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Abstract

Popular methods for probabilistic topic modeling like the
Latent Dirichlet Allocation (LDA, [1]) and Correlated Topic
Models (CTM, [2]) share an important property, i.e., using
a common set of topics to model all the data. This prop-
erty can be too restrictive for modeling complex data entries
where multiple fields of heterogeneous data jointly provide
rich information about each object or event. We propose
a new extension of the CTM method to enable modeling
with multi-field topics in a global graphical structure, and
a mean-field variational algorithm to allow joint learning of
multinomial topic models from discrete data and Gaussian-
style topic models for real-valued data. We conducted ex-
periments with both simulated and real data, and observed
that the multi-field CTM outperforms a conventional CTM
in both likelihood maximization and perplexity reduction. A
deeper analysis on the simulated data reveals that the supe-
rior performance is the result of successful discovery of the
mapping among field-specific topics and observed data.

1 Introduction

There is a great need in practical applications for
analyzing and maintaining data collections where each
entity (object or event) consists of multiple fields with
different but interrelated contents. Consider a computer
hardware support department that keeps all the trouble
reports for past malfunctions and repairs. Each record
may contain several free-text fields, such as a brief
problem description by a user, an initial analysis of
the problem by a technical specialist, and a detailed
technical description by the expert(s) who fixed the
problem. Other fields in the record may include related
information in the forms of nominal, categorical, ordinal
and numerical attributes, such as by whom the problem
was reported, what level of urgency was specified,
which expert(s) was assigned, what categories of domain
expertise were required, how long it took to solve the
problem, and so on. When a new case is reported, the
engineer assigned to the task would like to find similar
cases in the past for reference. Obviously, if our system
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could make a good use of the multi-field heterogeneous
data in combination, then the relevance assessments
over past cases would be more accurate than the result
of using a standard search engine for retrieval based
on a single amorphous text field, e.g., the problem
description alone or the content of all fields viewed as a
merged one. It is not obvious, however, how to model
the dependencies among multiple fields so that the rich
connections among tasks can be effectively leveraged.
Addressing this open challenge is our primary interest
in this paper. Specifically, we propose a new extension
of the Correlated Topic Model (CTM) by Blei and
Lafferty [2] to allow multiple sets of topics to be used for
different fields instead of forcing all the fields to share a
common set of topics, and to better capture cross-field
dependencies at proper levels of granularity.

Topic modeling methods have received considerable
attention in recent machine learning research, among
which the LDA (Latent Dirichlet Allocation, [1]), its
modifications [4, 5, 6, 8, 9] and CTM [2] are represen-
tative of Bayesian graphical models. These methods
describe the probabilistic generation process of data.
Both LDA and CTM focus on the modeling of data col-
lections with single-field entities, e.g., documents, with
a set of hidden variables as the ”topics” that explain
observed data. LDA has the limitation of being inca-
pable of modeling correlated topics, and CTM addresses
that limitation by introducing a logistic normal prior of
topics instead of the Dirichlet prior and by using the
covariance matrix of the variables in the logistic nor-
mal model to capture correlations among topics. While
CTM has been successfully applied to single-field data,
showing the importance of modeling correlated topics,
it is not clear how to apply CTM to multi-field data. A
straightforward application is to merge all the contents
in different fields of each entity to obtain a synthetic
"bag of feature” representation of the entity, and to
train CTM in the conventional way on a collection of
such field-merged data. We will refer to this way of us-
ing CTM as conventional CTM or "single-field CTM” in



the rest of the paper, in distinction from the multi-field
CTM we develop as an alternative.

