
Effect of Grammar on Security of Long Passwords

Ashwini Rao
Carnegie Mellon University

arao@cmu.edu

Birendra Jha
Massachusetts Institute of

Technology
bjha@mit.edu

Gananand Kini
Carnegie Mellon University

gkini@cmu.edu

ABSTRACT
Use of long sentence-like or phrase-like passwords such as
“abiggerbetterpassword”and“thecommunistfairy”is increas-
ing. In this paper, we study the role of grammatical struc-
tures underlying such passwords in diminishing the security
of passwords. We show that the results of the study have
direct bearing on the design of secure password policies, and
on password crackers used for enforcing password security.
Using an analytical model based on Parts-of-Speech tagging
we show that the decrease in search space due to the presence
of grammatical structures can be as high as 50%. A signifi-
cant result of our work is that the strength of long passwords
does not increase uniformly with length. We show that using
a better dictionary e.g. Google Web Corpus, we can crack
more long passwords than previously shown (20.5% vs. 6%).
We develop a proof-of-concept grammar-aware cracking al-
gorithm to improve the cracking efficiency of long passwords.
In a performance evaluation on a long password dataset, 10%
of the total dataset was exclusively cracked by our algorithm
and not by state-of-the-art password crackers.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Authentication

General Terms
Security, Algorithms, Performance

Keywords
Password, Passphrase, Cracking, Grammar, Policy

1. INTRODUCTION
Text-based password authentication is a widely deployed
user authentication mechanism. Use of text-based pass-
words involves a trade-off between usability and security.
System assigned passwords and user-selected passwords sub-
ject to complex constraints (e.g., including mixed-case, sym-
bols and digits) are harder to guess, but less usable [25].

Conversely, simple, memorable user-selected passwords of-
fer poor resilience to guessing.

To obtain a good compromise between security and usability,
researchers and organizations are recommending the use of
longer user-selected passwords with simpler composition re-
quirements. Examples include minimum 16 character pass-
words [24] and sentence-like or phrase-like passphrases [7, 14,
3, 15, 30]. In the minimum 16 character password policy, the
only restriction is that passwords cannot contain spaces. An
example of a passphrase policy is “choose a password that
contains at least 15 characters and at least four words with
spaces between the words” [7]. The increase in the length
of the password supposedly makes the password difficult to
guess.

To memorize longer passwords users may rely on memory
aids such as rules of English language grammar. Users may
use memory aids voluntarily or due to policy recommen-
dations. Our analysis of a set of 1434 passwords of 16
characters or more from a published study [24] shows that
more than 18% of users voluntarily chose passwords that
contain grammatical structures. Each of these passwords
contains a sequence of two or more dictionary words. An
example is “abiggerbetterpassword” that contains the gram-
matical structure “Determiner Adjective Adjective Noun”.
Table 1 provides more examples. In addition to grammati-
cal structures we also found other types of structures such
as postal addresses, email addresses and URLs. Given the
evidence of use of structural patterns in long passwords, we
are motivated to investigate the effect of structural patterns
on password security. Studies on password security so far
have focused only on structural dependencies at the charac-
ter level [37, 35, 24].

Main Contributions: (1) We propose an analytical frame-
work to estimate the decrease in search space due to the pres-
ence of grammatical structures in long passwords. We use
a simple natural language processing technique, Parts-of-
Speech (POS) tagging, to model the grammatical structures.
(2) We show that the strength of a long password does not
necessarily increase with the number of characters or words
in the password. Due to the presence of structures, two pass-
words of similar length may differ in strength by orders of
magnitude. (3) We develop a novel cracking algorithm to in-
crease the cracking efficiency of long passwords. Our crack-
ing algorithm automatically combines multiple words using
our POS tagging framework to generate password guesses.

