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ABSTRACT

By giving a translation from typed object calculus into Plotkin’s
FPC, we demonstrate that every computationally sound and ade-
quate model of FPC (with eager operational semantics), is also a
sound and adequate model of typed object calculus. This estab-
lishes that denotational equality is contained in operational equiva-
lence, i.e. that for any such model of typed object calculus, if two
terms have equal denotations, then no program (or rather program
context) can distinguish between those two terms. Hence we show
that FPC models can be used in the study of program transforma-
tions (program algebra) for typed object calculus. Our treatment is
based on self-application interpretation and subtyping is not con-
sidered. The typed object calculus under consideration is a varia-
tion of Abadi and Cardelli’s first-order calculus with sum and prod-
uct types, recursive types, and the usual method update and method
invocation in a form where the object types have assimilated the re-
cursive types. As an additional result, we prove subject reduction
for this calculus.

1. INTRODUCTION

In this paper we will define System S~, a typed object calcu-
lus without subtyping, and interpret this calculus into the metalan-
guage FPC [19, 20] using a self-application encoding, and prove
computational soundness and adequacy of S~ with respect to this
interpretation. As a corollary, every model of eager FPC that ex-
hibits these two properties, is automatically such a model of typed
object calculus. As a consequence, our results make it feasible to
use models of FPC as a starting point for the study of semantics of
typed object calculus. Given previous research on FPC models, no-
tably by Plotkin and Fiore [19, 6, 8], this formal connection seems
to be quite useful (and gives access to a class of computationally
adequate models). In particular, program transformations and rea-
soning principles from FPC models carry over to typed object cal-
culus (notably Freyd’s mixed-variant recursion scheme [10]). As
an additional result, we establish the subject reduction property of
S~, which unlike any calculus studied by Abadi and Cardelli [1]
has sum types (and thus can define many standard datatypes more
easily).
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The importance of computational adequacy is well-known since
Plotkin’s pioneering work for PCF [21]. Consider a model M of
typed object calculus. Computational adequacy of M is the prop-
erty that if a term has a converging (total, not-bottom) denotation,
then that term reduces to a value using the rules of the operational
semantics (given by a partial function ~»). This property is the
reverse implication of the following equivalence, the forward di-
rection being known as computational soundness:

vt~y 1] total (D

Let us say that ¢+ ~ ¢ whenever for each program context C of
ground type we have either that (i) C[f] ~ v and C[t'] ~ V' such
that v and v are equal, or (ii) both C[z] f and C[#'] ) (where
means divergence, i.e. v C[¢] ~» v and similarly for ') and C[¢'] 1.
This is operational equivalence relation that Plotkin [21] studied for
PCF and, after him, many others for other programming languages.
The bi-implication (1) implies the following useful property (as-
suming that we have soundness, i.e. that # ~» v implies [¢]] = [v]):

[1=01 = t=r 2

For a proof, suppose [¢]] = [#]. It follows by soundness that
[Cl#]] = [CI[#]1] holds for any program context C. Since con-
texts have ground type, computational adequacy ensures that either
C[t] = C[¢] or else C[t] and C[¢'] both diverge. Hence we have
t =~ ¢'. This demonstrates that computational adequacy is a very
desirable relationship between operational semantics and denota-
tional semantics, and in particular makes possible to study program
transformations (and hence a program algebra) using the model the-
ory of the programming language. This is indeed also the motiva-
tion for the present paper.

The idea of using self-application semantics for modelling (or
here, interpreting) typed object calculus is not new. It is mentioned
by Abadi and Cardelli [1], and appeared already with the work of
Kamin [16]. However, recently this approach has been used by
Reus, Streicher, and Schwinghammer [23, 22], who have studied
it in the context of program logics. We expect our results to be
useful for their line of work, although some care must be taken
in analysing our computational adequacy result since we are not
directly considering any particular model such as theirs.

To the best of our knowledge this is the first full account of these
results, and in particular the first proof of computational adequacy
of a self-application interpretation with respect to FPC or any of
its models. While Viswanathan [25] considers full abstraction for
a related typed object calculus, this is not for a self-application
interpretation but for a less natural (but interesting, at least from
a theoretical viewpoint) interpretation based on a fixed-point op-
erator at the level of terms. Under such an interpretation, it be-
comes much more complicated to reason with object types, since



the universal property associated to recursive types cannot be used
directly. Moreover, we demonstrate in this paper that a particular
translation must be considered for eager FPC for the results to be
attainable. Hence, our detailed account turned out to provide new
insights on the relationship between FPC and typed object calculus.

2. TYPED OBJECT CALCULUS WITH RE-
CURSIVE OBJECTS

Abadi and Cardelli have developed a family of object calculi,
some of which are more powerful than others, e.g. by having sub-
typing, recursive types, variance annotations, polymorphism, or
Self-type in addition to the standard first-order fragment [1]. Table
1 gives an overview of some typed object calculi, including S from
Abadi and Cardelli’s textbook [1] which is particularly expressive,
and the simplified calculus S~ considered in this paper.

Definition 1 Object Calculi

FOb; | FOb,. | FOb,, S- S
Subtyping . . .
Recursive types . U
Obj-binder .
Self-type .
Variance ann. .
Products
Coproducts
Functions ° ° .

Note that S~ is not a subset of S, but contains some extensions such
as sum types and functions. These extensions can however also be
given to S (but Abadi and Cardelli’s original presentation of S did
not include them).

