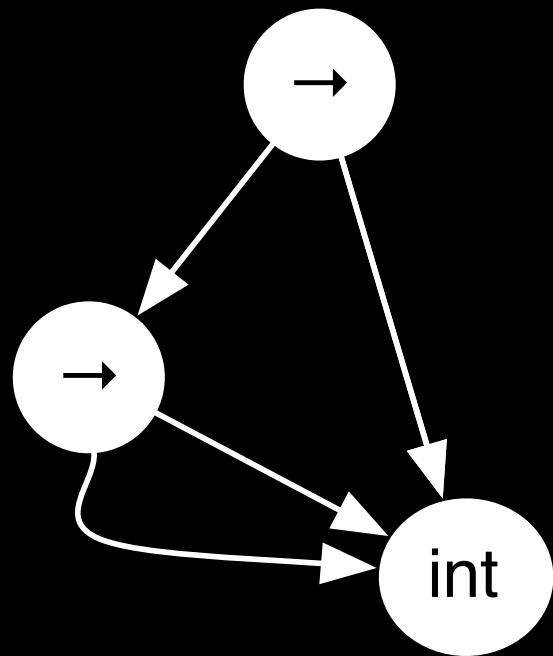
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$



Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow \text{int} \simeq (\alpha \rightarrow \alpha) \rightarrow \beta$$



Properties

- The time complexity of unification for \simeq is $O(m \alpha(n))$ for a graph with n nodes and m edges
- Soundness: if $(S, \tau) = \text{infer}(\Gamma, e)$ then $S^*; \Gamma \vdash e : \tau$.
- Completeness: if $S; \Gamma \vdash e : \tau$ then there is a S' , τ' , and R such that $(S', \tau') = \text{infer}(\Gamma, e)$ and $R \bullet S' \sqsubseteq S$ and $R \bullet S'^*(\tau') \sqsubseteq S(\tau)$.

Related Work

- Java + Dynamic (Gray & Findler & Flatt)
- Optional types (LISP, Dylan, etc.)
- BabyJ: gradual typing in a nominal setting (Anderson & Drossopoulou)
- Quasi-static types (Thatte)
- Soft typing (Cartwright & Fagan, Wright & Cartwright, Flanagan & Felleisen, Aiken & Wimmers & Lakshman)
- Dynamic typing (Henglein)

Conclusion

- Gradual typing provides a combination of dynamic and static typing in the same language, under programmer control.
- We present a type system for gradually typed programs with type variables.
- We present a unification-based inference algorithm that only requires a small change to Huet's algorithm to handle ?s.

Type System

$$S; \Gamma \vdash e_1 : \tau_1 \quad S; \Gamma \vdash e_2 : \tau_2$$

$$S \models \tau_1 \simeq \tau_2 \rightarrow \beta \quad (\beta \text{ fresh})$$

$$S; \Gamma \vdash e_1 e_2 : \beta$$

Type System

$$\frac{\begin{array}{c} S; \Gamma \vdash e_1 : \tau_1 \quad S; \Gamma \vdash e_2 : \tau_2 \\ S \models \tau_1 \simeq \tau_2 \rightarrow \beta \quad (\beta \text{ fresh}) \end{array}}{S; \Gamma \vdash e_1 e_2 : \beta}$$

Non-solution

$$S; \Gamma \vdash e_1 : \tau_1 \quad S; \Gamma \vdash e_2 : \tau_2$$

$$S \models \tau_1 \simeq \tau_2 \rightarrow \tau_3$$

$$S; \Gamma \vdash e_1 e_2 : \tau_3$$

Problem: the following is accepted
because we can choose $\tau_3 = ?$

$$\lambda f:\text{int} \rightarrow \text{int}. \lambda g:\text{int} \rightarrow \text{bool}. f(g\ 1)$$

Solution

$$S; \Gamma \vdash e_1 : \tau_1 \quad S; \Gamma \vdash e_2 : \tau_2$$

$$S \models \tau_1 \simeq \tau_2 \rightarrow \beta \quad (\beta \text{ fresh})$$

$$S; \Gamma \vdash e_1 e_2 : \beta$$

$$\lambda f:\text{int} \rightarrow \text{int}. \lambda g:\text{int} \rightarrow \text{bool}. f(g\ 1)$$

$$\begin{array}{ccc} S \models \text{int} \rightarrow \text{bool} \simeq \text{int} \rightarrow \beta_1 & & S \models \text{bool} \sqsubseteq \beta_1 \\ \text{---} & \swarrow \quad \searrow & \text{---} \\ S \models \text{int} \rightarrow \text{int} \simeq \beta_1 \rightarrow \beta_2 & & S \models \text{int} \sqsubseteq \beta_1 \end{array}$$

