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ABSTRACT
Relational learning is concerned with predicting unknown
values of a relation, given a database of entities and ob-
served relations among entities. An example of relational
learning is movie rating prediction, where entities could in-
clude users, movies, genres, and actors. Relations encode
users’ ratings of movies, movies’ genres, and actors’ roles in
movies. A common prediction technique given one pairwise
relation, for example a #users × #movies ratings matrix,
is low-rank matrix factorization. In domains with multiple
relations, represented as multiple matrices, we may improve
predictive accuracy by exploiting information from one re-
lation while predicting another. To this end, we propose
a collective matrix factorization model: we simultaneously
factor several matrices, sharing parameters among factors
when an entity participates in multiple relations. Each rela-
tion can have a different value type and error distribution;
so, we allow nonlinear relationships between the parameters
and outputs, using Bregman divergences to measure error.
We extend standard alternating projection algorithms to our
model, and derive an efficient Newton update for the pro-
jection. Furthermore, we propose stochastic optimization
methods to deal with large, sparse matrices. Our model gen-
eralizes several existing matrix factorization methods, and
therefore yields new large-scale optimization algorithms for
these problems. Our model can handle any pairwise re-
lational schema and a wide variety of error models. We
demonstrate its efficiency, as well as the benefit of sharing
parameters among relations.

Categories and Subject Descriptors
H.1.1 [Information Systems]: Models and Principles; G.1.6
[Optimization]: Nonlinear programming, Stochastic pro-
gramming

General Terms
Algorithms, Theory, Experimentation
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1. INTRODUCTION
Relational data consists of entities and relations between

them. In many cases, such as relational databases, the num-
ber of entity types and relation types are fixed. Two impor-
tant tasks in such domains are link prediction, determining
whether a relation exists between two entities, and link re-
gression, determining the value of a relation between two
entities given that the relation exists.

Many relational domains involve only one or two entity
types: documents and words; users and items; or academic
papers where links between entities represent counts, rat-
ings, or citations. In such domains, we can represent the
links as an m× n matrix X: rows of X correspond to enti-
ties of one type, columns of X correspond to entities of the
other type, and the element Xij indicates either whether
a relation exists between entities i and j. A low-rank fac-
torization of X has the form X ≈ f(UV T ), with factors
U ∈ Rm×k and V ∈ Rn×k. Here k > 0 is the rank, and f
is a possibly-nonlinear link function. Different choices of f
and different definitions of ≈ lead to different models: min-
imizing squared error with an identity link yields the singu-
lar value decomposition (corresponding to a Gaussian error
model), while other choices extend generalized linear mod-
els [26] to matrices [14, 17] and lead to error models such as
Poisson, Gamma, or Bernoulli distributions.

In domains with more than one relation matrix, one could
fit each relation separately; however, this approach would
not take advantage of any correlations between relations.
For example, a domain with users, movies, and genres might
have two relations: an integer matrix representing users’ rat-
ings of movies on a scale of 1–5, and a binary matrix repre-
senting the genres each movie belongs to. If users tend to
rate dramas higher than comedies, we would like to exploit
this correlation to improve prediction.

To do so, we extend generalized linear models to arbitrary
relational domains. We factor each relation matrix with
a generalized-linear link function, but whenever an entity
type is involved in more than one relationship, we tie factors
of different models together. We refer to this approach as
collective matrix factorization.

We demonstrate that a general approach to collective ma-
trix factorization can work efficiently on large, sparse data
sets with relational schemas and nonlinear link functions.
Moreover, we show that, when relations are correlated, col-
lective matrix factorization can achieve higher prediction ac-
curacy than factoring each matrix separately. Our code is
available under an open license.1

1Source code is available at http://www.cs.cmu.edu/



2. A UNIFIED VIEW OF FACTORIZATION
The building block of collective factorization is single-

matrix factorization, which models a single relation between
two entity types E1 and E2. If there are m entities of type
E1 and n of type E2, we write X ∈ Rm×n for our matrix of
observations, and U ∈ Rm×k and V ∈ Rn×k for the low-rank
factors. A factorization algorithm can be defined by the fol-
lowing choices, which are sufficient to include most existing
approaches (see Sec. 2.2 for examples):

1. Prediction link f : Rm×n → Rm×n

2. Loss function D(X, f(UV T )) ≥ 0, a measure of the
error in predicting f(UV T ) when the answer is X.

3. Optional data weights W ∈ Rm×n+ , which if used must
be an argument of the loss.

4. Hard constraints on factors, (U, V ) ∈ C
5. Regularization penalty, R(U, V ) ≥ 0.

For the model X ≈ f(UV T ), we solve:

argmin
(U,V )∈C

[D(X, f(UV T )) +R(U, V )]. (1)

The loss D(·, ·) quantifies ≈ in the model. It is typically
convex in its second argument, and often decomposes into a
weighted sum over the elements of X. For example, the loss
for weighted SVD [32] is

DW (X,UV T ) = ||W � (X − UV T )||2Fro,

where � denotes the element-wise product of matrices.
Prediction links f allow nonlinear relationships between

UV T and the data X. The choices of f and D are closely
related to distributional assumptions on X; see Section 2.1.
Common regularizers for linear models, such as `p-norms,
are easily adapted to matrix factorization. Other regular-
izers have been proposed specifically for factorization; for
example, the trace norm of UV T , the sum of its singular
values, has been proposed as a continuous proxy for rank
[33]. For clarity, we treat hard constraints C separately from
regularizers. Examples of hard constraints include orthogo-
nality; stochasticity of rows, columns, or blocks (for exam-
ple, in matrix co-clustering each row of U and V sums to 1);
non-negativity; and sparsity or cardinality.