The table shows, for example, that variance annotations are not
considered at all in this chapter (this is however no fundamental
limitation since such annotations can easily be adjoined to an ex-
tended system). S~ will be defined in detail in the following sec-
tions. It is based on the syntax of S of [1], but omits the primitive
covariant self type and adds some other types instead. A notable
omission is subtyping, for which it is currently not known if FPC
interpretations (as studied in this paper) can be used. S~ is essen-
tially a superset of FOb,,, of Abadi and Cardelli [1], but with Obj-
binder instead of the u-binder, and with the extensions listed in the
diagram. Note that we have combined recursive types and object
types (using the Obj binder) in the sense of S, also without the
primitive covariant self type. Since S~ is endowed with products
and coproducts, FPC will contain a subset of the rules of S™.

We will now define S~ and give some simple examples. We
choose n-ary products and coproducts to simplify these examples.
We give an operational semantics with a clear notion of values.
Our choice of an operational approach permits us to prove com-
putational soundness and adequacy with respect to a denotational
model. These results could not be proven were we to have used
the reduction based approach as certain reductions are in fact un-
sound. The reason for this is that a reduction-based semantics ad-
mits a degree of non-determinism in evaluations that invalidates the
soundness proof. Notably, an object with some terminating meth-
ods and some non-terminating methods, is interpreted as a product
of functions, such that even the terminating method may become
non-terminating under some reduction strategies in FPC.

We assume a countable set of method labels L, type variables V,
and term variables U. The types of S~ are given in definition 2.

Notationally, we write [£; : 7,1 for [¢; : T1,..., €, : T,] withn € N
and equate object types which are equivalent under permutation of
the order of labels or under the obvious notion of @-equivalence
induced by the type binder Obj. We introduce shorthand 7, X 7, =
[Tic(1.2) 7i and similarly 7| + 75 = [];¢( 2 7; for binary products and
coproducts.

Definition 2 Syntax of S~

Syntax for Types

The set 7 of pretypes is defined by induction with

T = X type

1 terminal type
Iicr 7 product types
ier 7 coproduct types
T =T function types

ObjX)[t: = T:(X01 object types (¢; distinct)

where X € V, and for each i in a finite set /, {; € L are pairwise
distinct.

Syntax for Terms
The set L of preterms is defined by induction with

m = % unit
X; term variables
(mg, ...,my,) tupling
m;m projections
case(mg, X1.my, . .., X,.my,) case
Lm injections
mg (mp) A-application

A-abstraction
Obj(X = o)[t; = g(x; : X)b;]®!  object introduction
my.L=g(x: T)my method update
m.l method invocation

Ax :T.m

where foreachi € N, x; € U, X € V, o,71; € 7:, and for each
ielCN{ el

Definition 2 also gives the preterms of S™. We identify preterms
which are equal up to the order of method labels or are equivalent
under the obvious notion of a-equivalence induced by the term-
binders 4, ¢, and case and the type binder Obj. We use the stan-
dard definition of substitution which can be found in Abadi and
Cardelli, and write m{a/x} to mean that a is substituted for all free
occurrences of x in m [1]. Further, m(x) means x may occur free
in m. We use similar notation for the substitution of types for type
variables in both types and terms. When clear from the context, we
eliminate the type or term variable being substituted for and simply
write m{a} and m{t}.

2.1 Type Theory

A type judgement consists of a sequence of distinct type vari-
ables (a type context) together with a type whose free type variables
appear in the sequence. The formal definition of type contexts ap-
pear in definition 3.

Here are a couple of examples:

ExampLE 2.1. One may consider representing the Java-like in-
terface

interface Point {public void bump(); public int val(); }
as the following type in S~ (assuming a type Int exists):

Point = Obj(X)[val : Int, bump : X]



Definition 3 Types and type contexts in S~

Type Contexts
Type contexts are generated by the following rules
TyCon X
TyCon EmpPTY L
F O where X eV, X ¢ ©®
F(©,X)

Well-formed Types
The typing judgments @ + 7 are those generated by the following
rules:

Type X Type UniT Type Fun
O O Ort OFTy
where X € ® P E—
OrX Orl Ort =1,

Tyre OBJECT

O.XFT1; iel Ort; i€
O + Obj(X)[¢: : T:(X))'!

(X Bicy Ti

We let 7 denote the set of well-formed types.

ExampLE 2.2. The Java-like interface
interface UnLam {public void bump(); }
gives rise to an object type of the form

UnLam = Obj(X)[bump : X]

Once we have the type judgements, we can define term con-
texts (definition 4) and then term judgements (definition 5). As
one would expect, terms are closed under substitution. That is, if
O,I,x : )+ t:7vand O, + ¢ : 7 are derivable then so is
O, /x}: T

CoNVeNTION 2.1. We say a preterm m € Lis well-typed if there
exists well-formed contexts ©,T and a type judgement ® v T such
that ©,T" + m : 7 is derivable. We let L denote the set of well-typed
terms up to a-equivalence and permutations of method labels.

ExampLE 2.3. A point whose value is O and whose bump method
adds 1 to the value can be represented in S~ as

p £  Obj(X = Point)[val = g(x : X)0,
bump = g(x : X)xval =g(y : X)x.val + 1 ]

Unlike Java, S~ makes no distinction between objects and classes.

Therefore, a class is represented by an object, which can be cloned
or copied into new objects which will (initially at least) have the
same methods. There are other differences: object calculus allows
methods to be updated, which is impossible in Java, and S~ has
no imperative features. Since we have method updates, there is no
need to have separate attributes. Attributes, like val, are instead
identified with method bodies in which the self variable does not
occur.

