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Abstract. This paper presents an interdisciplinary investigation of statistical 

information retrieval (IR) techniques for protein identification from tandem 

mass spectra, a challenging problem in proteomic data analysis. We formulate 

the task as an IR problem, by constructing a “query vector” whose elements are 

system-predicted peptides with confidence scores based on spectrum analysis of 

the input sample, and by defining the vector space of “documents” with protein 

profiles, each of which is constructed based on the theoretical spectrum  of a 

protein. This formulation establishes a new connection from the protein 

identification problem to a probabilistic language modeling approach as well as 

the vector space models in IR, and enables us to compare fundamental 

differences in the IR models and common approaches in protein identification.  

Our experiments on benchmark spectrometry query sets and large protein 

databases demonstrate that the IR models significantly outperform well-

established methods in protein identification, by enhancing precision in high-

recall regions in particular, where the conventional approaches are weak. 
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1 Introduction 

Statistical pattern matching technologies have been successfully applied to many real-

world problems. Among those, text-based information retrieval (IR) is perhaps one of 

the most intensively studied and highly successful areas. Computational biology is 

another important area where pattern matching plays a key role in various forms of 

data analysis.  This paper presents an interdisciplinary investigation, focusing on how 

to generalize good ideas and successful technologies in one domain (IR) into new 

insights and novel solutions in another (computational proteomics). Specifically, we 

focus on the problem of protein identification from detected peptides in tandem mass 

spectra.  

Protein identification is important for discovering biomarkers linked to diseases, 

therapeutic outcomes and individualized drug toxicity. Tandem mass (MS/MS) 

spectra, generated by a chemical process over complex biological samples such as 

tissues or blood, contain rich information about proteins and peptides which are 

constituents of proteins.  Protein identification from MS/MS data is typically carried 
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out in two steps.  Step 1 is to predict peptides based on observed empirical spectra, 

and step 2 is to predict proteins based on the predicted peptides.  Many technical 

solutions have been developed for the peptide identification step in the past two 

decades, including commercially available software [1], [2], [4], [5], [6], [7], [8].  

However, for the second step, the current literature is relatively sparse. Particularly, 

few interdisciplinary investigations were conducted for exploring the potential of 

advanced IR technologies in solving the mapping from predicted peptides to proteins. 

Addressing this research gap is the primary motivation of this paper, and we focus on 

the second step in particular, i.e., the mapping from system-predicted peptides to the 

true proteins in large protein databases.  

 Why would it be beneficial to bridge the technical and methodological gaps 

between the fields of protein identification and text retrieval?  At first glance, the two 

tasks look totally different.  However, at a higher level of abstraction, the two tasks 

and related technical solutions have important properties in common. If we consider 

peptides as words, proteins as documents, and peptide identification from spectra as a 

query generation process, then the mapping from predicted peptides to proteins in a 

protein database is just like ad-hoc retrieval in a vector space, albeit a particularly 

high-dimensional one. A database with tens of thousands of proteins would contain 

tens of millions of unique peptides. Some common peptides could be considered in 

analogous to stop-words in text, while the majority of peptides are much rarer, form a 

highly skewed distribution over proteins.  This means that the rich body of research 

findings in text retrieval would provide meaningful insights into how to weight 

peptides in proteins, how to combine peptide-level evidence into predictions of 

proteins, and how to leverage state-of-the-art IR methods directly or with adaptation, 

including efficient inverted indexing, effective term weighting schemes, smoothing 

and dimensionality reduction techniques, choices of similarity measure in retrieval 

models, well-understood evaluation metrics, and standardized software toolkits like 

Lemur and Indri [9][10]. In order to leverage those potentials we need a good 

understanding of the background knowledge and related literature, including how 

biological samples, MS/MS spectra, peptides and protein sequences are related to 

each other,  what kinds of technical solutions have been developed for peptide 

identification from spectra and for protein identification from predicted peptides, how 

the current solutions have been evaluated and compared, what the strengths and 

weaknesses of those methods, and how can we apply or adapt retrieval techniques to 

create better solutions.  Achieving such an understanding is the primary contribution 

we target in this paper.  Specifically, our main contributions can be listed as:  

1) A new formulation of the protein-prediction task that enables probabilistic 

modeling with joint use of well-established peptide identification techniques and 

domain knowledge about protein sequences, as well as the rich developments in 

IR on language modeling and vector space models.  

