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Abstract. This paper presents an interdisciplinary investigation of statistical
information retrieval (IR) techniques for protein identification from tandem
mass spectra, a challenging problem in proteomic data analysis. We formulate
the task as an IR problem, by constructing a “query vector” whose elements are
system-predicted peptides with confidence scores based on spectrum analysis of
the input sample, and by defining the vector space of “documents” with protein
profiles, each of which is constructed based on the theoretical spectrum of a
protein. This formulation establishes a new connection from the protein
identification problem to a probabilistic language modeling approach as well as
the vector space models in IR, and enables us to compare fundamental
differences in the IR models and common approaches in protein identification.
Our experiments on benchmark spectrometry query sets and large protein
databases demonstrate that the IR models significantly outperform well-
established methods in protein identification, by enhancing precision in high-
recall regions in particular, where the conventional approaches are weak.
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1 Introduction

Statistical pattern matching technologies have been successfully applied to many real-
world problems. Among those, text-based information retrieval (IR) is perhaps one of
the most intensively studied and highly successful areas. Computational biology is
another important area where pattern matching plays a key role in various forms of
data analysis. This paper presents an interdisciplinary investigation, focusing on how
to generalize good ideas and successful technologies in one domain (IR) into new
insights and novel solutions in another (computational proteomics). Specifically, we
focus on the problem of protein identification from detected peptides in tandem mass
spectra.

Protein identification is important for discovering biomarkers linked to diseases,
therapeutic outcomes and individualized drug toxicity. Tandem mass (MS/MS)
spectra, generated by a chemical process over complex biological samples such as
tissues or blood, contain rich information about proteins and peptides which are
constituents of proteins. Protein identification from MS/MS data is typically carried
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out in two steps. Step 1 is to predict peptides based on observed empirical spectra,
and step 2 is to predict proteins based on the predicted peptides. Many technical
solutions have been developed for the peptide identification step in the past two
decades, including commercially available software [1], [2], [4], [5], [6], [7], [8].
However, for the second step, the current literature is relatively sparse. Particularly,
few interdisciplinary investigations were conducted for exploring the potential of
advanced IR technologies in solving the mapping from predicted peptides to proteins.
Addressing this research gap is the primary motivation of this paper, and we focus on
the second step in particular, i.e., the mapping from system-predicted peptides to the
true proteins in large protein databases.

Why would it be beneficial to bridge the technical and methodological gaps
between the fields of protein identification and text retrieval? At first glance, the two
tasks look totally different. However, at a higher level of abstraction, the two tasks
and related technical solutions have important properties in common. If we consider
peptides as words, proteins as documents, and peptide identification from spectra as a
query generation process, then the mapping from predicted peptides to proteins in a
protein database is just like ad-hoc retrieval in a vector space, albeit a particularly
high-dimensional one. A database with tens of thousands of proteins would contain
tens of millions of unique peptides. Some common peptides could be considered in
analogous to stop-words in text, while the majority of peptides are much rarer, form a
highly skewed distribution over proteins. This means that the rich body of research
findings in text retrieval would provide meaningful insights into how to weight
peptides in proteins, how to combine peptide-level evidence into predictions of
proteins, and how to leverage state-of-the-art IR methods directly or with adaptation,
including efficient inverted indexing, effective term weighting schemes, smoothing
and dimensionality reduction techniques, choices of similarity measure in retrieval
models, well-understood evaluation metrics, and standardized software toolkits like
Lemur and Indri [9][10]. In order to leverage those potentials we need a good
understanding of the background knowledge and related literature, including how
biological samples, MS/MS spectra, peptides and protein sequences are related to
each other, what kinds of technical solutions have been developed for peptide
identification from spectra and for protein identification from predicted peptides, how
the current solutions have been evaluated and compared, what the strengths and
weaknesses of those methods, and how can we apply or adapt retrieval techniques to
create better solutions. Achieving such an understanding is the primary contribution
we target in this paper. Specifically, our main contributions can be listed as:

1) A new formulation of the protein-prediction task that enables probabilistic
modeling with joint use of well-established peptide identification techniques and
domain knowledge about protein sequences, as well as the rich developments in
IR on language modeling and vector space models.