Definition 4 Term contexts for S~
Well-formed term contexts are given by the rules

ConN EmprY Con x
FO OrTT

———  wherexe U,x ¢TI’
OF OrI,x:17)

where ¢ is the empty sequence.

! where © € {[], [}

We recall some standard substitution lemmas (for a proof, see
e.g. Barendregt [3] or Sgrensen et al [24]), where we use notation
FV for free variables of a term and similarly FTV for type variables
(both for terms and types), and write = for syntactical equality.

LemMA 2.1 (SUBSTITUTION COMMUTATIVITY).
(i) If X #Y, X & FTV(1,), then the following is true:
{r1/XH72/ Y} = i/ YHT {72/ Y}/ X}
(ii) If x #y, x ¢ FV(t,), then the following is true:
dn/xHn/y} = di/yHndn/y}/ x)
(iii) If X # Y, X ¢ FTV(1,), then the following is true:

1/ XH72/ Y} = A2/ YHT {72/ Y}/ X}

Lemma 2.2 (Susstitutivity). The following rules are valid:

TYPE SUBST SUBST TERM
X,0)ro Oro’ O,(x:0)rt:0 OTrs:o
O+ ofor'/X} O, T+ t{s/x}: 0’

SUBST TYPE

(X,0),Tr+t:0" Oro”
O,T+Ho”/X}: o'{o” /X}

Proor. By induction on the derivation of a well-formed type
(X,0) + o and well-typed term ©,(x : o, ) F 1 : 0’ or (X, 0),T" F
t : o', respectively. For (TypE suBsT) and (SuBST TERM) this is similar
to the theorems given by Abadi et al [1] including for their calculi
Ob, ., and S. The sum type cases are covered as in e.g. Pierce [18]
or Sgrensen et al [24].

The rule (susst TYPE) is proved by induction on the derivation
of (®,X),I" + ¢t : o’ for an arbitrary but fixed substitution {o”’ /X}
such that ® + o”. The basis is vacuous since a type substitution
acts on term variables as identity. The only cases where free type
variables can occur in terms is in an object type o occurring in a
term of the form Obj(Y = o)[¢; = g(x; : Y)b;)!. For t = Obj(Y =
o = g(x; : Y)b;]€" we have either that X is free in o and thus
X # Y, or else we are done. Suppose X # Y. Then by induction
hypothesis, we have for each i € [ that the following holds:

X,0,T+b{oc/Y}:t{oc/Y} Ordo”
O,T+bf{oc/YHo" X} : o/ YHo" /X}

Via lemma 2.1 we have that the following rule is also derivable
(the condition on the free type variables is ensured by the variable
convention):
X,0,T+b{oc/Y}:t{oc/Y} Ord” ;
0,I'+ bi{c” /[ XHoto” /XY Y} : tdo” | XHolo” / X}/ Y}

Note that the premises of these rules must hold by an argument that
uses a generation lemma. Moreover, the rule (TYPE sUBST) gives that
® + o{o”’/X} is an object type. It remains to show that

O,I'+{o” /X} : ofo’ / X}

i.e. the conclusion of the (sust TYPE) rule in this case. For this note
that the premises for the rule (vaL oBJECT) are precisely the conclu-
sion of the derived rule (1) above, so we are done. The situation for
(VAL UPDATE) is similar, and (VAL SELECT) is trivial. [



Definition 5 Typing judgments for S~

VAL OBIJECT ) VAL SELECT
o = ObjO[6 = Ti(X)]'!

O,I,x;:0)rbfo): o} VYiel

0 = Obj(X = o)t = 5(x; : X)b; ™
O,Trto:0 iel

VaL UPDATE )
o = 0bjX)6; : T (X!
O.Trm:o O x:o)rblo}:ti{o} jel

®,F = Ob](X = 0—)[[[ — §(X,' . X)b,-]ie[ -0

VAL Probuct

y VaL Unit ©.I'ra: 1_[
O.IF*:1 =

VAL x

T,‘jel
OrIL,x Ty

O,I'+ol{oc/X}: ti{o/X}

O.I'tmli=g(x:0)b: 0o

O, I, x;:Ti ) FXx; 1 T; O,I'tmja:7;

VAL Casg
@,FI—mZUO’; O, ,xj:oprmj:7 jel

i€l

VaL EvaL
O.rm 71 > 1o,m . T

VAL PR VAL Sum
®,FF01:T1 @,F"an:‘rn ®7r'-a:Tjj€1
@,Fl-(al,..‘,a,,):l_l‘r,- @,rH,.a:]_]T,-
i€l i€l
VaL Fun

O, ,x:t)rb:1,

O,I + case(m, xy.my, ..., X,.m,) : T

0,I'+ ml(le) LTy

O.I'rAx:Ty.b:11 > 1

2.2 Operational Semantics

We have now defined the language of S™, and will give it an op-
erational semantics. The semantics is call-by-value and, in particu-
lar, each component of a product must have a value for a projection
of the product to attain a value. The rules for the non-object part
of the calculus are standard while we feel that those for the intro-
duction, eliminating, and updating objects are reasonable, e.g. one
does not reduce under the binder in object intro terms and hence
all object intro terms are values. This feeling is reinforced by the
results we derive later on soundness and adequacy. The values (or
normal/canonical forms) are as follows:

x| 1 lgv] veeo,v) | Ax:tm |
Obj(X = o)[£; = 6(x; : Xym;]™!

v i=

The actual operational rules are given in definition 6. Note that
the values are precisely the terms v such that v ~» v, where ~»
means the reduction relation. This is the statement that values are
irreducible in a formal sense. A program p is a term such that
for some type 7 we have - p : 7, i.e. a well-typed term with empty
contexts. The key theorem which means that the implementation of
the calculus, as given by its operational semantics, respects compile
time type information is the preservation of types as shown in the
next theorem.