2) A comparative theoretical analysis of two probabilistic models for combining 

peptide-level evidence in the prediction of in-sample proteins: one is the well-

establish method by Nesvizhskii et al., which scores candidate proteins based on 

estimated probability of a Boolean OR function, and the other is a language-

modeling method that we propose, which uses the estimated probability of a 

Boolean AND instead.  We show that the former has a weakness in 
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discriminating true positives from false positives in the high-recall region of the 

system’s predictions, and that the latter addresses such a weakness in a 

principled way. 

3) A thorough evaluation on standard MS/MS datasets and large protein databases 

for comparison of methods, including probabilistic OR, probabilistic AND, 

cosine-similarity with a robust TF-IDF term weighting scheme, and the 

commonly used X!Tandem commercial software in proteomic applications. We 

observed significant performance enhancement by the IR models tested over the 

conventional methods in the current literature of protein identification from 

tandem mass spectra . 

The rest of the paper is organized as follows. Section 2 outlines related background 

and representative approaches in protein identification from tandem mass spectra. 

Section 3 defines our new framework and discusses its connection to well-established 

techniques in text retrieval.  Section 4 introduces three benchmark query sets 

(spectrometry samples) and the corresponding large protein databases for empirical 

evaluation. Section 5 reports the experiments and the results. Section 6 summarizes 

the main findings and conclusions. 

2 Background and Related Work 

Statistical approaches for data analysis with tandem mass spectra is an important and 

fast growing area in recent computational biology research.  Analogous and 

complementary  to micro-array data which are highly informative for analyzing gene-

level activities under various conditions, MS/MS spectra contain rich information 

about proteins which are potentially responsible for diseases, therapeutic responses 

and drug toxicity [3]. MS/MS spectra are generated using liquid chromatography 

where a sampled tissue or a blood drop is digested into peptides which are segments 

of protein sequences. The peptides are further separated into ionized fragments and 

analyzed to produce MS/MS spectra. Each spectrum is a list of spikes: the location of 

each spike is the mass/charge (m/z) ratio of an ionized fragment, and the magnitude of 

the spike is the abundance or intensity of the fragment.  An input sample is typically a 

mixture of multiple proteins but the exact number of proteins is unknown in advance. 

Standard MS/MS datasets for benchmark evaluations were typically constructed for 

sample mixtures that contain a dozen or a few dozens of proteins [19]. The numbers 

of MS/MS spectra obtained from those samples are in the range of a few thousands.  

The task of protein identification is to find a mapping from the few thousands of 

observed MS/MS spectra to the true proteins in the input sample. It is typically 

accomplished in two steps: first, identify the peptides based on observed spectra; 

second, predict proteins based by system-predicted peptides.   

In peptide identification research, database search techniques have been 

commonly used to select a candidate set of peptides based on the degree of matching 

between the “theoretical” (expected) mass spectra of candidate peptides in a protein 

database  and the empirical spectra in the input sample [1],[2],[4],[5],[6], [7], [8].  The 

theoretical spectrum of each peptide can be automatically derived by rules from the 

amino acid sequences of proteins. Each known protein has a unique amino acid 
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sequence, which can be segmented by rules into peptide-level subsequences. The 

theoretical spectrum of each peptide can also be automatically generated based on 

existing knowledge about lower-level chemical properties of amino acid letters. The 

number of unique peptides in a protein database can be very large. For example, we 

found roughly 5 million unique peptides in a sample of 50,000 proteins as typical.   

By comparing each theoretical spectrum against the empirical spectra in an input 

sample, a system obtains a confidence score of each candidate peptide. Further, 

applying some threshold to the confidence scores yields peptide assignments by the 

system. The similarity measures differ from system to system. SEQUEST, for 

example, one of the most commonly used commercial programs in practical 

applications as well as in comparative evaluations of peptide identification methods 

on benchmark datasets, employs a Fourier Transform cross-correlation strategy [4]. 