We argue that single-field CTM is insufficient for
best modeling of multi-field data. Its limitation comes
from the design choice, i.e., using the common set of top-
ics to model different data in all the fields. To see why,
let us revisit our example of the hardware troubleshoot-
ing scenario, and focus on two fields: the problem sum-
maries and the technical resolutions in trouble reports.
Both fields contain free-text descriptions; however, the
number of topics required to model the latent concepts
in user descriptions can greatly differ from the number
of topics required to model the latent concepts in expert
descriptions (e.g. the former could be much smaller).
Moreover, the latent concepts underlying the two fields
are related but not necessarily identical. Hence, model
the two fields using a common set of topics is an over-
simplification of the assumed data generation process.
A natural alternative is to allow multiple sets of topics
in a unified graphical model where each set of the top-
ics corresponds to a particular data field or a subset of
the data fields. In this way of modeling, the generation
of multi-field data is broken down into conditionally in-
dependent processes, each of which has its own set of
topics. Of course the multiple sets of topics can be cor-
related, and we develop a new extension of the conven-
tional CTM to enable the learning and inference based
on the correlated multi-field topics. The conditionally
independent nature of data generation for different fields
is the main distinction at the concept level of our multi-
field CTM from the conventional CTM (and LDA). The
letter does not enforce this property; instead, each field
would be modeled as if it were generated from all the
latent factors, not just from the corresponding set of
specific latent factors. This leads to an overly general
model that fails to best leverage the rich information in
multi-field data, i.e., the tight correspondences between
subsets of the topics and the fields.

The main contribution in this paper is a novel
extension of the conventional CTM, namely, the multi-
field CTM (mf-CTM). It allows multiple sets of topics
to be used for different fields. We use logistic-normal
distribution to model the correlations among topics,
within and across the topic sets. We also develop
a variant of the mean-field variational algorithm as
the approximation procedure to perform inference and
parameter estimation. This procedure is generic and
does not restrict the model types for specific fields: these
can be Multinomial for textual data, Gaussian for real-
valued data or other types of latent-factor models. The
effectiveness of the proposed method is evident in our
evaluation of this method in comparison with the single-
field CTM, on both real and simulated data.

The rest of the paper is organized as the following:
Section 2 outlines the conventional CTM as related
background. Section 3 proposes the mf-CTM approach
as our new extension. Section 4 develops a variant of a
mean-field variational algorithm as the approximation
procedure for learning mf-CTM and making inferences
with the model. Section 5 describes the datasets
we prepared for evaluation, including both real and
simulated collections of multi-field entities. Section 6
reports our controlled experiments with mf-CTM and
the original CTM. Section 7 concludes our findings.

2 Related Background

Let us briefly outline the conventional CTM (Correlated
Topic Model) and related notation which is necessary for
later description of our new extensions of CTM. Figure
1 illustrates CTM using a standard graphical structure.
The circles are random variables or model parameters,
and the edges specify probabilistic dependencies (or the
conditional independencies) among them; a box is a
compact notation of multiple (N, D or K) instances
of the variables or parameters. Using a document col-
lection as a concrete example, the symbols are defined
as:

e D, the number of documents in the collection

e d=1,2,...,D, the index of an individual docu-
ment in the collection

e N, the total count of word occurrences in document
d

e n=12,...,N, the index of a word occurrence in
document d

e K, the number of hidden variables (”topics”) in the
model

e k = 1,2,..., K, the index of a hidden variable
(" topic”)

® wqp (or wy), the random variable whose value
is the observed word (”feature”) at position n in
document d, we will sometimes omit index d and
use w, when it is not important to distinguish
between documents

® Zin (or z4), the random variable whose value is the
hidden topic behind wgq,y,

e [, the topic-specific word distribution, defining
the word emission probabilities for documents in
topic k

e ng ~ N(u,X) (or ), a K-dimensional vector,
specifying topic priors for each document

e 1 and X, the parameters (mean and covariance
matrix) of a multivariate Gaussian process
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Figure 1: Graphical model representation for the CTM.