THeOREM 2.1  (SuJiEct REDUCTION). [ftis a well-typed term ®, 1 +
t:tsuchthatt~>t, then ©,I' +¢ : 1.

Proor. The proof is by induction on the derivation of  ~> ' and
is fairly routine. Suppose ®,I" + ¢ : 7 and ¢ ~ . We have omitted
trivial cases:

Case (Rep Casg): We have t = case(m, x;.my,...,x,.m,) and
O, + ¢ : 7. Since t is well-typed we have @, + m : [];;; 0, and
O,(I',x : oy + m; : T fori € I. We have subderivation m ~» v
and m{v/x;} ~ . But by induction hypothesis this means, by
substitutivity, ¢’ : T.

Case (Rep Probuct): We have ¢t = m;(m) and ©,T + ¢ : 7, which
istosay m = (ay,...,a,) for some ®,T" + q; : 7;. The result follows
by induction hypothesis on the required component.

Case (Rep EvarL): We have t = m (m,) and ®,T + ¢ : 7,. There-
fore ®,I' + my : 7y —» 7, and O, + my : 7. That is to say
m; = Ax : 1.b. Now for m, ~» v we have ®,I" + b{v/x} : 7, and
by induction hypothesis ¢’ : 7, as required.

Case (VAL SeLecT): we have t = m.{; and O, + ¢ :
m = Obj(X = o)[t; = ¢(x; : X)b;]! and O,T + m :

7; for
o with

o = Obj(X)[€; : 7y(X))!. For m ~» v and b{y’,0} ~» t we have
O,I' + ¢ : 7;{c} by induction hypothesis.

Case (VAL Osiect): we have t = m.{;&g(x : o).band t : 0.
Since ©,(I',x : o) + bj{c} : 7;{c} we have O, + ¢ : o as
required. [

3. FPC

Our intention is to interpret object types as solutions of certain
recursive equations. We do this syntactically by translating the ob-
ject calculus into the FPC. In previous work [11], we have done
it also semantically by giving denotational models for the object
calculus using some sophisticated categorical model, in which case
the equations become domain equations rather than, like here, type
equations in the metalanguage FPC.

The target calculus of recursive types is known in the semantics
literature as FPC. This system is originally due to Plotkin [19], but
detailed expositions are given e.g. by Gunter [14] and Fiore [8].
FPC intuitively arises from S~ by deleting the types and terms re-
lated to objects and inserting types and terms related to fixed points
of mixed variant type constructors. Thus FPC uses the same count-
able supplies U and V of type and term variables. We summarise
the formal rules in definition 7.

Definition 7 Eager FPC
VaL In
X¢0 VaL Out
O, m: t{uX.1/X} O,'tm:uXt

O,.T'+ inyx.(m) : uX.T O,T + out(m) : T{uX.7/X}

Type Rec Rep Inn Rep Out
O, X)rT e~ v e~ in(v)
O uXT in(e) ~ in(v) out(e) ~»> v

The notions of substitution, a-congruence, contexts, well-formed
types, are all identical, except that we replace object type forma-
tion with the following rule for well formed recursive types. The
preterms of FPC are exactly those of S~, omitting all terms derived
from the object formation rule, method updates, and method in-
vocation, and adding to the grammar terms of the form in,x . for
p-introduction (VAL IN) and out for p-elimination (VAL Out). The



Definition 6 Operational semantics for S~

REeD PAIR ReD Pros Rep Sum
RED x Rep UniT my ~ vy . My~ Y, m~ Vi,...,v) 1<i<n m~o> vy
X~ X * N> ok -
(M, .o,ma) ~> Vi, .o, V) mi(m) ~ v; Lme> ;v
Rep Case Rep EvaL
m~ 1;(v) mi{v/x;} ~ v jell,n] RED.FUN . my~ Ax : T.b My ~> v b{v/x} ~ v’
- Ax :Tm~> Ax : T.m -
case(m, xy.my, ..., X,.n,) ~> vV my(my) ~> v
Ren O RED SELECT
ED OBJECT ’— . . iel
; Vi = 0bj(X = o)lt; = s(x; : X)bi]
= I = , = L. el
v = Obj(X = )N; = 503 X)b] oy iy} v
Vs y
ml; ~> v
Rep UppATE

v = 0bj(X = o)l = ¢(x; : X)b;]id

m~->vy

m.l; =¢(x : a)bla} ~ O0bj(X = o) = g(x : X)b;, £; = g(x : X)b)<~1/

where in the last rule we delete the j’th method from v and then add the updated method ¢; = ¢(x : X)b.

term judgments for FPC are similarly obtained from those of S~,
but the VaL Oiect, VAL SELECT and VaL Uppate rules are replaced
by two rules for typing recursive types. Finally, the operational se-
mantics of FPC is obtained by deleting VAL OBJECT terms as values,
removing the operational rules for Rep Opiect, REp SELECT and RED
Uppatk and adding the following values and rules from definition 7
to cope with recursive types.
vi=...o | ingg.(v)

In addition to this eager (call-by-value) version of FPC, we will
briefly also recall the lazy (call-by-name) operational semantics
that can be given to this language.