X!Tandem is another popular open-source software for peptide/protein identification 

and has been commonly used as a baseline in comparative evaluations. It uses 

aggressive thresholds to reduce false-alarms and to enhance computational efficiency, 

and produces a ranked list of proteins for each input sample [21]. 

In protein identification based on system-predicted peptides from MS/MS 

spectra, the ProteinProphet system by Nesvizhskii et al [12] is among the most 

commonly used in comparative evaluations of methods on benchmark datasets.  This 

system uses SEQUEST-predicted peptides as the input, and converts the non-

probabilistic confidence scores by SEQUEST to the probabilistic scores for peptide 

assignments. Specifically, they used the Expectation-Maximization (EM) algorithm to 

obtain a mixture model for true positives and false positives in system-predicted 

peptides. Some empirical evaluations [6] showed performance improvement by the 

score refinement method over that of the original SEQUEST. ProteinProphet 

estimates the probability of each protein being present in the input sample using the 

probability that at least one of the constituent peptides in the protein is a corrected 

assignment to the sample. To be explicit, suppose ]1,0[jq is the estimated 

probability of the presence of peptide j in the input sample. The probability that a 

protein i  is present in the input sample is calculated in ProteinProphet as 





J

j
ji qp

1

)1(1  . 

This formula calculates the estimated probability of the Boolean-OR function over the 

peptide-level evidence, assuming that the occurrence (being present or not) of each 

peptide is an identically independently distributed (i.i.d.) random event with 

jq j  ],1,0[ .  If any constituent peptide of a protein is predicted as present by the 

system, we have jq j  ,1 and 1ip as the consequence. Clearly, the protein scoring 

function in ProteinProphet is the estimated probability for Boolean OR logic. We will 

refer to this method as prob-OR in the rest of the paper. A refined version of this 

method is also supported by the system, i.e., an EM algorithm is used to find hidden 

groups of proteins, and the peptide probabilities are estimated conditioned on the 

hidden groups of proteins instead of individual proteins.  

Other work of a similar nature in protein identification includes that by MacCoss 

et al. [11] who used a modified version of SEQUEST to generate peptide assignments 
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with normalized scores, and performed protein-level predictions with a prob-OR 

equivalent operation. Moore et al. [13] pursued a different but heuristic approach: 

after aggressive removal of low-scoring candidate peptides, the product of the scores 

of the remaining peptides that constitute a protein sequence is used to estimate the 

quality of the match for the protein.  Theoretical comparison of their method with the 

probabilistic models (including Nesvizhskii et al., and others) is difficult because their 

scoring functions are heuristically or procedurally defined, not explicitly probabilistic; 

empirical comparison was not reported on the other hand. The recent work by Li et. 

al. [22] presents another interesting alternative which predicts proteins by modeling 

the input sample as a multi-protein mixture and finding the Maximum-a-Posteriori 

(MAP) solution for the mixture weights. They used Gibbs sampling as an 

approximation method because solving MAP exactly is computationally intractable.  

Although no theoretical upper/lower bound is guaranteed by the approximation, an 

empirical evaluation on a new (their own) dataset shows improved results over that of 

Nesvizhskii’s method (prob-OR). However, repeating this comparative evaluation has 

been difficult as the dataset is not publicly available, and no sufficient details were 

published about how to reconstruct the dataset from publicly available protein 

databases. Other indirectly related work includes CHOMPER [14], INTERACT [15] 

and DTASelect [16], which focus on visualization and filtering tools for manual 

interaction in protein identification, and Mascot [3] and Sonar [17] which focus on 

commercial tool development.  

3 Methods 

The desiderata for a new approach are: 1) a theoretically justified function (or family 

of functions) for  combining peptide-level evidence, and 2) higher performance in 

standard metrics such as average precision, compared to the best results reported in 

the MS/MS literature.  To address these objectives we turn to modern IR approaches 

for mapping predicted peptides to proteins.  