Table 1: Examples of phrases in long password dataset
Category Password Example Phrase Total

Simple abiggerbetterpassword a bigger better password 178
Substitution thereisnomored0ts there is no more dots 20
Extra Symbol longestpasswordever8 longest password ever 70

Total out of 1434 268

Table 2: Brown Corpus statistics
Words 1161192
Unique Words 49815
Sentences 57340
Characters per Word 4.26
Words per Sentence 20.25
Unique Characters 58
Content Genres 15

(4) We show that it is necessary to analyze the distribution
of grammatical structures underlying password values in ad-
dition to the distribution of password values themselves to
quantify the decrease in guessing effort.

Organization: We discuss the effect of grammatical struc-
tures on password search space in Section 3 and on pass-
word guessing effort in Section 4. In Section 5, we exam-
ine the shortcomings of state-of-the-art password crackers in
cracking long passwords and describe the advantages of our
new grammar-aware cracking algorithm. We experimentally
evaluate the efficiency of existing crackers and our grammar-
aware cracker using long password datasets. In Section 6,
we discuss the impact of our results on current password
policies. We conclude in Section 7.

2. BACKGROUND AND RELATED WORK
Parts-of-Speech Tagging: Part-of-Speech (POS) tagging
is the process of assigning a part of speech to each word in a
sentence [28]. In English language, parts of speech are noun,
verb, adjective etc. For example, the parts of speech for a
sentence “She runs fast” are “Pronoun Verb Adverb”. Given
a sequence of words (word1word2 . . .wordn), a POS tagger
such as CLAWS [22] can output a sequence of tags, one tag
per word ((word1, tag1) (word2, tag2) . . . (wordn, tagn)).

Natural Language Corpora: The field of natural lan-
guage processing commonly uses collection of real data sam-
ples or corpus to train and test tools [28]. Two examples
are the Google Web Corpus [20] and the Brown Corpus [26].
The Google Web Corpus is a corpus of 1 trillion word tokens
of English text collected from web pages and it contains 1
to 5 word n-grams and their frequency counts. The Brown
Corpus is a corpus of printed English language of more than
1 million words. It contains articles from 15 genres such as
fiction, government, news, and user reviews. Because of the
presence of multiple genres, the Brown Corpus is considered
a balanced corpus that well represents the entire printed En-
glish language. Table 2 contains the statistics of the Brown
Corpus. Sentences in the Brown Corpus are POS tagged.
The Brown simple POS tag set consists of 30 tag types.
Fig. 1 shows the unique word counts for popular tag types.

Figure 1: Count of unique words (Unique Word
Count) for top 21 Parts-of-Speech tags (POS Tag) in
the Brown Corpus. There are 30 tags in the simple
Brown POS tag set. N, NP, ADJ, . . . correspond
to the Noun, Noun Proper, Adjective, Note that
the word counts are unevenly distributed among dif-
ferent tag types. This has important implications on
password search space and guessing effort.

Password Security: Current password security primarily
focuses on the relationships at character level. In [35] the
authors estimate the password search space using Shannon
entropy [34] at the character level. Password crackers that
enumerate password search space use zeroth or higher order
Markov models trained on character probability distribu-
tion [9, 29]. In [29] authors assume that for memorability,
user models a password as a sequence of characters whose
distribution is similar to the distribution of characters in her
native language. In [19] authors studied the linguistic prop-
erties of Amazon Payphrase [1] dataset where majority of
the Payphrases are a sequence of two words. Authors inves-
tigate whether users choose their Payphrases as a sequence
of words which occurs as-is in an existing natural language
corpus. Further, they conjecture about guessing effort of
passphrases if the distribution of passphrases are identical
to the distribution of phrases in a natural language corpus
such as Google Web Corpus. In this work, we assume that
users model their password as a sequence of words following
the rules of grammar such as “Determiner Adjective Noun”.
The sequence need not occur as-is in a natural language
corpus. An example of such password is “the communist
fairy” that occurs in the long-password dataset presented in
Table 1 but not in the Google Web Corpus. By making a re-
laxed assumption we model a more powerful adversary who
can attack defenses such as use of nonsensical phrases [30].