2.1 Bregman Divergences
A large class of matrix factorization algorithms restrict D

to generalized Bregman divergences: e.g., singular value de-
composition [16] and non-negative matrix factorization [21].

Definition 1 ([17]). For a closed, proper, convex func-
tion F : Rm×n → R, the generalized Bregman divergence
between matrices Z and Y is

DF (Z ||Y ) = F (Z) + F ∗(Y )− Y ◦ Z

where A◦B is the matrix dot product tr(ATB) =
P
ij AijBij

and F ∗ is the convex dual F ∗(µ) = supθ∈domF [〈θ, µ〉 − F (θ)].

If F ∗ is differentiable, this is equivalent to the standard defi-
nition [10, 11], except that the standard definition uses argu-
ments Z and ∇F ∗(Y ) instead of Z and Y . If F decomposes
into a sum over components of Z, we can define a weighted

~ajit/cmf. A longer version of the paper is available as
a technical report [31]

divergence, overloading F to denote a single component of
the sum,

DF (Z ||Y,W ) =
X
ij

Wij (F (Zij) + F ∗(Yij)− YijZij) .

Examples include weighted versions of squared loss, F (x) =
x2, and I-divergence, F (x) = x log x−x. Our primary focus
is on decomposable regular Bregman divergences [6], which
correspond to maximum likelihood in exponential families:

Definition 2. A parametric family of distributions ψF =
{pF (x|θ) : θ} is a regular exponential family if each density
has the form

log pF (x|θ) = log p0(x) + θTx− F (θ)

where θ is the vector of natural parameters for the distri-
bution, x is the vector of minimal sufficient statistics, and
F (θ) is the log-partition function

F (θ) = log

Z
p0(x) · exp(θTx) dx.

A distribution in ψF is uniquely identified by its natural
parameters. For regular exponential families

log pF (x|θ) = log p0(x) + F ∗(x)− DF∗(x || f(θ))

where the matching prediction link is f(θ) = ∇F (θ) [15, 4,
14, 6]. Minimizing a Bregman divergence under a matching
link is equivalent to maximum likelihood for the correspond-
ing exponential family distribution.

The relationship between matrix factorization and expo-
nential families is seen by treating the data matrix X as
a collection of samples, X = {X11, . . . , Xmn}. Modeling
X = f(UV T ), we have that Xij is drawn from the distribu-
tion in ψF with natural parameter (UV T )ij .

Decomposable losses, which can be expressed as the sum
of losses over elements, follows from matrix exchangeabil-
ity [2, 3]. A matrix X is row-and-column exchangeable if
permuting the rows and columns of X does not change the
distribution of X . For example, if X is a document-word
matrix of counts, the relative position of two documents
in the matrix is unimportant, the rows are exchangeable;
likewise for words. A surprising consequence of matrix ex-
changeability is that the distribution of X can be described
by a function of a global matrix mean, row and column ef-
fects (e.g., row biases, column biases), and a per-element
effect (e.g., the natural parameters UV T above). The per-
element effect leads naturally to decomposable losses. An
example where decomposability is not a legitimate assump-
tion is when one dimension indexes a time-varying quantity.

2.2 Examples
The simplest case of matrix factorization is the singular

value decomposition: the data weights are constant, the pre-
diction link is the identity function, the divergence is the sum
of squared errors, and the factors are unregularized. A hard
constraint that one factor is orthogonal and the other or-
thonormal ensures uniqueness of the global optimum (up to
permutations and sign changes), which can be found using
Gaussian elimination or the Power method [16].

Variations of matrix factorization change one or more of
the above choices. Non-negative matrix factorization [21]
maximizes the objective

X ◦ log(UV T )− 1 ◦ UV T (2)



where 1 is a matrix with all elements equal to 1. Maximiz-
ing Equation 2 is equivalent to minimizing the I-divergence
DH(X || log(UV T )) under the constraints U, V ≥ 0. Here
H(x) = x log(x)− x. The prediction link is f(θ) = log(θ).

The scope of matrix factorizations we consider is broader
than [17], but the same alternating Newton-projections ap-
proach (see Sections 4-5) can be generalized to all the fol-
lowing scenarios, as well as to collective matrix factoriza-
tion: (i) constraints on the factors, which are not typically
considered in Bregman matrix factorization as the result-
ing loss is no longer a regular Bregman divergence. Con-
straints allow us to place methods like non-negative matrix
factorization [21] or matrix co-clustering into our framework.
(ii) non-Bregman matrix factorizations, such as max-margin
matrix factorization [30], which can immediately take advan-
tage of the large scale optimization techniques in Sections 4-
5; (iii) row and column biases, where a column of U is paired
with a fixed, constant column in V (and vice-versa). If the
prediction link and loss correspond to a Bernoulli distribu-
tion, then margin losses are special cases of biases; (iv) ped-
agogically, there is little reason why methods based on plate
models, such as pLSI [19], cannot be placed in the same
framework as methods that factor data matrices. While
these features can be added to collective matrix factoriza-
tion, we focus primarily on relational issues herein.

3. RELATIONAL SCHEMAS
A relational schema contains t entity types, E1 . . . Et. There

are ni entities of type i, denoted {x(i)
e }ni

e=1. A relation be-
tween two types is Ei ∼u Ej ; index u ∈ N allows us to
distinguish multiple relations between the same types, and
is omitted when no ambiguity results. In this paper, we only
consider binary relations. The matrix for Ei ∼u Ej has ni
rows, nj columns, and is denoted X(ij,u). If we have not
observed the values of all possible relations, we fill in un-
observed entries with 0 (so that X(ij,u) is a sparse matrix),
and assign them zero weight when learning parameters. By
convention, we assume i ≤ j. Without loss of generality, we
assume that it is possible to traverse links from any entity
type to any other; if not, we can fit each connected compo-
nent in the schema separately. This corresponds to a fully
connected entity-relationship model [12].