Inference Algorithm

$$\lambda f:(? \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow ?) \rightarrow \text{int}. \lambda y:\alpha. f y y$$

↓ constraint generation

$$(? \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow ?) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$

↓ unification for \simeq

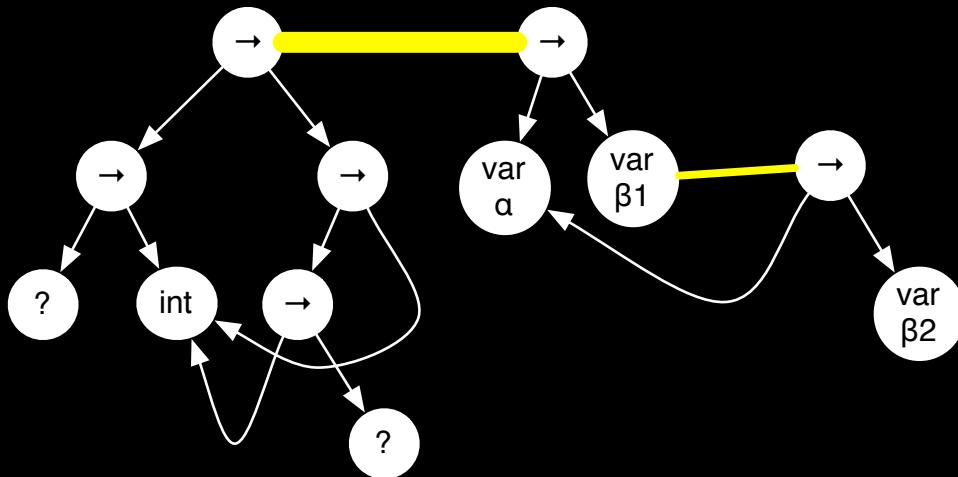
$$S = \{\alpha \mapsto \text{int} \rightarrow \text{int}, \beta_1 \mapsto (\text{int} \rightarrow \text{int}) \rightarrow \text{int}, \beta_2 \mapsto \text{int}\}$$

Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$

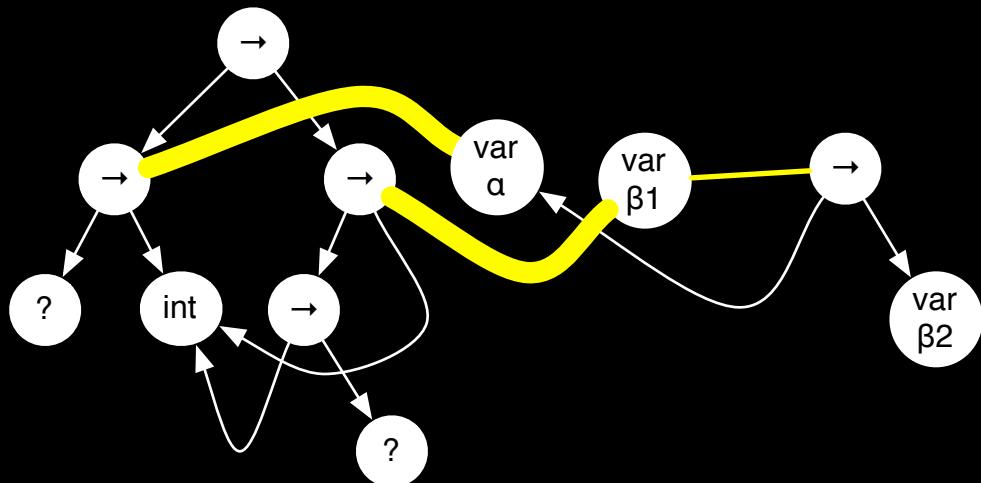
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$