3. SEARCH SPACE ANALYSIS
The password search space is the set of all possible unique
password values. In this section we investigate how the pres-
ence of grammatical structures modifies the password search

space. One can consider a password value as a sequence of
characters, a sequence of words, or a sequence of words gen-
erated using the rules of grammar. We propose an analytical
framework to estimate the size of the password search space
under each of the three assumptions. By comparing the
three estimated sizes we can understand the level of reduc-
tion in the size of the password search space when grammar
structures are present. Via numerical evaluation we high-
light that the reduction in search space could be as high as
50% or more.

3.1 Computing Search Space Size
Consider a password that contains up to n words. If the
words are from a dictionary D = {the, of, run, king, queen,
handsome , . . .} that contains numw unique words, the size
of the password search space of all possible word sequences
is

G(word) =

n
∑

i=1

numwi , (1)

If we consider a word to be any sequence of characters, not
just an element from dictionary D, then the password search
space is bigger. For example, “llmmnn”that is not present in
a standard English dictionary. Let numc be the number of
unique characters possible and avgc be the average number
of characters per word. We can approximate the size of the
password search space of all possible character sequences as

G(char) =
n
∑

i=1

numcavgc×i , (2)

Let us now consider a password as a sequence of words cre-
ated using grammatical rules. For example, a user may pick
“thehandsomeking” based on the grammatical rule “Deter-
miner Adjective Noun”. To estimate the search space under
this assumption we need to define the set of valid gram-
matical rules. Modeling rules of natural language gram-
mar is a difficult problem [28]. Tools such as English lan-
guage parsers and generators approximately model the rules
of grammar using Context Free Grammar (CFG) or, more
powerful, Context Sensitive Grammar (CSG). A CFG is
required to recursively generate infinitely long sentences.
However, for long passwords, it is unlikely that we will need
to generate infinitely long sentences. For finite length sen-
tences, recursion is not required and a Regular Language will
suffice. Regular Language reduces computational complex-
ity from O(n3) to O(n). Parts-Of-Speech (POS) tagging
technique, described in Section 2, is equivalent to using a
Regular Language and we use it here to model the rules of
grammar.

We consider each grammatical rule as a sequence of POS
tags. We can extract POS tag sequences from any POS-
tagged corpus that is representative of a long password dataset.
Our approach of generating grammatical rules is similar to
expanding the CFG rewrite rules up to a finite length. How-
ever, its advantage is that we do not have to maintain com-
plex CFG rewrite rules. Modifying the grammar is as simple
as adding or deleting a POS tag sequence from the set.

Let T be the set of all POS tags

T = {Noun, Verb, Adjective, . . . } .

Each word w in dictionary D can have one or more POS
tags. For example, run can be both a verb and a noun. If
the tagger does not recognize a word, it can assign a default
tag such as Noun. Each POS tag t in T has an associated
dictionary of words

D(t) = {w ∈ D, tag(w) = t} .

For example, D(Noun) = {king, queen, . . .}. A tag sequence
ts of length n is a sequence of POS tags defined as

ts = t1‖ . . . ‖tn, ti ∈ T, n ≥ 1 ,

For example, ts of length 3 can be “Determiner Adjective
Noun”, “Determiner Determiner Noun” etc. Not all tag se-
quences occur in a given corpus. The corpus could be a nat-
ural language corpus such as the Brown Corpus, the long
password corpus introduced in Table 1, or any passphrase
corpus. For a given corpus, we consider all tag sequences
that occur in the corpus as grammatical and call them tag-

rules. We use the notation tsgrammar for tag-rules. For
example, “Determiner Determiner Noun” is not present in
the Brown Corpus so it is not a tag-rule if we consider the
Brown Corpus.

A tag sequence ts = t1‖ . . . ‖tn of length n generates a set
S(ts) of unique word sequences each of length n,

S(ts) = {w1‖ . . . ‖wn, wi ∈ D(ti)} .

For example, the tag sequence“Determiner Adjective Noun”
generates the set {“the handsome king”,“the beautiful queen”
, . . . , }.