The generative process of the CTM is defined as:
A. Draw nl{u, 3} ~ N(u,%)

B. Compute the document-specific topic proportions 6
using the logistic normal transformation as

(2.1) 0; = expni/Zexpnj

J

C. Forne{l,...,N}

a) Draw topic assignment z,|n from Mult(6)

b) Draw feature
p(wn|zn, B)

Wn, | {va ﬁl:K } according to

According to this model the probability of the
document with words w, topic variables 1 and individual
topic assignments z is:

(2.2)

p(n, 2, wlp, S, 8) = p(nlu, £) [ [ p(ziln)p(wilzi, B)

i=1

Notice that only the word-level representation is
observed and the topical-level information (7 and z) is
hidden. To estimate the likelihood of observed words
(w) we need to sum out 7 and z as:

(23)  pluln =0 = [ 3 pnzuln = 5y
n oz

As for the whole corpus wy,...wp where wq
denotes the word sequence in a document, the likelihood
of observing the entire data is:

D
(24) p(Corpus|p, %, B) = [ p(walp, =, 8)
d=1

The expression in (2.3) is intractable due to integra-
tion and summation over hidden variables, as shown in

[2]. Approximate method (variational approximation,
[3], [7]) has been used to estimate the likelihood to per-
form training and to estimate most likely topic propor-
tions 7 and topic assignments z (details can be found in
2)).

In the above example we focused on using CTM for
modeling text and therefore §y.x define K multinomial
distributions for modeling word conditioned on topics.
Generally speaking, variable wy, 4 is not restricted to be
a word, and the emission probabilities do not need to
follow a multinomial process. For example, w,, 4 can be
defined as a Gaussian random variable to model real-
valued data.

3 Multi-field Correlated Topic Modeling

We propose two ways to extend the conventional CTM
and compare them. One way is to use a common
set of topics for all the fields, but allow each field
(or each subset of fields) to have its own feature set
and feature emission probabilities conditioned on each
common topic. Another way is to allow each field (or
each subset of fields) to have its own topic set, feature
set and feature emission probabilities conditioned on
field-specific topics. Briefly, we refer to the former as
mf-CTM.ct (for multi-field CTM with a common topic
set) and the latter as mf-CTM.dt (for multi-field CTM
with different topic sets)

3.1 Multi-field CTM with a common topic set.
Let us introduce additional notation to support multi-
field modeling:

e S, the number of fields in the data entry

e s=1,2 ..., 5, the index of an individual field

o 3}, feature distribution in the field s conditioned on
topic k, defining the feature emission probabilities

In the rest of the paper, we will use the upper index to
denote a field. For example, instead of using w,, for the
word at position n in document d, we will use w; to
specify the word at position n of field s in document d.

Figure 2 illustrates the graphical structure of mf-
CTM.ct. Comparing it to the generative process in
Figure 1, the only difference is that the word (feature)
emission is not only conditioned on a topic, but also
conditioned on the field. That is, we use w; ~
p(ws |z, 5%) to replace topic-conditioned word emission
probabilities in step C-b) of Section 2.

3.2 Multi-field CTM with different topic sets.
Now we modify the previous model to support multiple
sets of topics modeling different fields. This allows us
to address the granularity issue and to model the inter-
field relations explicitly. To achieve this we divide topic
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Figure 2: Graphical representation of multi-field CTM with common topic set (on the left) and multi-field CTM

with different topic sets (on the right).
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Figure 3: On the top is the topic covariance matrix in
the mf-CTM.dt model; on the bottom we compare the
vector representations of topic prior in mf-CTM.ct (top)
and mf-CTM.dt (bottom).

prior 7 (a vector) into S disjoint sub-vectors as shown
in Figure 3. Each sub-vector corresponds to a field (or
a group of fields). The field-joint topic prior is denoted
as:

s
n”}
The mapping from sub-vector 1° to the topic priors
0° in the corresponding field is defined as:

n= {771"" where 715 = {nks+1a”~nks+1}

CXP i

(3.5) .4 -
> jS:-';ngJr] €Xp 1

0; =

where i € {ks + 1,...ks1} is the index of a topic in
the field. Each sub-vector #° lies on a simplex, i.e., its
elements are real numbers between zero and one, and
these elements sum to one.