Notice that the commonly used prob-OR type of functions in protein scoring has 

a potential weakness. That is, it has the tendency to produce many false alarms due to 

an overly simplistic assumption because if any constituent peptide of a protein is 

detected, then the protein is assumed as a correct assignment.  As an alternative, we 

propose a mapping with stronger constraints, i.e. using a probabilistic AND (prob-

AND) function to combine evidence in predicted peptides. More precisely, we 

propose to  

1) translate the predicted peptides into an empirical in-sample distribution of 

peptides as observed in the MS/MS spectra; 

2) use the relative frequencies of peptides in the amino acid sequence of each 

protein as the protein profile; and  

3) measure the Kullback-Leibler (KL) divergence of each protein-specific 

distribution of peptides from the sample distribution of peptides.   

These steps together accomplish a prob-AND mapping from the predicted peptides to 

candidate proteins with probabilistic scores.   
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3.1 Data representations  

The input to our protein identification system is a set of peptides with confidence 

scores which are produced by a well-established method for peptide identification 

from a sample of MS/MS spectra [6]. We present the scored peptides using a vector 

),,
2
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1
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 whose elements ]1,0[jq  are normalized so that they sum to one, 

and J is the number of total unique peptides being identified.  For convenience, we 

call vector q


 the “query” for protein search. Notice that a peptide identification 

method may not generate normalized scores. In that case, we translate scores as 

following: 
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We also define a normalized vector ( profile) for each protein in the target database 

(DB) as:  

 

 


J
j ij

n

ij
n

ij
pppp

i
p iJii

1

),,,,(
21



, 

where ijn  is the count of peptide j in protein i. Notice that query normalization is 

generally not required in text retrieval methods because it does not effect the ranking 

of documents given a query.  Similarly, in our mapping from a “bag” of system-

predicted peptides to protein profiles, query normalization does not affect the ranking 

of proteins given a query. However, with explicit normalization of both the query 

vector and protein profiles we can intuitively interpret the mapping criterion based  

the KL-divergence between the two types of vectors (Section 3.2).  

We smooth the peptide probabilities using a Dirichlet prior [18], modifying the 

elements as  


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Parameter μ controls the degree of smoothing, and ]1,0[j  is calculated as: 

   
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Smoothing is a crucial step in the formulation of protein profiles. As discussed earlier, 

the peptide identification step identifies peptides in the sample which are the result of 

the protein cleavage, i.e. breaking of protein into its constituent peptides upon the 

reaction with a chemical cleaving agent (e.g. Trypsin). It is not guaranteed that each 
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protein breaks at every peptide boundary (phenomenon known as miscleavage), and 

consequently, not every constituent peptide is necessarily observed and not every 

observed component is necessarily a valid peptide. Smoothing therefore is necessary 

for assigning non-zero weights to unobserved peptides, just as the out-of-vocabulary 

words need to be handled in language modeling for document retrieval.  To ensure 

that all the observed components (both valid peptides and peptide concatenations) are 

taken into account, we simulated miscleavages in  creation of protein profiles.  

Why do we construct protein profiles in the above way? Because we want to 

leverage the domain knowledge about amino acid sequences and establish the 

mapping from peptides to proteins accordingly. Ideally, we would like to have a large 

training set of MS/MS spectra with explicitly labeled correspondences to positively 

and negatively related proteins in a target database, which would enable supervised 

learning of the conditional distribution of peptides given a protein in MS/MS samples.  

However, such a large training set would be very expensive to produce and is not 

currently available in open-source benchmark datasets for protein identification 

evaluations. The only knowledge we have for relating predicted peptides for an input 

sample to the proteins in a target database are 1) the peptide occurrences in amino 

acid sequences of proteins, and 2) the expected (theoretical) spectrum of each valid 

peptide. Thus, we stay with the unsupervised setting for the mapping problem, i.e., by 

constructing a peptide-based profile for each protein, and by conducting proximate-

search over protein profiles given a synthetic query. The normalization of both the 

query vector and the profile vectors of proteins enables probabilistic interpretation for 

the mapping criterion, and avoids an unjustified bias of favoring longer proteins (i.e. 

with a larger number of constituent peptides) over shorter ones, as present in the prob-

OR approaches.  As for the need of smoothing, it is well understood in statistical 

learning theory and practice that model smoothing is particularly important when the 

feature (input variable) space is very large and the observed data is highly sparse.  In 

our problem, the feature space consists of a large number of peptides, with a skewed 

distribution over a modest number of protein sequences. For example, the PPK 

benchmark dataset (Section 4) contains 4,534 proteins and 325,812 unique peptides. 