Definition 8 Lazy FPC

Operational Semantics
The following rules take the place of Rep Pros, REp Cask, and Rep
EvaL and all other rules are the same:

RepL EvaL RepL Proy
my ~ Ax :t.b b{my/x}~ v mn~> {my,...,m,) M; ~> v
my(my) ~> v mi(m) ~ v

RepL. Case
m~> (k) mi{k/x;}~ Vv je[l,n]

case(m, x;.my, .., X,.m,) ~> V'

Under a lazy semantics, we have more values than we had in the
eager semantics. If #;, Ax.m are closed terms, the values now also
include:

it Axm | (et | oingx (V)

4. TRANSLATING OBJECT CALCULUS INTO
FPC

This section contain a translation of S~ into FPC. This transla-
tion is at the level of types, terms and operational semantics and we
find an excellent fit whereby the operational semantics for FPC is

both sound and complete. This allows us to transport the well-
understood theory of FPC, in particular its denotational models
(e.g. [8, 26, 14]),t0 S™.

The encoding of objects uses recursive types contrary to e.g. the
recursive record semantics in the literature, e.g. [5, 1]. Notably, the
recursive record semantics would give the following interpretation
of the p : Point object given in the previous examples:

p=Y Ap.(0,{m p+1,m p))

where Y : (t—7)—7 is a fixed point combinator (which can be
encoded into FPC). The type of p is uX.Int X X, but as seen in
this example we cannot replace the first component of p without
giving a completely new definition of p. We will give p the type
uX.(X—Int) X (X—X). This means that p is denoted simply by a
product which enjoys the ordinary projections on each component.

Recall the key feature of the encoding chosen for this work is that
it reflects our intuition that the object types of S~ are fixed points
of recursive type equations. More specifically, the recursion is over
the self-parameter which occurs both covariantly and contravari-
antly. This intuition is clearly seen in the VaL OBiEcT typing rule
for o = Obj(X)[¢; : 7:(X))®! which suggests the i’th method will
consume the self-parameter, which has type o, to produce some-
thing of type 7; where o may occur free, e.g. also be produced.
Thus, intuitively, the interpretation of o~ should satisfy

[l =[ol=[T]x - X[o]=[7]

where, as we mentioned above, each of the 7; may contain 0. Hence
the interpretation of o~ should be the fixed point uX.X—[1;]X--- X
X—[t,] where the 7; may contain X free. Thus the interpretations
of the object types Point and UnLam are

[Point]
[UnLam]

pX.(X>X) X (X—Int)
uX.X—-X

Note the interpretation of this example shows how the type of
untyped lambda terms arises naturally as an object. We do not need
to translate type contexts since we have identified the sets of type
variables. We thus begin by translating well-formed S~ types into



FPC-types:

Ry = X
(17 = 1
[A—B] = [A]->[B]
“—[iel Ai-l = niel |—Ai-|
ruiel Al-| £ HieII-Ai]

As mentioned above, the translation of object types is into the so-
Iution of a mixed variance recursive type equation.

[Obi X[t : m:(OTT 2 pXX—[r]X... X X—[1,]

Notice that the translation of types respects substitutions, that is
[tlo/X]1 = [T1[[o1/X]. We can now syntactically translate (term)
contexts:

[0+ O]
[@r(,x:7)]

OF
Or{(I,x:[T])

1> 11>

Now we extend our translation to typing judgments. The transla-
tions of terms in the intersection of the calculi are just by induction.

[O,T+ x;: 7] 2 O,MFx:[7]

[O,TF % :1] 2 O,Trx:1

[0, + (mg,...,m,)y:7] = O,[[T+{mgl,...,[m,]): 7]

[O,TFmm: T 2 O, Fn[m]: 7]

[O,T+¢;m:T] = O,[TTky[m]: 7]

[®,T +mym; : 7] 2 O,[TF[myl[m]: 7]

[O,T+Alx:0)m: 7] 2 O,T+Ax:[oD[m] : [1]
[O,T v case(mg, x1.my, ..., X,.my,) : T|

20, [T+ case([mg], x1.[my ], ..., x,.[m,]) : 7]

Based on translation of object types, we can translate object in-
troductions, method update, and object elimination (method invo-
cation) in the obvious way:

[O,T+m: o]
20,[T+Fin(Ax : [o].[bi{a}, ... Ax : [o.[b A }])) : [o]
[0,T + m.t;]
= 0,[TT+ (m; @)([m]) : [t{o}]
[0, F mL; =g(x: o)b{o}]
£20,[TTFin(me,. .., 1@, Ax : [ol[bl{o), mjna,.. .,
@) : [o]
where
a = out([m])
m = Obj(X = o)[€; = s(x; : X)b;]
o = Obj(X)[€; : Ty(X))!

Here 7, is the projection of a labeled product.

Let F; be a type expression for each i € I, I = {1, ...,n}. We have
interpreted object types as uX.(X—F; X) X ... X (X—=F, X) (where
for method invocation, self is applied after projection) rather than
uX.(X—F X) where F = [],; F;. This is because the latter inter-
pretation would break soundness. Consider, for example the inter-
pretation of method invocation. For soundness, we need to prove
that 7r;; applied to a term reduces to a value in the case when m.{;
reduces to a S™-value. However, the eager operational semantics of
projection in FPC requires that all components of the tuple have a
value, and we can easily construct an object for which this would
not hold. However, given a lazy operational semantics for FPC (e.g.
Winskel [26]) this argument would no longer apply, since partially
evaluated terms (in particular products) are included as values.