2) A comparative theoretical analysis of two probabilistic models for combining
peptide-level evidence in the prediction of in-sample proteins: one is the well-
establish method by Nesvizhskii et al., which scores candidate proteins based on
estimated probability of a Boolean OR function, and the other is a language-
modeling method that we propose, which uses the estimated probability of a
Boolean AND instead. We show that the former has a weakness in
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discriminating true positives from false positives in the high-recall region of the
system’s predictions, and that the latter addresses such a weakness in a
principled way.

3) A thorough evaluation on standard MS/MS datasets and large protein databases
for comparison of methods, including probabilistic OR, probabilistic AND,
cosine-similarity with a robust TF-IDF term weighting scheme, and the
commonly used X!Tandem commercial software in proteomic applications. We
observed significant performance enhancement by the IR models tested over the
conventional methods in the current literature of protein identification from
tandem mass spectra .

The rest of the paper is organized as follows. Section 2 outlines related background
and representative approaches in protein identification from tandem mass spectra.
Section 3 defines our new framework and discusses its connection to well-established
techniques in text retrieval. Section 4 introduces three benchmark query sets
(spectrometry samples) and the corresponding large protein databases for empirical
evaluation. Section 5 reports the experiments and the results. Section 6 summarizes
the main findings and conclusions.

2 Background and Related Work

Statistical approaches for data analysis with tandem mass spectra is an important and
fast growing area in recent computational biology research. Analogous and
complementary to micro-array data which are highly informative for analyzing gene-
level activities under various conditions, MS/MS spectra contain rich information
about proteins which are potentially responsible for diseases, therapeutic responses
and drug toxicity [3]. MS/MS spectra are generated using liquid chromatography
where a sampled tissue or a blood drop is digested into peptides which are segments
of protein sequences. The peptides are further separated into ionized fragments and
analyzed to produce MS/MS spectra. Each spectrum is a list of spikes: the location of
each spike is the mass/charge (m/z) ratio of an ionized fragment, and the magnitude of
the spike is the abundance or intensity of the fragment. An input sample is typically a
mixture of multiple proteins but the exact number of proteins is unknown in advance.
Standard MS/MS datasets for benchmark evaluations were typically constructed for
sample mixtures that contain a dozen or a few dozens of proteins [19]. The numbers
of MS/MS spectra obtained from those samples are in the range of a few thousands.
The task of protein identification is to find a mapping from the few thousands of
observed MS/MS spectra to the true proteins in the input sample. It is typically
accomplished in two steps: first, identify the peptides based on observed spectra;
second, predict proteins based by system-predicted peptides.

In peptide identification research, database search techniques have been
commonly used to select a candidate set of peptides based on the degree of matching
between the “theoretical” (expected) mass spectra of candidate peptides in a protein
database and the empirical spectra in the input sample [1],[2],[4].[5].[6], [7], [8]. The
theoretical spectrum of each peptide can be automatically derived by rules from the
amino acid sequences of proteins. Each known protein has a unique amino acid
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sequence, which can be segmented by rules into peptide-level subsequences. The
theoretical spectrum of each peptide can also be automatically generated based on
existing knowledge about lower-level chemical properties of amino acid letters. The
number of unique peptides in a protein database can be very large. For example, we
found roughly 5 million unique peptides in a sample of 50,000 proteins as typical.
By comparing each theoretical spectrum against the empirical spectra in an input
sample, a system obtains a confidence score of each candidate peptide. Further,
applying some threshold to the confidence scores yields peptide assignments by the
system. The similarity measures differ from system to system. SEQUEST, for
example, one of the most commonly used commercial programs in practical
applications as well as in comparative evaluations of peptide identification methods
on benchmark datasets, employs a Fourier Transform cross-correlation strategy [4].
XITandem is another popular open-source software for peptide/protein identification
and has been commonly used as a baseline in comparative evaluations. It uses
aggressive thresholds to reduce false-alarms and to enhance computational efficiency,
and produces a ranked list of proteins for each input sample [21].