The entire data generation process is defined as:

A. Draw n|{u, X} ~ N(p, X)
B. For s € {1,...,S} (enumerating the fields)

a) compute 0° using transformation (3.5)
b) for all tokens in the field: n € {1,...,N*}

i. Draw topic assignment z,|n from Mult(6%)
ii. Draw feature wy,|{z,,0°} according to
p(wn|2n, 5°)

This gives us an important conditional indepen-
dence property: the words w® of any field s are indepen-
dent of all the rest words w* (r # s) given the topical
variables 77°. This means that we move the word-level
interactions among fields to the topic-level interactions
in our model. Denote X% a square diagonal sub-matrix
of the covariance matrix ¥ (Figure 3) that corresponds
to sub-vector n’, we calculate the joint probability of
both hidden topics and observed variables in a multi-
field document as:

S
p(n, 2wl %, 8) = p(nlu, 2) [[ p(z*, w®(n, B)
(3.6) S
= p(lp, ) [ p(z*w*In®, 5°)
s=1

Here z° is a vector of topic assignments of the field s and
w?® is a vector of its observable features. Each proba-
bility p(2*, w®|n®, 5%) is the product over all observables
as in (2.2) and B* is a field-specific set of parameters.
The posterior likelihood of observing the data given the
model is calculated in the same way as before, i.e., using
formula (2.3).
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Figure 4: The variational approximation of mf-CTM.dt

4 Mean-field Variational Procedure

For learning the extended CTM models we need the
corresponding modification of the mean-field variational
approximation method [3] in the conventional CTM.
Readers who do not want the computational and math-
ematical details of the learning and inference procedures
can skip this section without loss of context in general.
Figure 4 shows a graphical representation of the mean-
field approximation for the mf-CTM.dt model. We use
the Jensen’s inequality to define the lower bound of the
likelihood of data in our models as:

In p(w

ln/Zp 7,2, w)d
ln/zpn,z,w n,z)dn

Ey[lnp(n, z,w)] — Eq[ng(n, 2)]
= Ey[Inp(n, z,w)] + H(q)

Here variational distribution ¢ is the approximation
of p, and Ej is its expectation and H is its entropy. The
mean-field factorization of ¢ is defined as:

(48)  a(n, 2\ v? ¢) = [T almilni,vf) T] a(znlén)
i=1 n=1

where 7;.x are distributed as independent univari-
ate Gaussians (parameterized by {\;,72}) and 21.y is
distributed according to the K-dimensional vectors ¢1.x
that specify the multinomial parameters for each doc-
ument. Notice that variables n and z are decoupled
to make the approximation tractable, and we no longer
concern the observable word variable as another part of
the simplification. We also no longer consider the non-
diagonal covariance elements and the variational param-
eters are optimized for each field independently. We can
rewrite ¢ as q(n,z) =[], ¢°(n°, 2°) (where ¢® is defined
on the the s-th field of the model) and substitute ¢ in
the right-hand side of (4.7) that yields:

(4.9)

5

N
=
3
S~—

v

l 193}

-

E,[Inp(z*,w*|n°)]

-
= Eg[lnp(n)] + Y Ege[lnp(z*, w’[n°)]
= Ey[lnp(n)]+

S
> ABqnp(®)] — Eg[lnp(n®)] + Ege [Inp(=*, w*|n*)]}

s=1
In the last line we add and subtract equal terms. To
complete our derivation of the likelihood lower bound we

use the fact that the entropy is additive, i.e.

(4.10)

Substituting the above in formula (4.7) we get the
lower bound as:

(4.11)
L(w) > E4[lnp(n ZE [lnp(n
S
+ 3By ()] + Bgelmp(=*, w0 )]
s=1

+H (qs)}

s s
= {Bynp(n)] = 3" Eylnp(r)]} + > Lis-th field)
s=1 s=1

The first part (in the curly parentheses) of the sum
represents the cross-field interactions; the second part is
the sum of the log-likelihood bounds of individual field-
specific models. So far we have not restricted ourselves
to any specific form of these field-specific models; in fact,
any model with a normal prior over the latent factors
such as CTM can be used.