We fit each relation matrix as the product of latent fac-
tors, X(ij) ≈ f (ij)(U (i)(U (j))T ), where U (i) ∈ Rni×kij and

U (j) ∈ Rnj×kij for kij ∈ {1, 2, . . .}. Unless otherwise noted,

the prediction link f (ij) is an element-wise function on ma-
trices. If Ej participates in more than one relation, we allow
our model to use only a subset of the columns of U (j) for each
one. This flexibility allows us, for example, to have relations
with different latent dimensions, or to have more than one
relation between Ei and Ej without forcing ourselves to pre-
dict the same value for each one. In an implementation, we
would store a list of participating column indices from each
factor for each relation; but to avoid clutter, we ignore this
possibility in our notation.

4. COLLECTIVE FACTORIZATION
For concision, we introduce collective matrix factorization

on the three-entity-type schema E1 ∼ E2 ∼ E3, and use
simplified notation: the two data matrices are X = X(12)

and Y = X(23), of dimensions m = n1, n = n2, and r =
n3. The factors are U = U (1), V = U (2), and Z = U (3).

The latent dimension is k = k12 = k23. The weight matrix
for X is W , and the weight matrix for Y is W̃ . Since E2
participates in both relations, we use the factor V in both
reconstructions: X ≈ f1(UV T ) and Y ≈ f2(V ZT ).

An example of this schema is collaborative filtering: E1
are users, E2 are movies, and E3 are genres. X is a matrix
of observed ratings, and Y indicates which genres a movie
belongs to (each column corresponds to a genre, and movies
can belong to multiple genres).

One model of Bregman matrix factorization [17] proposes
the following decomposable loss function for X ≈ f1(UV T ):

L1(U, V |W ) = DF1(UV T ||X,W ) + DG(0 ||U) + DH(0 ||V ),

where G(u) = λu2/2 and H(v) = γv2/2 for λ, γ > 0 corre-
sponds to `2 regularization. Ignoring terms that do not vary
with the factors the loss is

L1(U, V |W ) = W�
“
F (UV T )−X ◦ UV T

”
+G∗(U)+H∗(V ).

Similarly, if Y were factored alone, the loss would be

L2(V,Z|W̃ ) = DF2(V ZT ||Y, W̃ ) + DH(0 ||V ) + DI(0 ||Z).

Since V is a shared factor we average the losses:

L(U, V, Z|W, W̃ ) = αL1(U, V |W ) + (1− α)L2(V,Z|W̃ ),
(3)

where α ∈ [0, 1] weights the relative importance of relations.
Each term in the loss, L1 and L2, is decomposable and

twice-differentiable, which is all that is required for the al-
ternating projections technique described in Section 4.1. De-
spite the simplicity of Equation 3, it has some interesting im-

plications. The distribution of Xij given x
(1)
i and x

(2)
j , and

the distribution of Yjk given x
(2)
j and x

(3)
k , need not agree

on the marginal distribution of x
(2)
j . Extending the notion

of row-column exchangeability, each entity x
(2)
j corresponds

to a record whose features are the possible relations with
entities of types E1 and E3. Let F2,1 denote the features cor-
responding to relations involving entities of E1, and F2,3 the
features corresponding to relations involving entities of E3.
If the features are binary, they indicate whether or not an

entity participates in a relation with x
(2)
j . The latent repre-

sentation of x
(2)
j is Vj·, where UV Tj· and Vj·Z

T determines
the distribution over F2,1 and F2,3 respectively.

4.1 Parameter Estimation
Equation 3 is convex in any one of its arguments. We ex-

tend the alternating projection algorithm for matrix factor-
ization, fixing all but one argument of L = L(U, V, Z|W, W̃ )
and updating the free factor using a Newton-Raphson step.
Differentiating the loss with respect to each factor:

∇UL = α
“
W �

“
f1(UV T )−X

””
V +∇G∗(U), (4)

∇V L = α
“
W �

“
f1(UV T )−X

””T
U+

(1− α)
“
W̃ �

“
f2(V ZT )− Y

””
Z +∇H∗(V ),

(5)

∇ZL = (1− α)
“
W̃ �

“
f2(V ZT )− Y

””T
V +∇I∗(Z).

(6)



Setting the gradients equal to zero yields update equations
for U , V , and Z. Note that the gradient step does not
require the divergence to be decomposable, nor does it re-
quire that that the matching losses be differentiable; simply
replace gradients with subgradients in the prequel. For `2
regularization on U , G(U) = λ||U ||2/2, ∇G∗(U) = U/λ.
The gradient for a factor is a linear combination of the gra-
dients with respect to the individual matrix reconstructions
the factor participates in.

A cursory inspection of Equations 4-6 suggests that an
Newton step is infeasible. The Hessian with respect to U
would involve nk parameters. However, if L1 and L2 are
each decomposable functions, then we can show that almost
all the second derivatives of L with respect to a single factor
U are zero. Moreover, the Newton update for the factors
reduces to row-wise optimization of U , V , and Z. For the
subclass of models where Equations 4-6 are differentiable
and the loss is decomposable, define

q(Ui·) = α
“
Wi· �

“
f1(Ui·V

T )−Xi·
””

V +∇G∗(Ui·),

q(Vi·) = α
“
W·i �

“
f1(UV Ti· )−X·i

””T
U+

(1− α)
“
W̃i· �

“
f2(Vi·Z

T )− Yi·
””

Z +∇H∗(Vi·),

q(Zi·) = (1− α)
“
W̃·i �

“
f2(V ZTi· )− Y·i

””T
V +∇I∗(Zi·).