In protein identification based on system-predicted peptides from MS/MS
spectra, the ProteinProphet system by Nesvizhskii et al [12] is among the most
commonly used in comparative evaluations of methods on benchmark datasets. This
system uses SEQUEST-predicted peptides as the input, and converts the non-
probabilistic confidence scores by SEQUEST to the probabilistic scores for peptide
assignments. Specifically, they used the Expectation-Maximization (EM) algorithm to
obtain a mixture model for true positives and false positives in system-predicted
peptides. Some empirical evaluations [6] showed performance improvement by the
score refinement method over that of the original SEQUEST. ProteinProphet
estimates the probability of each protein being present in the input sample using the
probability that at least one of the constituent peptides in the protein is a corrected
assignment to the sample. To be explicit, supposeq; [01]is the estimated

probability of the presence of peptide jin the input sample. The probability that a
protein i is present in the input sample is calculated in ProteinProphet as

P :l_lj(l_qj) :

This formula calculates the estimated probability of the Boolean-OR function over the
peptide-level evidence, assuming that the occurrence (being present or not) of each
peptide is an identically independently distributed (i.i.d.) random event with
g, €[0.1],vj. If any constituent peptide of a protein is predicted as present by the

system, we have g, =1,3jand p, =1as the consequence. Clearly, the protein scoring

function in ProteinProphet is the estimated probability for Boolean OR logic. We will
refer to this method as prob-OR in the rest of the paper. A refined version of this
method is also supported by the system, i.e., an EM algorithm is used to find hidden
groups of proteins, and the peptide probabilities are estimated conditioned on the
hidden groups of proteins instead of individual proteins.

Other work of a similar nature in protein identification includes that by MacCoss
et al. [11] who used a modified version of SEQUEST to generate peptide assignments
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with normalized scores, and performed protein-level predictions with a prob-OR
equivalent operation. Moore et al. [13] pursued a different but heuristic approach:
after aggressive removal of low-scoring candidate peptides, the product of the scores
of the remaining peptides that constitute a protein sequence is used to estimate the
quality of the match for the protein. Theoretical comparison of their method with the
probabilistic models (including Nesvizhskii et al., and others) is difficult because their
scoring functions are heuristically or procedurally defined, not explicitly probabilistic;
empirical comparison was not reported on the other hand. The recent work by Li et.
al. [22] presents another interesting alternative which predicts proteins by modeling
the input sample as a multi-protein mixture and finding the Maximum-a-Posteriori
(MAP) solution for the mixture weights. They used Gibbs sampling as an
approximation method because solving MAP exactly is computationally intractable.
Although no theoretical upper/lower bound is guaranteed by the approximation, an
empirical evaluation on a new (their own) dataset shows improved results over that of
Nesvizhskii’s method (prob-OR). However, repeating this comparative evaluation has
been difficult as the dataset is not publicly available, and no sufficient details were
published about how to reconstruct the dataset from publicly available protein
databases. Other indirectly related work includes CHOMPER [14], INTERACT [15]
and DTASelect [16], which focus on visualization and filtering tools for manual
interaction in protein identification, and Mascot [3] and Sonar [17] which focus on
commercial tool development.

3 Methods

The desiderata for a new approach are: 1) a theoretically justified function (or family
of functions) for combining peptide-level evidence, and 2) higher performance in
standard metrics such as average precision, compared to the best results reported in
the MS/MS literature. To address these objectives we turn to modern IR approaches
for mapping predicted peptides to proteins.