Let ts(n) denote the set of all tag sequences of length n. For
a set T of size 30, ts(3) has 30× 30× 30 tag sequences. Let
ws(n) denote the set of all unique word sequences of length
n generated by ts(n).

ts(n) = {t1‖ . . . ‖tn},

ws(n) = {ws ∈ S(ts) , ∀ts ∈ ts(n)} .

Note that the count of all unique word sequences up to
length n is equal to G(word) in (1), i.e.,

G(word) = count

(

n
⋃

i=1

ws(i)

)

.

We consider wsgrammar(n) as the set of all word sequences
of length n generated using rules of grammar, i.e., from tag-
rules of length n, tsgrammar(n). Henceforth, we refer to a
word sequence generated using a tag-rule as a phrase. The
size of the password search space of phrases is

G(grammar) = count

(

n
⋃

i=1

wsgrammar(i)

)

(3)

Since each word can be associated with more than one tag,
multiple tag-rules can generate the same phrase. The set
union operator discounts repeated phrases.

3.2 Numerical Evaluation
We need a corpus to numerically evaluate the password
search space model proposed in Section 3. Here, we con-
sider the Brown Corpus, a balanced corpus that contains
a representative set of grammatical structures (tag-rules)
for English language. We believe users will model their

n

n
#

Figure 2: Comparison of the size of password search
space treating password as a sequence of charac-
ters (char), a sequence of words (word), and a se-
quence of words generated using grammatical struc-
tures (grammar). Numbers are based on the Brown
Corpus statistics. Note that char is much greater
than both word and grammar. Although not obvi-
ous, word is significantly larger than grammar as the
values are in log scale. Table 3 further emphasizes
the difference. The gap between word and grammar
widens as the number of words n in the password
increases. We also plot search space estimation us-
ing 1.75 bits per character of Shannon entropy (fixed
entropy) and the actual number of unique n-word se-
quences in the Brown Corpus (sample). We explain
their significance in Section 6.3.

long passwords using tag-rules similar to the tag-rules in
the Brown Corpus. For example, we find that 84% of the
long passwords from “Simple” category in Table 1 were gen-
erated using tag-rules from the Brown Corpus. Hence, using
the Brown Corpus should provide useful insights into the ef-
fect of structure on the password search space.

To evaluate the size of password search space of character se-
quences, G(char) in (2), and word sequences, G(word) in (1),
we use the character and word statistics from Table 2. The
number of unique characters numc = 58, number of unique
words in the dictionary numw = 49815, and the average
number of characters in a word avgc = 4.26. In Fig. 2 we
plot the size of the password search space 584.26×i (denoted
as char) and 49815i (denoted as word) as a function of num-
ber of words i in the password.

To evaluate the password search space of word sequences
generated using tag-rules, G(grammar) in (3), we need a set
of POS tags, dictionary for each POS tag, and the set of
tag-rules. We use the simple Brown POS tag set with 30
tags. We get the dictionary for each tag from the Brown
Corpus (Fig. 1). We extract the tag-rules from the Brown
Corpus as follows. Recall from Section 2 that sentences in
Brown Corpus are POS tagged. First, we remove punctua-
tion symbols and associated tags from the tagged sentences.
Then we create n-gram of word and tag pairs. Finally, we
get the set of unique tag-rules by extracting the tags from
the word tag pair in each n-gram. In Fig. 3 (Top) we plot
the number of tag-rules against all possible tag sequences.
We observe that the number of tag-rules is much less than
the number of all possible tag sequences and the difference

Table 3: Percent decrease in password search space
when passwords are generated using grammatical
structures. word is password search space of all word
sequences and grammar is password search space of
word sequences generated using grammatical struc-
tures, from Fig. 2. n is the number of words in
the password. Note the significant decrease in pass-
word search space due to the presence of grammat-
ical structures e.g. for n = 5 the decrease is more
than 50%.

n 1 2 3 4 5
grammar

word
% 100 99.92 96.90 80.66 46.95

n 6 7 8 9 10
grammar

word
% 17.17 4.28 0.99 0.25 0.07

increases with length of the tag-rules. Fig. 3 (Bottom) plots
number of word sequences generated by tag-rules and the
number of word sequences generated by all tag sequences.
We plot the same two curves as grammar and word in Fig. 2.
From Fig. 3 we see that few tag-rules generate a majority of
the password search space.

