

Fast Object
Distribution

Andrew Willmott

Maxis, Electronic Arts

Distributing Objects

• Goal: Place objects over an area
• Vary attributes (colour, size, etc.)

• Lots and lots of solutions
– Pseudo Random: LCG, Mersenne Twister
– Dart throwing
– Blue noise (Ostromoukhov et al.)
– Wang tiles (Hall and Oates)

Our Constraints

• Fast! (Game use)
• Low memory (Low memory -> Fast)
• Re-produceable

• Control
– Position
– Orientation, Colour, Alpha, etc.
– Density

Summary

• Use Halton Sequence to generate N samples
• Make it incremental for speed reasons
• Use i / N as a magic number

– To index attribute tables
– To perform rejection sampling against maps

• (You may leave now)

Halton Sequence

• Basic idea: take the sample count in base b,
and digit reverse it

• In binary:
0 -> 0.0

1 -> 0.1

2 -> 0.01

3 -> 0.11

4 -> 0.001

5 -> 0.101

6 -> 0.011

7 -> 0.111

Halton Sequence

• Extends to higher dimensions
• Use base 3, 5, 7... to avoid correlation

20 100 500

Why Halton?

• Ensures samples are well-spaced

• It is extendable
– Later samples in the sequence fill in between

previous samples

• It’s simple: no subdivision, spatial data
structures, no state...

But

• Too expensive for our purpose
– Requires digit reversal of base 2, 3, 5 (3D) numbers
– log_b(x) with divides in inner loop
– Problem: Recalculate from scratch for each sample

• Could use look-up tables
– But that’s expensive too, for large tables
– Also imposes an upper sample count limit

Incremental Halton Sequence

• What changes between Hn and Hn+1?

• For base 2:
– Bottom m bits, depending on carry propagation
– Each bit x that flips adds +-2-x

– So, form the difference, XOR(n, (n+1))

– Adjust Hn accordingly

• Expected iterations: 2

Incremental: Other Bases

• Store count in BC form.
– Base 3 = 2 bits per digit, Base 5 = 3 bits per digit

• As we manually propagate the carry, adjust
H_n accordingly, either -(b-1)b -x, or +b-x

• Expected carries/iterations
– base 3 = 1.5, base 5 = 1.25

Choosing Attributes

• Orientation, colour, transparency, size

• Our usual approach: Data-drive from table
– index with e.g. particle age (0-1)
– or random number

• New approach
– i is sample number, use i / N to index
– Areas well apart in the curve correspond to well-

separated objects

Attribute Tables

• Colour:

• Size:

• Rotation:

0 1

Random
Selection

Attribute Tables

• Colour:

• Size:

• Rotation:

0 1

i / N

Advantages

• More controllable

• As well as weighting, curve is controlling
effect over distance
– Red boxes farthest from yellow boxes

• Curves are correlated too
– Big yellow boxes, small red boxes

Object Nesting

• Can apply the same technique to different
model types

• Allow artist control over where range starts

• Subsequent types “fill in” without collision

Large Trees

Medium Trees

Bushes

Object Density Control

• Want control either by image map or
procedural map

• Either may be game-affected, so minimal pre-
processing desirable

• Key observation:
– As sample count increases, samples fill in between

previous samples
– Thus can affect overall density by varying N

Density Control

• Can achieve the same effect locally by
dropping out samples larger than a given
cutoff N, depending on a local density control
value

• This reduces to:
 f(pi) < i / N: reject

• (p is sample i’s position, f is density function)

Density Map

Distribution

Density Map

Distribution

Images

Images

Questions?