Notice that the commonly used prob-OR type of functions in protein scoring has
a potential weakness. That is, it has the tendency to produce many false alarms due to
an overly simplistic assumption because if any constituent peptide of a protein is
detected, then the protein is assumed as a correct assignment. As an alternative, we
propose a mapping with stronger constraints, i.e. using a probabilistic AND (prob-
AND) function to combine evidence in predicted peptides. More precisely, we
propose to

1) translate the predicted peptides into an empirical in-sample distribution of
peptides as observed in the MS/MS spectra;

2) use the relative frequencies of peptides in the amino acid sequence of each
protein as the protein profile; and

3) measure the Kullback-Leibler (KL) divergence of each protein-specific
distribution of peptides from the sample distribution of peptides.

These steps together accomplish a prob-AND mapping from the predicted peptides to
candidate proteins with probabilistic scores.
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31 Data representations

The input to our protein identification system is a set of peptides with confidence
scores which are produced by a well-established method for peptide identification
from a sample of MS/MS spectra [6]. We present the scored peptides using a vector
q:(ql,qz,---,qj)whose elements qj <[01] are normalized so that they sum to one,

and J is the number of total unique peptides being identified. For convenience, we
call vector g the “query” for protein search. Notice that a peptide identification
method may not generate normalized scores. In that case, we translate scores as

following:
a:mn{q]_!qzv"'qu}l b:rrax{q]_!qzv"'qu}l
9@ g
—a j J o
b-a J Zt:]-q'[

We also define a normalized vector ( profile) for each protein in the target database
(DB) as:

n..
~ 1)
p:(p v Pigs oy By )r p.. =—0"—
1 i1 i2 iJ |J J
27 =1

1

where n;; is the count of peptide j in protein i. Notice that query normalization is

generally not required in text retrieval methods because it does not effect the ranking
of documents given a query. Similarly, in our mapping from a “bag” of system-
predicted peptides to protein profiles, query normalization does not affect the ranking
of proteins given a query. However, with explicit normalization of both the query
vector and protein profiles we can intuitively interpret the mapping criterion based
the KL-divergence between the two types of vectors (Section 3.2).

We smooth the peptide probabilities using a Dirichlet prior [18], modifying the
elements as

) nij+,uizj
pij_zJ n. +
j=1"j "

Parameter x controls the degree of smoothing, and =; €[0]] is calculated as:

YieDB nij
P

' 2Y1Ticos

Smoothing is a crucial step in the formulation of protein profiles. As discussed earlier,
the peptide identification step identifies peptides in the sample which are the result of
the protein cleavage, i.e. breaking of protein into its constituent peptides upon the
reaction with a chemical cleaving agent (e.g. Trypsin). It is not guaranteed that each
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protein breaks at every peptide boundary (phenomenon known as miscleavage), and
consequently, not every constituent peptide is necessarily observed and not every
observed component is necessarily a valid peptide. Smoothing therefore is necessary
for assigning non-zero weights to unobserved peptides, just as the out-of-vocabulary
words need to be handled in language modeling for document retrieval. To ensure
that all the observed components (both valid peptides and peptide concatenations) are
taken into account, we simulated miscleavages in creation of protein profiles.

Why do we construct protein profiles in the above way? Because we want to
leverage the domain knowledge about amino acid sequences and establish the
mapping from peptides to proteins accordingly. Ideally, we would like to have a large
training set of MS/MS spectra with explicitly labeled correspondences to positively
and negatively related proteins in a target database, which would enable supervised
learning of the conditional distribution of peptides given a protein in MS/MS samples.
However, such a large training set would be very expensive to produce and is not
currently available in open-source benchmark datasets for protein identification
evaluations. The only knowledge we have for relating predicted peptides for an input
sample to the proteins in a target database are 1) the peptide occurrences in amino
acid sequences of proteins, and 2) the expected (theoretical) spectrum of each valid
peptide. Thus, we stay with the unsupervised setting for the mapping problem, i.e., by
constructing a peptide-based profile for each protein, and by conducting proximate-
search over protein profiles given a synthetic query. The normalization of both the
query vector and the profile vectors of proteins enables probabilistic interpretation for
the mapping criterion, and avoids an unjustified bias of favoring longer proteins (i.e.
with a larger number of constituent peptides) over shorter ones, as present in the prob-
OR approaches. As for the need of smoothing, it is well understood in statistical
learning theory and practice that model smoothing is particularly important when the
feature (input variable) space is very large and the observed data is highly sparse. In
our problem, the feature space consists of a large number of peptides, with a skewed
distribution over a modest number of protein sequences. For example, the PPK
benchmark dataset (Section 4) contains 4,534 proteins and 325,812 unique peptides.
This means that most protein profiles are both high-dimensional and extremely
sparse, and that appropriate smoothing is necessary for successful mapping from a
query to candidate proteins.