From Fig. 2 we can compare the password search space
sizes of char, word, and grammar. We observe that char

grows exponentially compared to word and grammar. We
see that grammar is significantly smaller than word (notice
the log scale). To emphasize the decrease in password search
space due to the presence of grammar, we tabulate the ratio
of grammar to word in Table 3. The decrease can be as large
as 50% for a password of length 5 words. The gap between
word and grammar widens as the number of words n in the
password increases.

4. DISTRIBUTION ANALYSIS
When the password values have underlying grammatical struc-
tures, it is important to understand the role of these struc-
tures in decreasing the guessing effort. Guessing effort can
be defined as the number of values an attacker has to enu-
merate to guess a password. Guessing effort is a function
of (a) size of the password search space, which is the set of
all possible unique password values; and (b) distribution of
password values, which depends on how users choose pass-
word values from the password search space. So far, research
involving analysis of password distributions [19, 18, 33] has
not considered the effect of underlying grammatical struc-
tures.

In Section 3 we showed that the grammatical structures
reduce the password search space, which implies reduced
guessing effort. This is because the maximum number of
values an attacker has to enumerate is equal to the size of
the search space. In this section we show that the distribu-
tion of grammatical structures can also reduce the guessing
effort. This reduction is in addition to the reduction due to
the distribution of the password values themselves. When
guessing effort decreases, an attacker can potentially crack
more passwords for a given number of guesses. We estimate
this increase in number of passwords cracked using a novel
optimization framework.

ws (n)

ts (n)grammar

grammar

ts(n)

ws(n)

#
n

-T
a

g
 S

e
q

u
e

n
ce

s
#

n
-W

o
rd

 S
e

q
u

e
n

ce
s

n

Figure 3: Top: comparison of the number
of tag sequences present in the Brown Corpus
count(tsgrammar(n)) with the number of possible
tag sequences count(ts(n)). Each sequence contains
n tags. We call tag sequences present in a given
corpus as tag-rules. Bottom: comparison of the
number of unique word sequences generated by
tag-rules count(wsgrammar(n)) with the number of
unique word sequences generated by all possible tag
sequences count(ws(n)). Each sequence contains n
words. The former is the password search space of
word sequences generated using grammatical struc-
tures and the latter is the password search space of
all word sequences. Interestingly, few tag-rules gen-
erate a large portion of the password search space.

4.1 Reduction in Guessing Effort due to Struc-
ture

An uniform distribution maximizes the guessing effort [31].
Conversely, a non-uniform distribution reduces the guessing
effort. Usually, user-chosen password distributions are not
uniform [18]. Given a set of user chosen passwords, for ex-
ample {mypassword, mypassword, iloveu} non-uniformity is
evident as password values are not unique. In the past, re-
search has associated uniformity solely with uniqueness of
password values. For example, [33] ensures that password
values do not repeat often and [18] computes the distribu-
tion by counting the repetition of password values. How-
ever, for passwords generated using grammatical structures,
underlying structure may cause non-uniformity even if the
password values are unique. For example, the values in the
set {“tangy food”, “pretty cat”, “naughty kid”} are unique,
but all values are generated using “Adjective Noun”. An
attacker aware of such a distribution can reduce her guess-
ing effort by enumerating values for the structure “Adjective
Noun” and ignoring all other structures. Hence, uniqueness
of password values is a necessary, but not sufficient condi-
tion for ensuring uniformity. We also have to consider the
distribution of structures.