Since all but one factor is fixed, consider the derivatives of
q(Ui·) with respect to any scalar parameter in U : ∇Ujsq(Ui·).
Because Ujs only appears in q(Ui·) when j = i, the deriva-
tive equals zero when j 6= i. Therefore the Hessian ∇2

UL
is block-diagonal, where each non-zero block corresponds to
a row of U . The inverse of a block-diagonal matrix is the
inverse of each block, and so the Newton direction for U ,
[∇UL][∇2

UL]−1, can be reduced to updating each row Ui·
using the direction [q(Ui·)][q

′(Ui·)]
−1. The above argument

applies to V and Z as well, since the loss is a sum of per-
matrix losses and the derivative is a linear operator.

Any (local) optima of the loss L corresponds to roots of
the equations {q(Ui·)}mi=1, {q(Vi·)}ni=1, and {q(Zi·)}ri=1. We
derive the Newton step for Ui·,

Unew
i· = Ui· − η · q(Ui·)[q′(Ui·)]−1, (7)

where we suggest using the Armijo criterion [28] to set η.
To concisely describe the Hessian we introduce terms for
the contribution of the regularizer,

Gi ≡ diag(∇2G∗(Ui·)),

Hi ≡ diag(∇2H∗(Vi·)),

Ii ≡ diag(∇2I∗(Zi·)),

and terms for the contribution of the reconstruction error,

D1,i ≡ diag(Wi· � f ′1(Ui·V
T )), D2,i ≡ diag(W·i � f ′1(UV Ti· )),

D3,i ≡ diag(W̃i· � f ′2(V Ti· Z)), D4,i ≡ diag(W̃·i � f ′2(V ZTi· )).

The Hessians with respect to the loss L are

q′(Ui·) ≡ ∇q(Ui·) = αV TD1,iV +Gi

q′(Zi·) ≡ ∇q(Zi·) = (1− α)V TD4,iV + Ii

q′(Vi·) ≡ ∇q(Vi·) = αUTD2,iU + (1− α)ZTD3,iZ +Hi

Each update of U , V , and Z reduces at least one term in
Equation 3. Iteratively cycling through the update leads to

a local optima. In practice, we simplify the update by taking
one Newton step instead of running to convergence.

4.2 Weights
In addition to weighing the importance of reconstructing

different parts of a matrix, W and W̃ serve other purposes.
First, the data weights can be used to turn the objective into
a per-element loss by scaling each element of X by (nm)−1

and each element of Y by (nr)−1. This ensures that larger
matrices do not dominate the model simply because they
are larger. Second, weights can be used to correct for differ-
ences in the scale of L1(U, V ) and L2(V,Z). If the Bregman
divergences are regular, we can use the corresponding log-
likelihoods as a consistent scale. If the Bregman divergences
are not regular, computing

DF1(UV T ||X,W )/DF2(V ZT ||Y, W̃ ),

averaged over uniform random parameters U , V , and Z,
provides an adequate estimate of the relative scale of the
two losses. A third use of data weights is missing values.
If the value of a relation is unobserved, the corresponding
weight is set to zero.

4.3 Generalizing to Arbitrary Schemas
The three-factor model generalizes to any pairwise rela-

tional schema, where binary relations are represented as a
set of edges: E = {(i, j) : Ei ∼ Ej ∧ i < j}. Let [U ] denote
the set of latent factors and [W ] the weight matrices. The
loss of the model is

L([U ] | [W ]) =
X

(i,j)∈E

α(ij)
“

DF (ij)(U
(i)(U (j))T ||X(ij),W (ij))

”

+

tX
i=1

0@ X
j:(i,j)∈E

α(ij)

1ADG(i)(0 ||U (i)),

where F (ij) defines the loss for a particular reconstruction,
and G(i) defines the loss for a regularizer. The relative
weights α(ij) ≥ 0 measure the importance of each matrix
in the reconstruction. Since the loss is a linear function of
individual losses, and the differential operator is linear, both
gradient and Newton updates can be derived in a manner
analogous to Section 4.1, taking care to distinguish when
U (i) acts as a column factor as opposed to a row factor.

5. STOCHASTIC APPROXIMATION
In optimizing a collective factorization model, we are in

the unusual situation that our primary concern is not the
cost of computing the Hessian, but rather the cost of com-
puting the gradient itself: if k is the largest embedding di-

mension, then the cost of a gradient update for a row U
(i)
r

is O(k
P
j:Ei∼Ej

nj), while the cost of a Newton update for

the same row is O(k3 +k2P
j:Ei∼Ej

nj). Typically k is much

smaller than the number of entities, and so the Newton up-
date costs only a factor of k more. (The above calculations
assume dense matrices; for sparsely-observed relations, we
can replace nj by the number of entities of type Ej which are

related to entity x
(i)
r , but the conclusion remains the same.)

The expensive part of the gradient calculation for U
(i)
r

is to compute the predicted value for each observed rela-

tion that entity x
(i)
r participates in, so that we can sum



all of the weighted prediction errors. One approach to re-
ducing this cost is to compute errors only on a subset of
observed relations, picked randomly at each iteration. This
technique is known as stochastic approximation [7]. The
best-known stochastic approximation algorithm is stochas-
tic gradient descent; but, since inverting the Hessian is not
a significant part of our computational cost, we will recom-
mend a stochastic Newton’s method instead.

Consider the update for Ui· in the three factor model.
This update can be viewed as a regression where the data
are Xi· and the features are the columns of V . If we denote
a sample of the data as s ⊆ {1, . . . , n}, then the sample
gradient at iteration τ is

q̂τ (Ui·) = α
“
Wis �

“
f(Ui·V

T
s· )−Xis

””
Vs· +∇G∗(Ui·),

Similarly, given subsets p ⊆ {1, . . . , n} and q ⊆ {1, . . . , r},
the sample gradients for the other factors are

q̂τ (Vi·) = α
“
Wpi �

“
f(Up·V

T
i· )−Xpi

””T
Up·+

(1− α)
“
W̃iq �

“
f(Vi·Z

T
q·)− Yiq

””
Zq· +∇H∗(Vi·),

q̂τ (Zi·) = (1− α)
“
W̃si �

“
f(Vs·Z

T
i· )− Ysi

””T
Vs· +∇I∗(Zi·).