3.2 Protein scoring based on prob-AND

The choice of scoring criterion is obviously crucial for successful ranking of proteins
given a query. We may consider the presence or absence of a peptide in the predicted
list as a random variable, where the randomness comes from both the sampled protein
mixture, and the noisy process of generating MS/MS spectra from the protein
mixture. Consequently, we may view vector ¢ as the empirically observed in-sample
distribution of peptides in an unknown protein mixture. Similarly, we may view
vector p, as the “theoretical” peptide distribution in a specific protein, derived based

on the amino acid sequences of proteins in a target database, and existing knowledge
(rules) about how protein sequences decompose to peptides. We use the cross entropy
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to score each candidate protein with respect to the query. The cross entropy of the
two distributions is defined as:

i
H(@IIB)=-%]_ya;logp; =-X]_;a;l0 0|Jq—J
j

= Zj—lqj IogqJ +Z _1q Im{qj J

=H(@)+D@I ;)

The cross entropy decouples into two terms as shown in the last line above: the first
term H(q) is the entropy of the query, which is the same for every protein; the second
term D(q|| p;) is the Kullback-Leibler (KL) divergence that determines the relative

ranking of proteins with respect to the query. A smaller KL divergence means a
better matched protein for the query.

We use prob-AND as the abbreviation of the proposed method. KL divergence
has been commonly used in language modeling (LM) approaches for ad-hoc text
retrieval with probabilistic ranking of documents given a query. It is a function
proportional to the log-likelihood of the query conditioned on the document model
under the term independence assumption in a multinomial process.  Let
X = (X, X,,"++, X5 ) be the vector whose elements are the within-query term frequencies.

The log-likelihood is estimated as:

. J
logPr(x | pi>=|ogH,:1p " =31 xjlogp;

where the scaling factor N, = x, +x, +---+x; is the total count of term occurrences in

the query. Except for the scaling factor (which is constant given a query), the log-
likelihood and KL divergence are identical. Therefore, using the multinomial
probabilistic model to rank documents for a query makes no difference compared to
using the negation of the KL divergence as the metric. With respect to ranking
proteins given a set of predicted peptides, the only difference is that the within-query
term frequencies are not directly observed but are predicted instead. Nevertheless, the
connection between the log-likelihood function and KL divergence shows clearly that
the logic being used for assembling partial evidence (from individual terms or
peptides) is probabilistic AND, not probabilistic OR. In other words, KL divergence
imposes stronger constraints in the mapping from predicted peptides to proteins.
Probabilistic AND and KL divergence have not been studied for protein identification
in the current literature, to our knowledge.
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3.3 Connections to other vector space models for text retrieval

How are prob-AND and prob-OR related to conventional retrieval Vector Space
Models (VSMs) in IR? In fact, they are closely related. Let d,=(d,.d,,, - d,)be a

it Hiz1”
document vector and define within-document term weighting as

dij =log Pij = logPr(term j|doci),

The dot-product similarity in a standard VSM is calculated as:
svs TN = T
sim(G-d;) =q-d; =2j44] logp;; .

This is exactly the same formula in the prob-AND model, i.e., scoring function based
on the cross entropy. On the other hand, if we choose d; = p; as the term weighting

scheme, the dot-product similarity becomes:
Sln(q : al) = q ai = z;qj pii = Zjequeryqj pij

This is a variant of soft OR. That is, a document (or protein) receives a positive
weight where as long as any of its terms (or peptides) is found in the query. In a
further extreme setting of d; =1, which is the indicator function with 1, j)=1if

peptide j is a constituent of protein i and 1(i, j) = 0 otherwise, we have:

soored; [ @)= ajl(i.})

It also mimics the Boolean OR logic in a soft manner, obviously. There soft-OR
scoring functions are closely related to the prob-OR metric in ProteinProphet which
we analyzed in Section 2.