This means that most protein profiles are both high-dimensional and extremely 

sparse, and that appropriate smoothing is necessary for successful mapping from a 

query to candidate proteins.  

3.2 Protein scoring based on prob-AND  

The choice of scoring criterion is obviously crucial for successful ranking of proteins 

given a query.  We may consider the presence or absence of a peptide in the predicted 

list as a random variable, where the randomness comes from both the sampled protein 

mixture, and the noisy process of generating MS/MS spectra from the protein 

mixture. Consequently, we may view vector q


 as the empirically observed in-sample 

distribution of peptides in an unknown protein mixture.  Similarly, we may view 

vector ip


 as the “theoretical” peptide distribution in a specific protein, derived based 

on the amino acid sequences of proteins in a target database, and existing knowledge 

(rules) about how protein sequences decompose to peptides. We use the cross entropy 
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to score each candidate protein with respect to the query.  The cross entropy of the 

two distributions is defined as: 
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The cross entropy decouples into two terms as shown in the last line above: the first 

term )(qH


 is the entropy of the query, which is the same for every protein; the second 

term )||( ipqD


 is the Kullback-Leibler (KL) divergence that determines the relative 

ranking of proteins with respect to the query.  A smaller KL divergence means a 

better matched protein for the query.   

We use prob-AND as the abbreviation of the proposed method. KL divergence 

has been commonly used in language modeling (LM) approaches for ad-hoc text 

retrieval with probabilistic ranking of documents given a query. It is a function 

proportional to the log-likelihood of the query conditioned on the document model 

under the term independence assumption in a multinomial process.  Let 

),,,( 21 Jxxxx 
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 be the vector whose elements are the within-query term frequencies. 

The log-likelihood is estimated as:  
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where the scaling factor Jx xxxN  21   is the total count of term occurrences in 

the query. Except for the scaling factor (which is constant given a query), the log-

likelihood and KL divergence are identical. Therefore, using the multinomial 

probabilistic model to rank documents for a query makes no difference compared to 

using the negation of the KL divergence as the metric.  With respect to ranking 

proteins given a set of predicted peptides, the only difference is that the within-query 

term frequencies are not directly observed but are predicted instead.  Nevertheless, the 

connection between the log-likelihood function and KL divergence shows clearly that 

the logic being used for assembling partial evidence (from individual terms or 

peptides) is probabilistic AND, not probabilistic OR. In other words, KL divergence 

imposes stronger constraints in the mapping from predicted peptides to proteins.  

Probabilistic AND and KL divergence have not been studied for protein identification 

in the current literature, to our knowledge.  
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3.3 Connections to other vector space models for text retrieval 

How are prob-AND and prob-OR related to conventional retrieval Vector Space 

Models (VSMs) in IR? In fact, they are closely related. Let ),,,( 21 iJiii dddd 

 be a 

document vector and define within-document term weighting as  

) doc |  termPr(loglog ijijpijd  , 

The dot-product similarity in a standard VSM is calculated as: 

ijpJ
j jqidqidqsim log

1
)(  




. 

This is exactly the same formula in the prob-AND model, i.e., scoring function based 

on the cross entropy. On the other hand, if we choose 
ijij pd   as the term weighting 

scheme, the dot-product similarity becomes: 
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This is a variant of soft OR. That is, a document (or protein) receives a positive 

weight where as long as any of its terms (or peptides) is found in the query.   In a 

further extreme setting of ijij Id  which is the indicator function with 1),( jiI if 

peptide j is a constituent of protein i and 0),( jiI otherwise, we have: 

), ()|(
query 
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It also mimics the Boolean OR logic in a soft manner, obviously.  There soft-OR 

scoring functions are closely related to the prob-OR metric in ProteinProphet which 

we analyzed in Section 2.   