Unification for \simeq

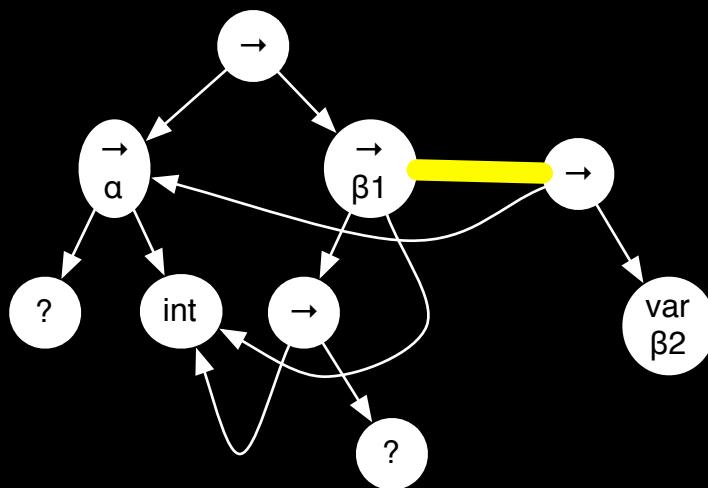
$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$



Unification for \simeq

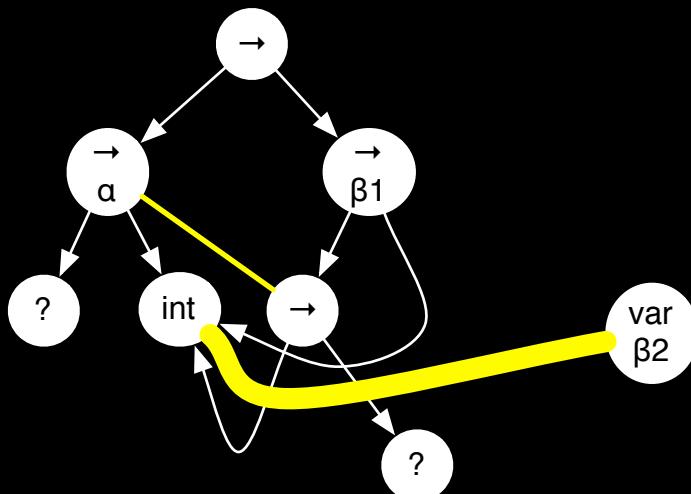
$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$

$$\beta_1 \simeq \alpha \rightarrow \beta_2$$



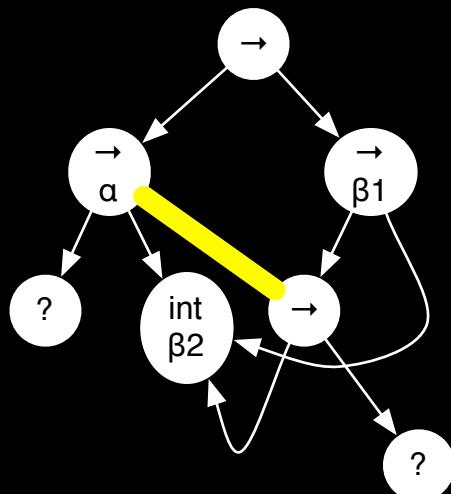
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$



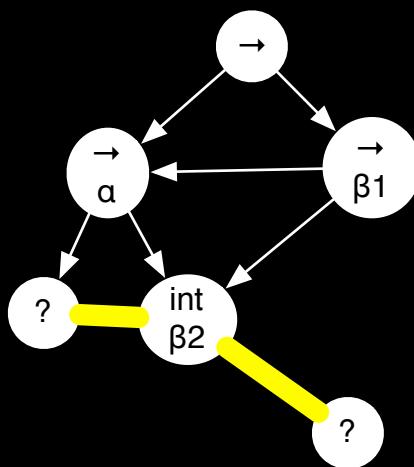
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$



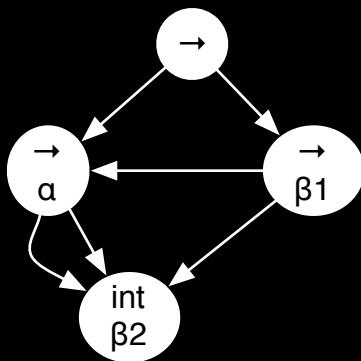
Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$



Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$



Unification for \simeq

$$(\text{?} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{?}) \rightarrow \text{int} \simeq \alpha \rightarrow \beta_1$$
$$\beta_1 \simeq \alpha \rightarrow \beta_2$$