The connections from prob-OR and prob-AND to conventional VSMs invites a
question: are they better choices than other variants of VSM, e.g., the commonly used
cosine similarity with TF-IDF term weighting scheme? Since the latter is not a
probabilistic scoring function, direct theoretical comparison on the basis of
probabilistic modeling is impossible. However, an empirical comparison between
these VSM variants would be highly informative and practically important for a
thorough investigation on the applicability and effectiveness of advanced IR
techniques in solving the protein identification problem. Hence, we report such a
comparative evaluation in Section 5.

4 Datasets

For evaluation and benchmarking of protein identification algorithms, we use
standard proteomic mixtures whose MS/MS spectra are publicly available. Purvine et
al in 2003 introduced a standardized proteomics dataset to support comparative
evaluation which consists of a query set of MS/MS spectra from a mixture of 12
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proteins and 23 peptides! and a search database consisting of 4534 proteins [19]. The
dataset was designed to mimic the complexity of large scale proteomics experiments
and to serve as a standard in proteomics research. We refer to this dataset as PPK,
after the authors Purvine S, Picone AF and Kolker E [19].

We also created two more datasets, called Mark12+50000 and Sigma49+50000,
respectively. The Mark12+50000 dataset consists of a query set of MS/MS spectra
from a 12-protein mixture (from Invitrogen, Carlsbad CA) called the 'Markl12
Electrophoresis Standard’, and a target protein database which we name as M50000.
The Sigma49+50000 dataset consists of the query set of MS/MS spectra from a 49
protein mixture (from Sigma-Andrich, St. Louis MO) and a target protein database
which we name as S50000. Both query sets were provided by the Mass Spectrometry
Research Center at Vanderbilt University and have been used as standard benchmarks
in proteomics research. The target databases were generated by us by drawing two

random samples from the SwissProt2 protein database, which contains over 280,000
protein sequences, and then adding Mark12 query-set proteins to one sample and
Sigmad9 query-set proteins to the other sample. We chose the size (50,000) of the
target protein databases to be comparable to those used in actual proteomic analyses.

Tables 1 and 2 summarize the datasetsS.

Table 1. Query set statistics

Query Set #spectra | #proteins | #peptides
PPK (queries) 2995 35 1596
Mark12 9380 12 1944
Sigma49 12498 49 4560

5 Experiments

We conducted a comparative evaluation with controlled experiments for three
models: prob-OR, prob-AND, and a standard VSM model (supported by the Lemur)
which uses TF-IDF (“ltc”) for within-document term weighting and cosine similarity
for the scoring function. We name the last method “TFIDF-cosine”. We also used the

popular X!Tandem software (available online) to generate an alternative baseline.

1 The query set was generated from 12 proteins and 23 peptides. Each of the peptides was
treated as a single-peptide protein in evaluation yielding a total of 35 proteins.

2 http://expasy.org/sprot/

3 Datasets will be made publicly available to support comparative evaluation and benchmarking
at the following URL: http://nyc.Iti.cs.cmu.edu/clair/datasets.htm
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Table 2. Protein database statistics

Protein DB #proteins | #peptides | #relevant proteins
PPK (protein DB) 4534 325,812 35
M50000 50012 5,149,302 12
S50000 50049 2,571,642 49

51 Experimental Settings

To ensure a controlled setting, all the four methods share the same query generation
process. We used the publicly available software of SEQUEST [4] and the

PeptideProphet4 pipeline to predict peptides from MS/MS data, producing the queries
shared by all the methods except X!Tandem for retrieving proteins. For the
experiment with X!Tandem, we use the inbuilt peptide and protein identification tools
in the open-source software package. When evaluating a method on one dataset, we
used the remaining two datasets as the validation sets for tuning parameters. For
example, when PPK is used as the test set, we tuned the smoothing method and p
(smoothing parameter) in prob-AND on Mark12+50000 and Sigma49+50000 as the

validation datasets®. Based on the results, we chose the Dirichlet prior over Laplace
as the smoothing method and p=5000 as the smoothing parameter.