The connections from prob-OR and prob-AND to conventional VSMs invites a 

question: are they better choices than other variants of VSM, e.g., the commonly used 

cosine similarity with TF-IDF term weighting scheme? Since the latter is not a 

probabilistic scoring function, direct theoretical comparison on the basis of 

probabilistic modeling is impossible. However, an empirical comparison between 

these VSM variants would be highly informative and practically important for a 

thorough investigation on the applicability and effectiveness of advanced IR 

techniques in solving the protein identification problem.  Hence, we report such a 

comparative evaluation in Section 5. 

4 Datasets 

For evaluation and benchmarking of protein identification algorithms, we use 

standard proteomic mixtures whose MS/MS spectra are publicly available. Purvine et 

al in 2003 introduced a standardized proteomics dataset to support comparative 

evaluation which consists of a query set of MS/MS spectra from a mixture of 12 
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proteins and 23 peptides1 and a search database consisting of 4534 proteins [19]. The 

dataset was designed to mimic the complexity of large scale proteomics experiments 

and to serve as a standard in proteomics research. We refer to this dataset as PPK, 

after the authors Purvine S, Picone AF and Kolker E [19]. 

 We also created two more datasets, called Mark12+50000 and Sigma49+50000, 

respectively. The Mark12+50000 dataset consists of a query set of MS/MS spectra 

from a 12-protein mixture (from Invitrogen, Carlsbad CA) called the 'Mark12 

Electrophoresis Standard', and a target protein database which we name as M50000. 

The Sigma49+50000 dataset consists of the query set of MS/MS spectra from a 49 

protein mixture (from Sigma-Andrich, St. Louis MO) and a target protein database 

which we name as S50000. Both query sets were provided by the Mass Spectrometry 

Research Center at Vanderbilt University and have been used as standard benchmarks 

in proteomics research. The target databases were generated by us by drawing two 

random samples from the SwissProt2 protein database, which contains over 280,000 

protein sequences, and then adding Mark12 query-set proteins to one sample and 

Sigma49 query-set proteins to the other sample. We chose the size (50,000) of the 

target protein databases to be comparable to those used in actual proteomic analyses. 

Tables 1 and 2 summarize the datasets3. 

Table 1.   Query set statistics 

Query Set #spectra #proteins #peptides 

PPK (queries) 2995 35 1596 

Mark12 9380 12 1944 

Sigma49 12498 49 4560 

5 Experiments 

We conducted a comparative evaluation with controlled experiments for three 

models: prob-OR, prob-AND, and a standard VSM model (supported by the Lemur) 

which uses TF-IDF (“ltc”) for within-document term weighting and cosine similarity 

for the scoring function.  We name the last method “TFIDF-cosine”. We also used the 

popular X!Tandem software (available online) to generate an alternative baseline. 

                                                                 

1 The query set was generated from 12 proteins and 23 peptides. Each of the peptides was 

treated as a single-peptide protein in evaluation yielding a total of 35 proteins. 

2  http://expasy.org/sprot/ 

3 Datasets will be made publicly available to support comparative evaluation and benchmarking 

at the following URL:  http://nyc.lti.cs.cmu.edu/clair/datasets.htm 
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Table 2. Protein database statistics 

Protein DB #proteins #peptides #relevant proteins 

PPK (protein DB) 4534
 

325,812 35 

M50000 50012 5,149,302 12 

S50000 50049 2,571,642 49 

 

5.1 Experimental Settings 

To ensure a controlled setting, all the four methods share the same query generation 

process. We used the publicly available software of SEQUEST [4] and the 

PeptideProphet4 pipeline to predict peptides from MS/MS data, producing the queries 

shared by all the methods except X!Tandem for retrieving proteins. For the 

experiment with X!Tandem, we use the inbuilt peptide and protein identification tools 

in the open-source software package. When evaluating a method on one dataset, we 

used the remaining two datasets as the validation sets for tuning parameters.  For 

example, when PPK is used as the test set, we tuned the smoothing method and μ 

(smoothing parameter) in prob-AND on Mark12+50000 and Sigma49+50000 as the 

validation datasets5. Based on the results, we chose the Dirichlet prior over Laplace 

as the smoothing method and μ=5000 as the smoothing parameter.  