We will now prove an important lemma which shows that our
interpretation function [—] is substitutive on terms (it is trivially
substitutive on types):

Lemma 4.1. Tmiv/x,0/yY] = [mU[V]/x, [o]/v}

Proor. The proof is by induction on the image of terms under
[-7]. We need only consider object intro, elim, update under [—1:

[0bj(X = )i = s(x; : X)bi <! {v/x,07/y} : 6]
= by definition

in(Ax : T.[o{o, v/x, o[y}, ... Ax : T[bud6, v/ x, 0/ y}T))
= by induction hypothesis on b;

in({Ax : .[b {YUV1/x, [ 1/}, .. Ax - 2 [b ASYI{V/ X, [0 1/¥ )

= since [—] is substitutive on in, tupling, and A
in({Ax : T.[bi{o}], ..., Ax : T[D 40DV X, T/ v}
= by definition _
[0bj(X = )i = s(x; : )b UVI/x, [0]/7}

The situation is similar for method invocation and method up-
date, in that [—] will be substitutive on sub-terms formed according
to the rules of FPC. [J

Our translation preserves types:

Lemma 4.2. If O, +t: 7 then[O], [T+ [1]: [7]

Proor. The proof is by induction on well-typed terms. We con-
sider only VAL OBiecT, VAL SELECT, and Val Update, since the other
cases follow by induction. Suppose O,I" + Obj(X = o)[{; = g(x; :
X)b;1€ : o where o0 = Obj(X)[£; : T{(X)]*!. We must show that
O,[T + in((Ax : [o.[bi{c}], ..., Ax @ [o.[b,4c}T)) : [o] where
[o] = uX. X—>11 X ... x X—>[1,].

This follows from the premises of the (u/) rule holds, i.e. if

O,[TT+  in(dx: [o1.[Di W[}, ... Ax : o l.[b, o) -
X-[r] X ... x X->[1,]
fuXOX->[11] % ... x X—=[71,]/X}

The premises of VAL Osiect asserts O,([,x; : o) + b{c} :
7;{c} which by induction hypothesis means @, ([T, x; : [o]) +
[bf{co}] : [ti{o}]. We then have a FPC-term of the required type
from the bodies [b;{c}] = [b/1{[o1} by the substitution lemma.
The VaL Fun and VaL Pros rules gives us (Ax : X.[b |{X}, ..., Ax :
X.[b, .U X[ 1/X}. Finally VaL I gives us the required type.

The case for VaL Uppatk is almost identical. For VAL SELECT we
assume O,T + m : o where m = Obj(X = o)[t; = g(x; : X)b;]!
and o = Obj(X)[¢; : (X)) and consider O©,T + m.(; : t:{c}.
We want O, [I'] + (7, out(Tm1))(fm]) : [t{c’}]. By induction hy-
pothesis we have O, [I'] + [m] : [o]. Further ®,[I'] + out([m]) :
[o{uX.c/X}] and after projection we have the body b; of type
7;{c}, and the result follows by applying the induction hypothesis
to b,'. [l

5. SOUNDNESS AND ADEQUACY

We will prove the soundness and adequacy of our translation
of S~ into FPC. This means that the translation of S~ into FPC is
given in such a way that the operational semantics of FPC is strong
enough to interpret the operational semantics of S~ while not being
S0 strong as to give extra computations which were not present in
S-.

We will show that + ~»> v implies [7] ~ [v]. This establishes
that our translation is correct (soundness). We also prove an ade-
quacy result of the operational semantics of S™. These two results
establish that any denotational model of FPC (e.g. those studied by
Plotkin and Fiore [6]) is, via the self-application interpretation, a
suitable mathematical setting for object calculus. For example, a
category such as pCPO immediately gives us a denotational model
of object calculus (via e.g. [26]).



In what follows we will let [-]] denote the interpretation of FPC
with respect to some denotational semantics equipped with a no-
tion of totality. Such an interpretation is defined in the usual way
by induction on the well-formed types and the well-typed terms, see
Fiore and Plotkin [6, 8]. We will speak about a denotation being
“total”. As in loc. cit. we require that the interpretation is with re-
spect to a category of partial maps [8], viz. pK. Aterm @, +7: 7
is understood to be interpreted by an indexed family of partial maps
[TJA — [7]lA (where A ranges over objects in pK). The types and
type contexts are interpreted by symmetric functors on the ambient
category, i.e. self-dual functors of the form C”” x C — C (hence-
forth, C°? x C is written as C). To summarise, we assume that we
have indexed partial maps and (symmetric) functors as follows:

[O,T+¢: 7l [® TN, — [0 F T]I(A),
[®+I] p‘7(‘®‘ - p7K

for A € |p7( [® where |@] is the number of type variables appearing
in ©. We wrote F(X), for IT, o F(X).

Formally, a partial map is described as a pair [m, f] where m is
an admissible mono drawn from a subcategory D of K. The total
maps [m, f] are such partial maps where m = id. However, we must
identify some representations [m, f] since a single partial map can
be written in this form in more than one way. For this, we proceed
like Fiore et al [6, 8], and say that partial maps [m, f] and [n, g]
describe the same partial map if and only if

m=noiand f = goifor some isomorphism i .