The stochastic gradient update for U at iteration τ is

Uτ+1
i· = Uτi· − τ−1q̂τ (Ui·).

and similarly for the other factors. Note that we use a fixed,
decaying sequence of learning rates instead of a line search:
sample estimates of the gradient are not always descent di-
rections. An added advantage of the fixed schedule over line
search is that the latter is computationally expensive.

We sample data non-uniformly, without replacement, from
the distribution induced by the data weights. That is, for
a row Ui·, the probability of drawing Xij is Wij/

P
jWij .

This sampling distribution provides a compelling relational

interpretation: to update the latent factors of x
(i)
r , we sam-

ple only observed relations involving x
(i)
r . For example, to

update a user’s latent factors, we sample only movies that
the user rated. We use a separate sample for each row of
U : this way, errors are independent from row to row, and
their effects tend to cancel. In practice, this means that our
actual training loss decreases at almost every iteration.

With sampling, the cost of the gradient update no longer

grows linearly in the number of entities related to x
(i)
r , but

only in the number of entities sampled. Another advantage
of this approach is that when we sample one entity at a
time, |s| = |p| = |q| = 1, stochastic gradient yields an online
algorithm, which need not store all the data in memory.

As mentioned above, we can often improve the rate of
convergence by moving from stochastic gradient descent to
stochastic Newton-Raphson updates [7, 8]. For the three-
factor model the stochastic Hessians are

q̂′τ (Ui·) = αV Ts· D̂1,iVs· +Gi,

q̂′τ (Zi·) = (1− α)V Ts· D̂4,iVs· + Ii,

q̂′τ (Vi·) = αUTp·D̂2,iUp· + (1− α)ZTq·D̂3,iZq· +Hi.

where

D̂1,i ≡ diag(Wis � f ′1(Ui·V
T
s· )), D̂2,i ≡ diag(Wpi � f ′1(Up·V

T
i· )),

D̂3,i ≡ diag(W̃iq � f ′2(V Ti· Zq·)), D̂4,i ≡ diag(W̃si � f ′2(Vs·Z
T
i· )).

To satisfy convergence conditions, which will be discussed
in Section 5.1, we use an exponentially weighted moving
average of the Hessian:

q̄τ+1(·) =

„
1− 2

τ + 1

«
q̄τ (·) +

2

τ + 1
q̂′τ+1(·) (8)

When the sample at each step is small compared to the em-
bedding dimension, the Sherman-Morrison-Woodbury lemma
(e.g., [7]) can be used for efficiency. The stochastic Newton
update is analogous to Equation 7, except that η = 1/τ ,
the gradient is replaced by its sample estimate q̂, and the
Hessian is replaced by its sample estimate q̄.

5.1 Convergence
We consider three properties of stochastic Newton, which

together are sufficient conditions for convergence to a local
optimum of the empirical loss L [8]. These conditions are
also satisfied by setting the Hessian to the identity, q̄(·) = Ik
— i.e., stochastic gradient.
Local Convexity: The loss must be locally convex around
its minimum, which must be contained in its domain. In
alternating projections the loss is convex for any Bregman
divergence; and, for regular divergences, has R as its domain.
The non-regular divergences we consider, such as Hinge loss,
also satisfy this property.
Uniformly Bounded Hessian: The eigenvalues of the sample
Hessians are bounded in some interval [−c, c] with proba-
bility 1. This condition is satisfied by testing whether the
condition number of the sample Hessian is below a large
fixed value, i.e., the Hessian is invertible. Using the `2 reg-
ularizer always yields an instantaneous Hessian q̂ that is full
rank. The eigenvalue condition implies that the elements of
q̄ and its inverse are uniformly bounded.
Convergence of the Hessian: There are two choices of conver-
gence criteria for the Hessian. Either one suffices for prov-
ing convergence of stochastic Newton. (i) The sequence of
inverses of the sample Hessian converges in probability to
the true Hessian: limτ→∞(q̄τ )−1 = (q′)−1. Alternately, (ii)
the perturbation of the sample Hessian from its mean is
bounded. Let Pτ−1 consist of the history of the stochas-
tic Newton iterations: the data samples and the parameters
for the first τ − 1 iterations. Let gτ = os(fτ ) denote an
almost uniformly bounded stochastic order of magnitude.
The stochastic o-notation is similar to regular o-notation,
except that we are allowed to ignore measure-zero events
and E[os(fτ )] = fτ . The alternate convergence criteria is a
concentration of measure statement:

E[q̄τ |Pτ−1] = q̄τ + os(1/τ).

For Equation 8 this condition is easy to verify:

E[q̄τ |Pτ−1] =

„
1− 2

τ

«
q̄τ−1 +

2

τ
E[q̂′τ |Pτ−1]

since Pτ−1 contains q̄τ−1. Any perturbation from the mean
is due to the second term. If q̂ is invertible then its ele-
ments are uniformly bounded, and so are the elements of
E[q̂τ |Pτ−1]; since this term has bounded elements and is
scaled by 2/τ it follows that the perturbation is os(1/τ).
One may fold in an instantaneous Hessian that is not in-
vertible, so long as the moving average q̄ remains invertible.
The above proves the convergence of a factor to the value
which minimizes the expected loss, assuming the other fac-
tors are fixed. With respect to the alternating projection,



we only have convergence to a local optima of the empirical
loss L.