5.2 Metrics

The output of each method is a ranked list of predicted proteins for a pre-
specified MS/MS dataset and a protein database. Applying a threshold to the ranked
list of each method yielded binary decisions and shifting the threshold enables us to
calculate precision values at different levels of recall. Using TP (true positives), FP
(false positives), FN (false negatives) and TN (true negatives) to denote the counts of
predictions in the four corresponding categories, the performance at a fixed threshold
is measured as:

Recall = TP / (TP + FN),
Precision = TP / (TP + FP)

4 PeptideProphet is a part of the TransProteomicPipeline, a publicly available software toolkit
for protein identification at http://tools.proteomecenter.org/software.php

5 Note that the 50000 proteins in Sigma49+50000 and Mark12+50000 are different independent
samples drawn from Swissprot.



12 Yiming Yang, Abhay Harpale, and Subramaniam Ganapathy

To evaluate the ranking ability of each method, we computed its average precision
(over all recall levels) per query, and then the mean over all queries. This produces
the standard MAP score for each method.

5.3 Main Results

The performance of the four methods in average precision is summarized in Table 3.
The main observations are the following:

¢ Prob-OR had a relatively weak performance, with the MAP score significantly
below the levels of all the other methods except X!Tandem. This observation
supports our theoretical analysis (Sections 7) on the weakness of the protein
scoring functions based on Boolean-OR in assembling peptide-level evidence —
they are not sufficiently powerful for discriminating true positives from false
positives.

Table 3. Results summary in average precision (bold case indicates best performance)

TFIDF | X!Tandem
Dataset | prob-AND | prob-OR | cosine
PPK 0.87 0.8 0.84 0.43
Mark12 0.77 0.66 0.81 0.41
Sigma49 0.48 0.44 0.49 0.241
MAP 0.71 0.63 0.71 0.36

e Prob-AND is among the two best methods (the other is TFIDF cosine) on
average, with a MAP score of 0.71. It outperformed the prob-OR method
significantly on all the datasets, successfully addressing the main weakness of
the latter.

e The TFIDF-cosine method performed equally well as Prob-AND. This is not
surprising from the view point of text retrieval model analysis. It has been
well-understood that the conventional vector space model (VSM) using cosine
and TFIDF term weighting is a good approximation of language modeling with
a multinomial assumption and the Dirichlet prior of corpus-level term
distribution [18]. And the latter is the foundation of our prob-AND approach.
On the other hand, it is the first time that the conventional VSM is examined in
protein identification and compared with prob-AND. We are pleased to see
both methods worked equally well on average, and both superior to prob-OR as
a strong baseline in the computational proteomics literature.

e XlITandem, one of the most popular publicly available protein identification
program that is commonly used as a comparative baseline algorithm,
performed inferior to the other methods on all three datasets in our
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experiments. It has been reported in the peptide/protein identification literature
that X!Tandem differs from SEQUEST significantly in the identified peptides
(and proteins). X!Tandem usually suffers with poor recall (sensitivity) in the
peptide identification step as compared to SEQUEST based approaches [20],
as a result of an aggressive thresholding strategy for computational efficiency
and for reducing false alarms in the peptide identification step. Our results of
X!Tandem agree with the previously reported findings in this sense.

54 Performance in high-recall regions

While average precision or MAP is well-accepted in evaluations of IR models, they
may not be sufficiently informative for judging how much the protein identification
systems would help biologists in reality. Notice that for biologists to verify the
validity of the system-predicted proteins, wet-lab experiments would be needed and
the cost would be much higher than what is required for a user to check through a
ranked list of documents. In other words, dealing with a large number of false alarms
would be too costly and hence impractical in proteomic data analysis. With this
concern, we further analyze the performance of the methods in the high-recall (80%,
90% and 100%).