This immediately gives the formal notion of total maps for pK as
the maps [id, f] up to the equivalence relation induced by such iso-
morphisms.

We remark that for a domain-theoretic model based on CPPO |,
of strict continuous maps and cpos with least elements, totality of a
map f is more simply the property that f(x) = L implies x = L (via
the isomorphism between this category and pCPO as described e.g.
in [8]). Also, for the concrete category pCPO of predomains, the
usual set-theoretic notion of total partial map can be used, rather
than the more general one described above. Moreover, in this case,
the notion of partial continuity implies that the domain of definition
(admissible monos) must be a Scott-open set [6].

DEermniTiON 5.1 (COoMPUTATIONAL SOUNDNESS). We say that an in-
terpretation [—] of S” into FPC is computationally sound if, for ev-
ery O, + o : T such that o ~» v where v is a value, we have that
[[®,T +o: 7]l is atotal map.

DEeriNITION 5.2 (COMPUTATIONAL ADEQUACY). We say that an in-
terpretation [—] of S~ into FPC is computationally adequate if
given any ©,T + o : 7, whenever [[O,T + o : 1] is a total map, we
also have that o ~» v for some value v.

In order to establish computational soundness and adequacy for
the interpretation [—], we require the following theorems. From
these, the required result of computational soundness and adequacy
follows immediately as a corollary simply by composing the rela-
tions appropriately, and by observing that [v] is a value in FPC
whenever v is a value in S~.

THEOREM 5.1. The interpretation [—] has the property that t ~»
v, then [t] ~ [v]

Proor. We only check the derivation rules VAL OBIECT, VAL SE-
LEcT, and VAL Uppatk, since the result follows from induction for
the other derivation rules. The translation of an VAL OBJECT term is

an FPC value and hence the theorem holds for terms arising as the
result of the VAL OBJECT rule.

For VaL SeLEcT, suppose m ~» V' and b{v’, o} ~» v, where v/ =
Obj(X = o)[l; = g(x; : X).b;]]*!. We want to show that [m.{;] ~»
[v]. By induction [m] ~» [v'] and hence

mi(outfm]) ~ Ax : [o].b;

Again, by induction, [m] ~ [V'] and [b;{V',0}] ~ [v]. The
result then follows by the substitution lemma since [b;{V',0}] =
b:UV 1, o}

For method update, suppose m ~» v where v = Obj(X = o)[{; =
G(x; : X)b;]®!. In order to prove [m.l; =g(x : 0).b] ~ [V'] where
V' = 0bj(X = o)ll; = g(x : X).b;,I; = g(x : X).b]"! we must prove
that

in((ma,...,Ax : [o.[b], ..., mya)) ~>
in({Ax : [o].[b1], ..., Ax : [0 1.[Db], ..., Ax : [0 1.[b, 1))

where @ = out([m]). By induction
[m]~> [v] = in({Ax : [o].[b1], ..., Ax : [0 ].[b, 1))

and hence m;a ~> Ax : [0].[b;] as required. [

CoroLLARY 5.1. If an FPC model has the property that t ~> v
implies [[t]] = [V], then S~ has this property for the same model via
the translation [-].

We proceed with adequacy which shows that the operational se-
mantics of FPC is not too strong with respect to the operational
semantics of S™.

THEOREM 5.2. The interpretation [—] has the property that if
[£] ~> v, then there is a V' such thatt ~ VvV and [V'] =v

Proor. The proof is by induction on the derivation tree for [¢] ~»>
v. If ¢ is a variable or any of the terms related to the standard type
constructors of A-calculus, then the proof is as expected. If 7 is
a VaL Osiect term, then both ¢ and [¢] are values and hence the
theorem trivially holds. There are two more cases:

If # is given by VAL SELECT, say t = m.{;, then [f] ~> v must have
the following form:

[m]~in{...,Ax.b,...)
outfm]~> (..., Ax.b,...)

miout[m] ~> Ax.b [m] ~> u [b{u/x, 0]~ v

(mjoutTmT)(Tm]) ~> v

We see that the derivation for [b{u/x, o}] ~» v is contained in the
above derivation. Therefore we can apply the induction hypothesis
to it, and also to the term m. The premises of the rule VAL SELECT
are now satisfied, and we can conclude that 1 ~» ¢ for value &.
It remains to be shown that [£] = v, but this is just the induction
hypothesis for [b{u/x}].

Finally, let t = m.{ &g(x : 0)b be a method update term given
by VaL Uppatg, and 7] ~ v for some value v. Such a term has the
following derivation tree:

[m]~inv

outfm)~v={(..,Ax.b,...)

in{myout[ml, ..., n;_jout[m],
Ax : [o[DHo}, wjciout[m], ..., m,out[m]) ~ v

The derivation tree clearly shows that 7] reduces to a value ex-
actly when [m] reduces to a value which means, by induction hy-
pothesis, that we have m ~» u for some value u. In other words,



the premise of the VAL Uppate rule is satisfied, so we have in-
deed that t ~ u’ for some value u’. It remains to be shown that
[u'] = v. However, v has the form indicated in the derivation tree
(..., Ax.b,...)), which is given as the interpretation of precisely
the value Obj(X = o)[{; = g(x : X)b;,lj = g(x : X)b]' € I to which
t reduces to by the (&) rule. [

The following main result has now been established (it is a direct
consequence of the previous theorems):

COROLLARY 5.2 (MAIN REsULT). Every computationally sound and
adequate model of eager FPC is also such a model of S™.