6. RELATED WORK
Collective matrix factorization provides a unified view of

matrix factorization for relational data: different methods
correspond to different distributional assumptions on indi-
vidual matrices, different schemas tying factors together,
and different optimization procedures. We distinguish our
work from prior methods on three points: (i) competing
methods often impose a clustering constraint, whereas we
cover both cluster and factor analysis (although our exper-
iments focus on factor analysis); (ii) our stochastic Newton
method lets us handle large, sparsely observed relations by
taking advantage of decomposability of the loss; and (iii)
our presentation is more general, covering a wider variety
of models, schemas, and losses. In particular, for (iii), our
model emphasizes that there is little difference between fac-
toring two matrices versus three or more; and, our opti-
mization procedure can use any twice differentiable decom-
posable loss, including the important class of Bregman di-
vergences. For example, if we restrict our model to a single
relation E1 ∼ E2, we can recover all of the single-matrix
models mentioned in Sec. 2.2. While our alternating pro-
jections approach is conceptually simple, and allows one to
take advantage of decomposability, there is a panoply of al-
ternatives for factoring a single matrix. The more popular
ones includes majorization [22], which iteratively minimize
a sequence of convex upper bounding functions tangent to
the objective, including the multiplicative update for NMF
[21] and the EM algorithm, which is used both for pLSI
[19] and weighted SVD [32]. Direct optimization solves the
non-convex problem with respect to (U, V ) using gradient
or second-order methods, such as the fast variant of max-
margin matrix factorization [30].

The next level of generality is a three-entity-type model
E1 ∼ E2 ∼ E3. A well-known example of such a schema is
pLSI-pHITS [13], which models document-word counts and
document-document citations: E1 = words and E2 = E3 =
documents, but it is trivial to allow E2 6= E3. Given relations
E1 ∼ E2 and E2 ∼ E3, with corresponding integer relationship
matrices X(12) and X(23), the likelihood is

L = αX(12) ◦ log
“
UV T

”
+ (1− α)X(23) ◦ log

“
V ZT

”
, (9)

where the parameters U , V , and Z correspond to probabil-

ities uik = p(x
(1)
i | hk), vik = p(hk | x(2)

i ), and zik = p(x
(3)
i |

hk) for clusters {h1, . . . , hK}. Probability constraints re-
quire that each column of U , V T , and Z must sum to one,
which induces a clustering of entities. Since different enti-
ties can participate in different numbers of relations (e.g.,
some words are more common than others) the data ma-

trices X(12) and X(23) are usually normalized; we can en-
code this normalization using weight matrices. The objec-
tive, Equation 9, is the weighted average of two probabilistic
LSI [19] models with shared latent factors hk. Since each
pLSI model is a one-matrix example of our general model,
the two-matrix version can be placed within our framework.

Matrix co-clustering techniques have a stochastic constraint:
if an entity increases its membership in one cluster, it must
decrease its membership in others clusters. Examples of ma-
trix and relational co-clustering include pLSI, pLSI-pHITS,
the symmetric block models of Long et. al. [23, 24, 25],

and Bregman tensor clustering [5] (which can handle higher
arity relations). Matrix analogues of factor analysis place
no stochastic constraint on the parameters. Collective ma-
trix factorization has been presented using matrix factor
analyzers, but the stochastic constraint, that each row of
U (r) sums to 1, distributes over the alternating projection

to an equality constraint on each update of U
(r)
i· . This ad-

ditional equality constraint can be folded into the Newton
step using a Lagrange multiplier, yielding an unconstrained
optimization (c.f., ch. 10 [9]). Comparing the extension of
collective matrix factorization to the alternatives above is a
topic for future work. It should be noted that our choice of
X = UV T is not the only one for matrix factorization. Long
et. al. [23] proposes a symmetric block model X ≈ C1AC

T
2 ,

where C1 ∈ {0, 1}n1×k and C2 ∈ {0, 1}n2×k are cluster indi-
cator matrices, and A ∈ Rk×k contains the predicted output
for each combination of row and column clusters. Early work
on this model uses a spectral relaxation specific to squared
loss [23], while later generalizations to regular exponential
families [25] use EM. An equivalent formulation in terms of
regular Bregman divergences [24] uses iterative majorization
[22, 34] as the inner loop of alternating projection. An im-
provement on Bregman co-clustering accounts for systematic
biases, block effects, in the matrix [1].

The three-factor schema E1 ∼ E2 ∼ E3 also includes su-
pervised matrix factorization. In this problem, the goal is to
classify entities of type E2: matrix X(12) contains class la-
bels according to one or more related concepts (one concept

per row), while X(23) lists the features of each entity. An
example of a supervised matrix factorization algorithm is
the support vector decomposition machine [29]: in SVDMs,

the features X(23) are factored under squared loss, while the
labels X(12) are factored under Hinge loss. A similar model
was proposed by Zhu et al. [37], using a once-differentiable
variant of the Hinge loss. Another example is supervised
LSI [35], which factors both the data and label matrices un-
der squared loss, with an orthogonality constraint on the
shared factors. Principal components analysis, which fac-
tors a doubly centered matrix under squared loss, has also
been extended to the three-factor schema [36].

Another interesting type of schema contains multiple par-
allel relations between two entity types. An example of this
sort of schema is max-margin matrix factorization (MMMF)
[30]. In MMMF, the goal is to predict ordinal values, such
as a user’s rating of movies on a scale of {1, . . . , R}. We
can reduce this prediction task to a set of binary threshold
problems, namely, predicting r ≥ 1, r ≥ 2, . . . , r ≥ R. If
we use a Hinge loss for each of these binary predictions and
add the losses together, the result is equivalent to a collec-
tive matrix factorization where E1 are users, E2 are movies,
and E1 ∼u E2 for u = 1 . . . R are the binary rating prediction
tasks. In order to predict different values for the R different
relations, we need to allow the latent factors U (1) and U (2)

to contain some untied columns, i.e., columns which are not
shared among relations. For example, the MMMF authors
have suggested adding a bias term for each rating level or for
each (user, rating level) pair. To get a bias for each (user,

rating level) pair, we can append R untied columns to U (1),
and have each of these columns multiply a fixed column of
ones in U (2). To get a shared bias for each rating level, we
can do the same, but constrain each of the untied columns
in U (1) to be a multiple of the all-ones vector.