5.2 Metrics 

The output of each method is a ranked list of predicted proteins for a pre-

specified MS/MS dataset and a protein database. Applying a threshold to the ranked 

list of each method yielded binary decisions and shifting the threshold enables us to 

calculate precision values at different levels of recall. Using TP (true positives), FP 

(false positives), FN (false negatives) and TN (true negatives) to denote the counts of 

predictions in the four corresponding categories, the performance at a fixed threshold 

is measured as: 

Recall = TP / (TP + FN), 

Precision = TP / (TP + FP) 

                                                                 

4 PeptideProphet is a part of the TransProteomicPipeline, a publicly available software toolkit 

for protein identification at   http://tools.proteomecenter.org/software.php 

5 Note that the 50000 proteins in Sigma49+50000 and Mark12+50000 are different independent 

samples drawn from Swissprot. 
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To evaluate the ranking ability of each method, we computed its average precision 

(over all recall levels) per query, and then the mean over all queries.  This produces 

the standard MAP score for each method.  

5.3 Main Results 

The performance of the four methods in average precision is summarized in Table 3.  

The main observations are the following:  

 Prob-OR had a relatively weak performance, with the MAP score significantly 

below the levels of all the other methods except X!Tandem. This observation 

supports our theoretical analysis (Sections 7) on the weakness of the protein 

scoring functions based on Boolean-OR in assembling peptide-level evidence – 

they are not sufficiently powerful for discriminating true positives from false 

positives.  

Table 3. Results summary in average precision (bold case indicates best performance) 

Dataset prob-AND prob-OR 
TFIDF 

cosine 

X!Tandem 

PPK 0.87 0.8 0.84 0.43 

Mark12 0.77 0.66 0.81 0.41 

Sigma49 0.48 0.44 0.49 0.241 

MAP 0.71 0.63 0.71 0.36 

 

 Prob-AND is among the two best methods (the other is TFIDF cosine) on 

average, with a MAP score of 0.71. It outperformed the prob-OR method 

significantly on all the datasets, successfully addressing the main weakness of 

the latter. 

 The TFIDF-cosine method performed equally well as Prob-AND.  This is not 

surprising from the view point of text retrieval model analysis.  It has been 

well-understood that the conventional vector space model (VSM) using cosine 

and TFIDF term weighting is a good approximation of language modeling with 

a multinomial assumption and the Dirichlet prior of corpus-level term 

distribution [18].  And the latter is the foundation of our prob-AND approach.  

On the other hand, it is the first time that the conventional VSM is examined in 

protein identification and compared with prob-AND.  We are pleased to see 

both methods worked equally well on average, and both superior to prob-OR as 

a strong baseline in the computational proteomics literature. 

 X!Tandem, one of the most popular publicly available protein identification 

program that is commonly used as a comparative baseline algorithm,  

performed inferior to the other methods on all three datasets in our 
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experiments. It has been reported in the peptide/protein identification literature 

that X!Tandem differs from SEQUEST significantly in the identified peptides 

(and proteins). X!Tandem usually suffers with poor recall (sensitivity) in the 

peptide identification step  as compared to SEQUEST based approaches [20], 

as a result of an aggressive thresholding strategy for computational efficiency 

and for reducing false alarms in the peptide identification step. Our results of 

X!Tandem agree with the previously reported findings in this sense.  

5.4 Performance in high-recall regions 

While average precision or MAP is well-accepted in evaluations of IR models, they 

may not be sufficiently informative for judging how much the protein identification 

systems would help biologists in reality. Notice that for biologists to verify the 

validity of the system-predicted proteins, wet-lab experiments would be needed and 

the cost would be much higher than what is required for a user to check through a 

ranked list of documents. In other words, dealing with a large number of false alarms 

would be too costly and hence impractical in proteomic data analysis.  With this 

concern, we further analyze the performance of the methods in the high-recall (80%, 

90% and 100%).  