Table 4 shows the average numbers of false positives (FP) for each method at
fixed levels of recall; the average is computed over the three datasets.

Table 4. Results summary in false positive counts (averaged over the 3 datasets) at fixed levels
of recall

Average Number of False Positives

Recall prob-AND prob-OR TFIDF-cosine
80% 28 52 28
90% 74 1002 96
100% 17746 16631 16586

It can be observed that all the methods achieved 80% recall with a relative small
number of FP, which is quite encouraging. However, to achieve 90% recall, the FP
number of prob-OR increased from 92 (at 80% recall) to 1002 which is unacceptably
high, while prob-AND and TFIDF-cosine retain their low-FP behavior. At the 100%
recall level, all the methods produced a large number of FP, which is not too
surprising. X!Tandem did not reach any of the recall levels higher than 60% on all
the 3 datasets, thus it is not included in the table.

5.5 Statistical significance tests

We conducted one-sample proportion tests for comparing the error rates at 90% recall
levels of the protein identification methods. Table 5 summarizes the results.
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Table 5. Significance test summary: each element in the matrix indicates the number of
datasets (out of 3) on which System A significantly outperforms System B with a p-value <

0.01
E prob-AND | prob-OR | TFIDF-cosine | X!Tandem
prob-AND 3 1 3
prob-OR 0 0 3
TFIDF-cosine 08 3 3
X!Tandem 0 0 0

Comparing the two strongest methods, i.e., prob-AND and TFIDF-cosine, each of
them significantly outperformed the other on one of the three datasets, and performed
equally well on the remaining dataset. Comparing prob-OR with all the others, it
significantly underperformed prob-AND and TFIDF-cosine on all three datasets.
X!Tandem performance was inferior to all other approaches on all the datasets.

6 Conclusion and Future Work

In this paper, we present the first interdisciplinary investigation on how to leverage
the rich research insights and successful techniques in IR to better solve the
challenging problem of protein identification from tandem mass spectra. We
formulated the problem (the mapping from system-predicted peptides to proteins) as
an ad-hoc retrieval task, proposed a prob-AND model for combining peptide-level
evidence in protein retrieval, and conducted a thorough evaluation of these models in
comparison with a well-established method (prob-OR by Keller et al.) and a common
baseline method (X!Tandem) in the field of protein-identification and a successful
vector space model (TFIDF-cosine) in IR. The results are highly encouraging: we
obtained significant performance improvements by the prob-AND models and the
VSM model over the representative baseline methods. We hope this investigation
provides useful information and insights for future research in adapting IR techniques
to proteomic applications, and invites new ideas for further improvements from both
the IR community and the computational proteomics community.

Several extensions of the presented work are possible, including modeling the
queries as a mixture of proteins. Such approaches are likely to rely on sampling and
greedy approximation strategies as explicitly modeling mixtures of thousands of
proteins is computationally intractable. One such approach by Li et. al. [22] uses the
Gibbs Sampling strategy to overcome the computational limitations. It might also be
possible to reduce the search space of mixtures is by grouping proteins based on co-
occurrences and modeling queries as mixture of such protein groups. We would like
to explore such approaches in the future..Other important extensions of the presented
work include addressing the issues caused by incorrect cleaving of protein sequences

6 In the published version, this cell contains a 1. That is a typo.
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into peptides, leveraging n-gram peptides in extended protein profiles, and applying
supervised or semi-supervised classification and functional analysis to predicted
proteins in different types of MS/MS data samples, e.g., cancerous vs. nhormal. Also,
Nesvizhskii et al. have found that using Expectation Maximization (EM) as an
additional step for finding hidden groups of proteins and for dealing with degenerate
peptides can improve the performance of the prob-OR method. That suggests a
potential way to further improve prob-AND and the other methods similarly by
deploying the additional EM step, which is an interesting topic for future research.
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