7. EXPERIMENTS

7.1 Movie Rating Prediction
Our experiments focus on two tasks: (i) predicting whether

a user rated a particular movie: israted; and (ii) predicting
the value of a rating for a particular movie: rating. User
ratings are sampled from the Netflix Prize data [27]: a rat-
ing can be viewed as a relation taking on five ordinal values
(1-5 stars), i.e., Rating(user, movie). We augment these rat-
ings with two additional sources of movie information, from
the Internet Movie Database [20]: genres for each movie,
encoded as a binary relation, i.e., HasGenre(movie, genre);
and a list of actors in each movie, encoded as a binary rela-
tion, i.e., HasRole(actor, movie). In schema notation E1 cor-
responds to users, E2 corresponds to movies, E3 corresponds
to genres, and E4 corresponds to actors. Ordinal ratings are
denoted E1 ∼1 E2; for the israted task the binarized ver-
sion of the ratings is denoted E1 ∼2 E2. Genre membership
is denoted E2 ∼ E3. The role relation is E2 ∼ E4.

There is a significant difference in the amount of data for
the two tasks. In the israted problem we know whether
or not a user rated a movie for all combinations of users
and movies, so the ratings matrix has no missing values.
In the rating problem we observe the relation only when a
user rated a movie—unobserved combinations of users and
movies have their data weight set to zero.

7.1.1 Model and Optimization Parameters
For consistency, we control many of the model and opti-

mization parameters across the experiments. In the israted
task all the relations are binary, so we use a logistic model:
sigmoid link with the matching log-loss. To evaluate test er-
ror we use mean absolute error (MAE) for both tasks, which
is the average zero-one loss for binary predictions. Since the
data for israted is highly imbalanced in favour of movies
not being rated, we scale the weight of those entries down
by the fraction of observed relations where the relation is
true. We use `2 regularization throughout. Unless other-
wise stated the regularizers are all G(U) = 105||U ||2F /2. In
Newton steps, we use an Armijo line search, rejecting up-
dates with step length smaller than η = 2−4. In Newton
steps, we run till the change in training loss falls below 5%
of the objective. Using stochastic Newton, we run for a fixed
number of iterations.

7.2 Relations Improve Predictions
Our claim regarding relational data is that collective fac-

torization yields better predictions than using a single ma-
trix. We consider the israted task on two relatively small
data sets, to allow for repeated trials. Since this task in-
volves a three factor model there is a single mixing factor,
α in Equation 3. We learn a model for several values of
α, starting from the same initial random parameters, using
full Newton steps. The performance on a test set, entries
sampled from the matrices according to the test weights,
is measured at each α. Each trial is repeated ten times to
provide 1-standard deviation error bars.

Two scenarios are considered. First, where the users and
movies were sampled uniformly at random; all genres that
occur in more than 1% of the movies are retained. We only
use the users’ ratings on the sampled movies. Second, where
we only sample users that rated at most 40 movies, which
greatly reduces the number of ratings for each user and each
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Figure 1: Test errors (MAE) for predicting whether
a movie was rated, and the genre, on the dense rat-
ing example.
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Figure 2: Test errors (MAE) for predicting whether
a movie was rated, and the genre, on sparse rating
example.

movie. In the first case, the median number of ratings per
user is 60 (the mean, 127); in the second case, the median
number of ratings per user is 9 (the mean, 10). In the first
case, the median number of ratings per movie is 9 (the mean,
21); in the second case, the median number of ratings per
movie is 2 (the mean, 8). In the first case we have n1 = 500
users and n2 = 3000 movies and in the second case we have
n1 = 750 users and n2 = 1000 movies. We use a k = 20
embedding dimension for both matrices.

The dense rating scenario, Figure 1, shows that collec-
tive matrix factorization improves both prediction tasks:
whether a user rated a movie, and which genres a movie
belongs to. When α = 1 the model uses only rating infor-
mation; when α = 0 it uses only genre information.

In the sparse rating scenario, Figure 2, there is far less
information in the ratings matrix. Half the movies are rated
by only one or two users. Because there is so little infor-
mation between users, the extra genre information is more
valuable. However, since few users rate the same movies
there is no significant improvement in genre prediction.

We hypothesized that adding in the roles of popular ac-
tors, in addition to genres, would further improve perfor-
mance. By symmetry the update equation for the actor
factor is analogous to the update for the genre factor. Since
there are over 100,000 actors in our data, most of which
appear in only one or two movies, we selected 500 popu-
lar actors (those that appeared in more than ten movies).
Under a wide variety of settings for the mixing parameters
{α(12), α(23), α(24)} there was no statistically significant im-
provement on either the israted or rating task.
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Figure 3: Behaviour of Newton vs. Stochastic New-
ton on a three-factor model.

7.3 Stochastic Approximation
Our claim regarding stochastic optimization is that it pro-

vides an efficient alternative to Newton updates in the al-
ternating projections algorithm. Since our interest is in the
case with a large number of observed relations we use the
israted task with genres. There are n1 = 10000 users,
n2 = 2000 movies, and n3 = 22 of the most common genres
in the data set. The mixing coefficient is α = 0.5. We set
the embedding dimension of both factorizations to k = 30.