For inference the expression in (4.11) should be
optimized with respect to the variational parameters:

Egllog p(n|u, X)) = (1/2)log |57

(4.12) L2
—(K/2)log 2 — (1/2) Ey[(n — ) 'S (n = )]

where

(4.13) Eql(n = w)"S7 (0 — p)] = Tr(diag(*)=™1)

+A =)= A= p)



The optimization of field-specific parameters can be
done independently for each field using existing proce-
dure for particular models. Estimation of A and v in-
volves all the summands simultaneously. However, the
update of the procedure is straightforward for gradient
methods because the derivatives can be computed inde-
pendently for all the components (see [2] for the details
of optimizing the lower bound in case of CTM).

5 Datasets

We prepared two datasets for evaluation: a real dataset
and a simulated data set.

5.1 The collection of aircraft troubleshooting
reports. The real dataset consists of roughly 12,000
trouble reports we obtained from Boeing. Those reports
describe software and hardware failures and the corre-
sponding troubleshooting events for F/A-18 fielded air-
craft maintenance. Each report consists of several free
text fields (namely, ”summary”, ”title”, ”description”
and "resolution”) and 18 categorical or nominal entries
(e.g., those of hardware/software categories, priority
levels, locations, engineers, etc.). To test our two-field
topic model, we used the ”problem summary” of each
report as field 1, and we merged the categorical /nominal
entries in the report to obtain a synthetic field 2. Each
field contains a bag of features: with words as the fea-
tures in field 1, and with categorical or nominal IDs as
the features in field 2. The feature-set size of field 1 is
2841 and the feature-set size of field 2 is 702.

5.2 The simulated dataset. In our simulated data
set we control the process of data generation, and use
the true model for evaluating automatically learned
models and comparing their strengths and weaknesses.
We are particularly interested in model comparison re-
garding the ability to learn the inter-group relationship
among topics, or the topics representing different lev-
els of granularity for the underlying concepts of data.
More specifically, we generated 2-field simulated data
with the following properties:

e Topics of field 1 and topics of field 2 are correlated,
each topic of field 1 is likely to co-occur with one or
several topics of field 2. Let i be a topic in field 1
and j be a topic in field 2, we have ., Pr(j|i) =
1. Notice that multiple topics in field 1 may imply
the same topic in field 2.

e Simulated documents in each field are generated
independently and randomly, conditioned on the
topic-specific distribution of features which exhibits
the power law. Each topic has a randomly assigned
power-law slope. We reinforce the power law

in feature generation to mimic the importance
property of words and class labels distributed over
documents in realistic applications.

The procedure for generating the simulated dataset
consists of the following steps.

Algorithm 1 Generate topics

1: Specify topic counts k', k? and feature-set sizes N!,
N? for fields 1 and 2, respectively

2: for i€ {1,...,k'} do

3:  Draw m,; uniformly from {2,3,4}

4:  Draw m; topics uniformly from {1,...,k?} as the
implied topics: ; 1,...,l;m,

5. end for

6: for s € {1,2} do

7. forie{l,...,k°} do

8: Draw the power-law slope </ uniformly from

interval [1, 2]

Choose o, random permutation of {1...N?%};
set Bio(y) = ~Vlog | _
10:  end for

11: end for

©

1...Ns

Algorithm 2 Generate collection
1: Repeat M times

2: Draw i uniformly from {1,...,k;}, set 6} =1
3. Draw {6} 44y from Dirichlet(a)
4: Draw tokens from the mixture of multinomials

defined by matrix 8 and weights 6

6 Experiments

We evaluated the three models on the held-out datasets,
i.e., the conventional CTM model, and mf-CTM.ct
and mf-CTM.dt, respectively. We use the posterior
likelihood (defined in (4.7) and calculated using the
variational procedure) of each model to measure the
performance. We also evaluated the perplexity of each
model, measuring how well the model predicts the rest
of a multi-field document after observing a part of the
document. In our experimental settings the words in
field 1 are treated as fully observed; as for field 2,
only a fraction of the tokens is observed and the rest
is to be predicted. Let X be the observed part of the
document and Y be the part to be predicted, the average
perplexity over the test set is defined as:

1
D Ival

D
Perp = [ [ [ p(vIXa)

d=1y€eYy

(6.14)
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Figure 5: Likelihood of the trouble reports dataset: the training set likelihood on the left and the held-out set

likelihood on the right.

The perplexity is essentially the average inverse-
likelihood of observing the next token given the partially
observed data entry. It differs from the likelihood met-
ric as it emphasizes the prediction power of the model
over the output variables instead of focusing on maxi-
mizing the likelihood for both the input part and the
output part of the data. From a task-oriented evalu-
ation point of view, perplexity is more informative or
pertinent than likelihood-based comparison. For com-
pleteness we provide our results with both measures.

In addition, we also used the simulated data to ana-
lyze the ability of mf-CTM in discovering the structure
in data generation, in comparison with the conventional
CTM.

6.1 Main Results. Figure 5 shows the performance
curves of the three methods measured using the
training-set likelihood (in the graph on the left) and the
test-set likelihood (in the graph on the right) in response
to tuning the number of topics as a parameter in those
models. Both the mf-CTM models have significantly
better performance than the baseline CTM. This can be
explained by the fact that both of the mf-CTM models
utilize the multi-filed information in data such as field-
specific feature set and field-specific emission probabili-
ties, while the baseline (conventional) CTM ignores such
information. As for the performance difference in mf-
CTM.ct and mf-CTM.dt, we notice that the former has
higher likelihood than the latter on the training data,

but we observe the opposite on the held out test-set.
This indicates that mf-CTM.ct has an overfitting issue.
In other words, mf~-CTM.dt is proven to be more robust
than mf-CTM.ct because its use of field-specific topic
sets to explicitly model inter-field relationship, and with
less parameters in the model. The number of parame-
ters is reduced in mf-CTM.dt because we only allow the
local features to interact with local topics while in mf-
CTM.ct, we allow all the features to interact with all
the (common) topics.

Figure 6 shows the perplexity curves (the lower the
better) of the three models in response to varying per-
centage of data being predicted in field 1 and field 2: the
larger the proportion, the harder the prediction prob-
lem. The number of topics was optimized through cross-
validation (Figure 5, Right) using a part of the train-
ing data, and for simplicity we chose to use the same
number of topics for both field 1 and field 2.! The mf-
CTM.dt method significantly outperformed mf-CTM.ct
and the conventional CTM when a larger portion of field
2 is not observed, i.e., when the prediction problem is
harder. It is also consistently better in predicting field
1. It is evident in these results that proper modeling of
the multiple fields gives more predictive power to our
approach than that of the baseline CTM.

TThis means that there is a room for improvement if we allow
the fields to have different numbers of topics. We leave this kind

of fine turning to future exploration.



3 | -%- mf-CTM.dt
@ A mf-CTM.ct
—-o— CTM
o
S
> ©
.‘>__<‘
o
o
gl
o A
8 B % i A A A N A N
e Rl Y
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

fraction of Field 1 known

Figure 6: Predictive perplexity for the trouble reports
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In our experiments with the simulated dataset we
only focus on the comparison of the conventional CTM
and our stronger method, i.e., mf~-CMT.dt. In these
experiments we have the ground truth of topic numbers,
ie., k1 = ko = 15. We trained the baseline CTM
with & = 30 and the mf-CTM.dt with k; = ky = 15,
that is, we purposely made the number of topics to
be identical in the two models. Figure 7 shows their
perplexity curves; again multi-field CTM significantly
outperformed the standard CTM on this dataset.