Table 4 shows the average numbers of false positives (FP) for each method at 

fixed levels of recall; the average is computed over the three datasets.  

Table 4.  Results summary in false positive counts (averaged over the 3 datasets) at fixed levels 

of recall  

 Average Number of False Positives 

Recall prob-AND prob-OR TFIDF-cosine 

80% 28 52 28 

90% 74 1002 96 

100% 17746 16631 16586 

 

It can be observed that all the methods achieved 80% recall with a relative small 

number of FP, which is quite encouraging. However, to achieve 90% recall, the FP 

number of prob-OR increased from 92 (at 80% recall) to 1002 which is unacceptably 

high, while prob-AND and TFIDF-cosine retain their low-FP behavior. At the 100% 

recall level, all the methods produced a large number of FP, which is not too 

surprising. X!Tandem did not reach any of the recall levels higher than  60% on all 

the 3 datasets, thus it is not included in the table. 

5.5 Statistical significance tests 

We conducted one-sample proportion tests for comparing the error rates at 90% recall 

levels of the protein identification methods. Table 5 summarizes the results.   



14 Yiming Yang, Abhay Harpale, and Subramaniam Ganapathy 

Table 5. Significance test summary: each element in the matrix indicates the number of 

datasets (out of 3) on which System A significantly outperforms System B with a p-value <  

0.01 

     B 

    A 
prob-AND prob-OR TFIDF-cosine X!Tandem 

prob-AND  3 1 3 

prob-OR 0  0 3 

TFIDF-cosine 06 3  3 

X!Tandem 0 0 0  

 

Comparing the two strongest methods, i.e., prob-AND and TFIDF-cosine, each of 

them significantly outperformed the other on one of the three datasets, and performed 

equally well on the remaining dataset.  Comparing prob-OR with all the others, it 

significantly underperformed prob-AND and TFIDF-cosine on all three datasets. 

X!Tandem performance was inferior to all other approaches on all the datasets.  

6 Conclusion and Future Work 

In this paper, we present the first interdisciplinary investigation on how to leverage 

the rich research insights and successful techniques in IR to better solve the 

challenging problem of protein identification from tandem mass spectra. We 

formulated the problem (the mapping from system-predicted peptides to proteins) as 

an ad-hoc retrieval task, proposed a prob-AND model for combining peptide-level 

evidence in protein retrieval, and conducted a thorough evaluation of these models in 

comparison with a well-established method (prob-OR by Keller et al.) and a common 

baseline method (X!Tandem) in the field of protein-identification and a successful 

vector space model (TFIDF-cosine) in IR.  The results are highly encouraging: we 

obtained significant performance improvements by the prob-AND models and the 

VSM model over the representative baseline methods.  We hope this investigation 

provides useful information and insights for future research in adapting IR techniques 

to proteomic applications, and invites new ideas for further improvements from both 

the IR community and the computational proteomics community.  

Several extensions of the presented work are possible, including modeling the 

queries as a mixture of proteins. Such approaches are likely to rely on sampling and 

greedy approximation strategies as explicitly modeling mixtures of thousands of 

proteins is computationally intractable. One such approach by Li et. al. [22] uses the 

Gibbs Sampling strategy to overcome the computational limitations. It might also be 

possible to reduce the search space of mixtures is by grouping proteins based on co-

occurrences and modeling queries as mixture of such protein groups. We would like 

to explore such approaches in the future..Other important extensions of the presented 

work include addressing the  issues caused by incorrect cleaving of protein sequences 

                                                                 

6 In the published version, this cell contains a 1. That is a typo.  
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into peptides, leveraging n-gram peptides in extended protein profiles, and applying 

supervised or semi-supervised classification and functional analysis to predicted 

proteins in different types of MS/MS data samples, e.g., cancerous vs. normal. Also, 

Nesvizhskii et al. have found that using Expectation Maximization (EM) as an 

additional step for finding hidden groups of proteins and for dealing with degenerate 

peptides can improve the performance of the prob-OR method.  That suggests a 

potential way to further improve prob-AND and the other methods similarly by 

deploying the additional EM step, which is an interesting topic for future research.   
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