On this three factor problem we learn a collective ma-
trix factorization using both Newton and stochastic Newton
methods with batch sizes of 25, 75, and 100 samples per
row. The batch size is larger than the number of genres,
and so they are all used. Our primary concern is sampling
the larger user-movie matrix. Using Newton steps ten cycles
of alternating projection are used; using stochastic Newton
steps thirty cycles are used. After each cycle, we measure
the training loss (log-loss) and the test error (mean absolute
error), which are plotted against the CPU time required to
reach the given cycle in Figure 3. This experiment was re-
peated five times, yielding 2-standard deviation error bars.

Using only a small fraction of the data we achieve results
comparable to full Newton after five iterations. At batch
size 100, we are sampling 1% of the users and 5% of the
movies; yet its performance on test data is the same as a full
Newton step given 8x longer to run. Diminishing returns
with respect to batch size suggests that using very large
batches is unnecessary. Even if the batch size were equal
to max{n1, n2, n3} stochastic Newton would not return the
same result as full Newton due to the 1/τ damping factor
on the sample Hessian.

It should be noted that rating is a computationally sim-
pler problem. On a three factor problem with n1 = 100000
users, n2 = 5000 movies, and n3 = 21 genres, with over
1.3M observed ratings, alternating projection with full New-
ton steps runs to convergence in 32 minutes on a single 1.6
GHz CPU. We use a small embedding dimension, k = 20,
but one can exploit common tricks for large Hessians. We
used the Poisson link for ratings, and the logistic for genres;
convergence is typically faster under the identity link.

7.4 Comparison to pLSI-pHITS
In this section we provide an example where the addi-

tional flexibility of collective matrix factorization leads to
better results; and another where a co-clustering model,
pLSI-pHITS, has the advantage.

We sample two instances of israted, controlling for the
number of ratings each movie has. In the dense data set,

the median number of ratings per movie (user) is 11 (76);
in the sparse data set, the median number of ratings per
movie (user) is 2 (4). In both cases there are 1000 randomly
selected users, and 4975 randomly selected movies, all the
movies in the dense data set.

Since pLSI-pHITS is a co-clustering method, and our col-
lective matrix factorization model is a link prediction method,
we choose a measure that favours neither inherently: rank-
ing. We induce a ranking of movies for each user, measur-
ing the quality of the ranking using mean average precision
(MAP) [18]: queries correspond to user’s requests for rat-
ings, “relevant” items are the movies of the held-out links,
we use only the top 200 movies in each ranking2, and the
averaging is over users. Most movies are unrated by any
given user, and so relevance is available only for a fraction
of the items: the absolute MAP values will be small, but
relative differences are meaningful. We compare four differ-
ent models for generating rankings of movies for users:

CMF-Identity: Collective matrix factorization using iden-
tity prediction links, f1(θ) = f2(θ) = θ and squared loss.
Full Newton steps are used. The regularization and opti-
mization parameters are the same as those described in Sec-
tion 7.1.1, except that the smallest step length is η = 2−5.
The ranking of movies for user i is induced by f(Ui·V

T ).

CMF-Logistic: Like CMF-Identity, except that the match-
ing link and loss correspond to a Bernoulli distribution, as
in logistic regression: f1(θ) = f2(θ) = 1/(1 + exp−θ).

pLSI-pHITS: Makes a multinomial assumption on each
matrix, which is somewhat unnatural for the rating task—
a rating of 5 stars does not mean that a user and movie
participated in the rating relation five times. Hence our use
of israted. We give the regularization advantage to pLSI-
pHITS. The amount of regularization β ∈ [0, 1] is chosen
at each iteration using tempered EM. The smaller β is, the
stronger the parameter smoothing towards the uniform dis-
tribution. We are also more careful about setting β than
Cohn et. al. [13], using a decay rate of 0.95 and minimum β
of 0.7. To have a consistent interpretation of iterations be-
tween this method and CMF, we use tempering to choose the
amount of regularization, and then fit the parameters from
a random starting point with the best choice of β. Movie
rankings are generated using p(movie|user).
Pop: A baseline method that ignores the genre information.
It generates a single ranking of movies, in order of how fre-
quently they are rated, for all users.

In each case the models, save popularity ranking, have em-
bedding dimension k = 30 and run for at most 10 iterations.
We compare on a variety of values of α, but we make no
claim that mixing information improves the quality of rank-
ings. Since α is a free parameter we want to confirm the
relative performance of these methods at several values. In
Figure 4, collective matrix factorization significantly out-
performs pLSI-pHITS on the dense data set; the converse
is true on the sparse data set. Ratings do not benefit from
mixing information in any of the approaches, on either data
set. While the flexibility of collective matrix factorization
has its advantages, especially computational ones, we do not
claim unequivocal superiority over relational models based
on matrix co-clustering.

2The relations between the curves in Figure 4 are the same
if the rankings are not truncated.
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Figure 4: Ranking movies for users on a data set
where each movie has many ratings (dense) or only
a handful (sparse). The methods are described in
Section 7.4. Errors bars are 1-standard deviation.

8. CONTRIBUTIONS
We present a unified view of matrix factorization, building

on it to provide collective matrix factorization as a model
of pairwise relational data. Experimental evidence suggests
that mixing information from multiple relations leads to
better predictions in our approach, which complements the
same observation made in relational co-clustering [23]. Un-
der the common assumption of a decomposable, twice differ-
entiable loss, we derive a full Newton step in an alternating
projection framework. This is practical on relational do-
mains with hundreds of thousands of entities and millions
of observations. We present a novel application of stochas-
tic approximation to collective matrix factorization, which
allows one handle even larger matrices using a sampled ap-
proximation to the gradient and Hessian, with provable con-
vergence and a fast rate of convergence in practice.
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