It follows from the proof given by Winskel [26] that the cate-
gories pCPO and CPPO,, both give computationally sound and
adequate models of S.

Although adequacy holds, the stronger property of full abstrac-
tion does not hold for self-application semantics [25]. In order to
discuss full abstraction we first need to define a notion of obser-
vation equivalence. Following Morris [17], terms are taken to be
equivalent if they are equal, in a suitable sense, in all program
contexts of a given kind. This can be understood as determining
whether two terms behave in the same way, operationally. A no-
tion of contextual equivalence requires (1) another equivalence re-
lation to be chosen and (2) a class of program contexts to be cho-
sen. For typed languages, we can take program contexts of one
or more ground type (when such exist). For example, Plotkin [21]
used boolean-valued contexts in his pioneering work on PCF. In our
case, the following definition can be used instead, where we take
Bool =1+ 1:

DermnitioN 5.3 (ConTEXTUAL EQUIVALENCE [12, 13]). Say that two
closed terms o and o’ are contextually equivalent (or operationally
congruent, written o = 0’), if for each closing one-hole contexts
C[-] of type Bool, we have that C[o] ~ v if and only if C[0'] ~ V'.
(A context is closing for a term t if + C[t] : Bool.)

Note that here, we follow Gordon et al and have taken the equiv-
alence (1) to distinguish between terms merely based on their con-
vergence behaviour, and not on whether they reduce to the same
values (unlike the equivalence Plotkin studied for PCF).

Gordon et al [12] have demonstrated that this notion of con-
textual equivalence can be characterised using bisimulations on a
canonical labelled transition system (i.e. bisimilarity). The termi-
nology “observational congruence” is justified since Gordon et al
proved (using a technique due to Howe [15]) that the equivalence is
in fact a congruence relation. Note that this means that coinduction
can be used when reasoning with object-based programs, giving an
alternative to using a denotational semantics (i.e. to the approach
followed in this paper), although without additional structure other
than that afforded by a labelled transition system (e.g. fixpoint theo-
rems, Freyd’s recursion scheme [10] are not available). At any rate,
contextual equivalence makes it possible to consider how closely
the operational semantics is connected to a denotational model.
Ideally, one would like that programs that behaves the same are
exactly those that are denotationally the same, which the following
property formalises:

DEeriNiTION 5.4 (FuLL ABSTRACTION). Full abstraction is the prop-
erty that for any terms 0,0, [ [@, o : 11 =10, + 0o : 7]1
if and only if 0o = 0’, i.e. identified denotations correspond to ob-
servationally congruent terms.

Viswanathan showed that self-application models (such as stud-
ied in this paper) cannot have this property [25]. His counterexam-

ple is based on defining two terms:

Obj(X = o)[€ = g(x : X)x.(]
Obj(X = o)l = g(x : X)case(x.l,y.t; *,y.,, %)]

a =

b =

Note that both these terms are typeable with type Obj(X)[£ : 1 + 1]
(where 1 + 1 represents a boolean type). Although, a = b, we do
not have equal denotations in any model of eager FPC through our
interpretation, since self-application admits application of an object
where the  method converges, which gives different function values
(see loc. cit.). In retrospect, this is not surprising since there is no
way in typed object calculus to observe for a particular method the
application of that method to an object where the same method has
been updated. Fortunately, the most important direction of the bi-
implication is generally regarded to be that denotational equality is
included in operational equality, and this is exactly what we have
established in the present paper for certain kinds of models.

6. CONCLUSION AND FURTHER WORK

In summary, we have developed an interpretation of S, a typed
object calculus extended with functions, coproducts and products,
into (eager) FPC, and proved computational adequacy and sound-
ness. We have established that models of (eager) FPC, such as
Fiore’s computationally adequate denotational semantics based on
partial maps, or Winskel’s exposition of Plotkin’s semantics [26],
are computationally adequate also for typed object calculus. Since
a direct proof of computational adequacy is rather complicated in
the presence of recursive object types (compare to the work by
Fiore and Plotkin [7]), the use of an interpretation into the meta-
language turned out to simplify matters substantially, while in the
end giving the same result.

As is well-known [25], full abstraction does not hold for self-
application semantics, although it is more abstract than many other
so-called object encodings [4]. However, from a pragmatic point
of view, the simplicity of the interpretation is of greater importance
than its precise characterisation of objects. The self-application in-
terpretation into FPC that we have studied is simple but comes with
a powerful recursion scheme. More precisely, models of FPC stud-
ied by Fiore and Plotkin [7, 8] possess a recursion scheme due to
Freyd [10]. Using our results, this scheme and results surrounding
it carry over to typed object calculus. Hence the current paper has
provided a formal connection that can be explored much further.

It is known from work by Fiore and Plotkin [9, 8] that there is
a class of enriched categorical model of FPC which are compu-
tationally adequate for eager FPC. Notably, these authors gave a
precise axiomatisation of a category of partial maps (with order-
enrichment), such that a computationally adequate model of FPC
arises. Examples included pCPO and other CPO-categories of
partial maps, but also functor categories of pCPO, etc. We leave
as future work to decide whether such more complex models are
needed also for typed object calculus, and if therefore an axiomatic
analysis of FPC is called for.

Finally, we would like to remark that subtyping has not been
studied in this paper, but is certainly very important and needs to be
addressed. To this end, FPC can interpret subtyping using coercion
functions, but the details are saved for future work. Here, the work
by Abadi and Fiore [2] gives some ideas on how to proceed with
such investigations.
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