6.2 Analysis with respect to structure discov-
ery. To understand why and how the conventional
CTM and our multi-field CTM (mf-CTM.dt) differ from
each other, we analyzed these models regarding their
ability to rediscover the true underlying structure in the
simulated dataset. Using the held-out data we analyzed
the co-occurrence patterns between the true topics and
the system-learned topics as the following. Let 6; 4 de-
note the true weight of topic 7 given multi-field docu-
ment d, and v; g denote the learned weight of topic ¢
given document d. For each true topic 7 and each pre-
dicted topic j, we compute a score for the implication
from i to j as:

(6.15)

ZdGD ei,d

> (Oia-j.a)

deD

Score(i — j) =

For each node the sum of all outgoing scores is 1:

(6.16) Vi: Y Score(i —j)=1
j
o
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Figure 7: Predictive perplexity curves of different meth-
ods on the simulated data.

The co-occurrence based scores define a directed
graph with weighed edges that point from true topics



to system-predicted topics. To visualize the dominant
correspondences in the graph, we need to apply a thresh-
old to the edge weights: the edges with a weight below
the threshold will be ignored for visualization; similarly,
system-predicted topics without any edge from a true
topic after thresholding will be removed from the graph.
Figure 8 shows the result after applying of threshold of
0.2. Of course the choice of the threshold and the choice
of the heuristic scoring function are subjective; different
graphs will correspond to different thresholds. How-
ever, our purpose here is to demonstrate qualitatively
the behavioral difference between the two methods, by
focusing on the dominant connections and ignoring the
details.

In this graph, each gray node is a true topic and
each white node is a system-predicted topic. The
left penal shows the graph structure recovered by the
conventional CTM approach and the right penal shows
the graph structure recovered by our mf~-CTM method.
The left-most column of gray nodes in the left/right
panel are the true topics in field 1, and the right most
columns of gray nodes in the left/right panel are the
true topics in field 2. In an ideal situation, i.e., if the
true topic structure is fully recovered, we should see
each gray node is linked to one and only one white
node in the adjacent column, and vice versa. In Figure
8, however, none of the system-predicted topic sets
is perfect: two of the true topics in field 1 are not
linked to any of the system-predicted topics by the
conventional CTM, and one of the true topics in field
2 is not linked to any system-predicted topic by mf-
CTM. Nevertheless, we see a more ”clean” mapping
in the graph structure recovered by mf-CTM for the
topics in field 2, compared to that in the graph structure
recovered by the conventional CTM; as for the topics in
field 1, the two methods are comparable in the structure
recovery. This suggests that mf-CTM successfully
captured the differences among topics for the data
in different fields and at different granularity levels.
In other words, multi-field CTM is more powerful in
discovering the underlying topical structures in different
fields.

7 Concluding Remarks

In this paper we present a new principled solution for a
challenging problem in graph structure learning, that is,
modeling complex multi-field data and leveraging struc-
tural relationships among topics. With novel extensions
of CTM and a new variant of the mean-field variation
algorithm, our approach enables the joint learning of
multi-field topics from both discrete data fields and nu-
merical fields, and the combined use of multinomial
models and Gaussian models in a unified framework.

Figure 8: On the left is the graph structure recovered
by the conventional CTM and on the right is the graph
structure recovered by mf-CTM. Grey circles denote
true topics for field 1 and field 2, respectively; white
circles denote the predicted topics. The edge directions
are omitted for the clarity of the graphs.

The effectiveness of the proposed approach is evident in
our experiments on both real data and simulated data.
The significant performance improvements of the multi-
field CTM over the conventional CTM show the benefits
of modeling multi-field topics explicitly, to support topic
modeling at various granularity levels and to effectively
leverage cross-field dependencies through field-specific
topics.

For future work we would like to broaden the
scope of our experimentation with various heteroge-
neous datasets and theoretically and empirically com-
pare a broad set of approaches, including both gener-
ative and discriminative methods for multi-field topic
modeling.
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