Recall from Section 3 that we can compute the size of the
search space of each grammatical structure (also referred to
as a tag-rule). The size of the search space of individual tag-
rules vary unevenly e.g. the size of “Noun Noun” is greater
than the size of “Adjective Noun”. In Fig. 4 we group the
tag-rules by their search space size. We observe that some of
the tag-rules have very small search spaces e.g. for tag-rules
of length 3 (3-gram), 8.9% of the rules have 10− 19 bits of

Figure 4: Tag-rules of length 2 to 5 grouped by
the size of their search space (in bits). The search
space of a tag-rule, ts, is the number of word se-
quences it generates, which in bits is log2 count(S(ts)).
Numbers outside the pie chart indicate the range of
bits. Numbers inside the pie indicate the percent-
age of tag-rules with those many bits. Note that
the tag-rules divide the password search space un-
evenly. A significant number of tag-rules have very
low strength in bits. For example, for tag-rules of
length 3 (3-gram), 8.9% of the rules have 10− 19 bits
of strength.

strength. The effort required to guess a password generated
by a tag-rule is a function of the size of the tag-rule search
space. It is paramount to ensure that users do not use a
disproportionate number of weak tag rules to generate their
passwords.

4.2 Enforcing Uniformity
The conditions required to ensure a uniform distribution
over a set of password values, V , generated using tag-rules
are (a) password values have to be unique; and (b) each tag-
rule should have proportional representation. As we will see
in Section 4.3, unless these conditions are satisfied the distri-
bution is not uniform thereby reducing the guessing effort.
Intuitively, proportional representation implies that a tag-
rule with a larger search space should generate more pass-

10
0

10
2

10
−3

10
0

10
3

10
6

2-word

10
0

10
2

10
−3

10
0

10
3

10
6

3-word

Sample distribution
Uniform distribution

Search space decreases

n
u

m
ts

c
o

u
n

t(
V

)×
p

T

Tag Rule index Tag Rule index

Figure 5: Visualizing disproportional representation
of tag-rules using unique 2-word and 3-word phrases
from the Brown Corpus. The tag-rules are plotted
in descending order of search space size. For each
tag-rule, we plot numts

count(V)×pT
, which should be equal

to 1 (dotted red line) if the tag-rule has propor-
tional representation. We can see that in the Brown
Corpus samples, weaker tag-rules occur dispropor-
tionately more often than stronger tag-rules.

word values in V . We define the true probability, pT , of a
tag-rule as the size of the search space of a tag-rule divided
by the size of the password search space. Each password
value in V maps to a tag-rule. Let TR be the set of tag-
rules corresponding to the password values in V . A tag-rule,
ts, has proportional representation if the number of times it
occurs in TR, numts, is equal to count(V)× pT .

To visualize disproportional representation of tag-rules, we
consider the set of unique 2-word and 3-word sequences in
the Brown Corpus. We compute the tag-rule set TR for
both. For each tag-rule, ts, in the Brown Corpus we com-
pute its true probability pT . In Fig. 5, for each tag-rule ts,
we plot numts

count(V)×pT
for each tag-rule ts, which should be

equal to one (dotted red line) if the tag-rule has proportional
representation. The tag-rules are indexed in descending or-
der of their search space size.

4.3 Estimating Decrease in Guessing Effort
Let V be a set of unique values. We define gain as the
number of values an attacker can guess from V by making
G guesses. We can pose the problem of computing gain as
an optimization problem,

maximize gain =

count(TSgrammar)
∑

i=1

rivi (4)

subject to

count(TSgrammar)
∑

i=1

rigi ≤ G (5)

0 ≤ ri ≤ 1

TSgrammar =
n
⋃

j=1

tsgrammar(j)

WSgrammar =

n
⋃

j=1

wsgrammar(j) .

Here, TSgrammar is the set of tag-rules of lengths up to
n. WSgrammar is the set of word sequences generated
by TSgrammar. For ith tag-rule tsi ∈ TSgrammar, gi =
count (S(tsi)) is the number of word sequences generated by
tsi, i.e, the search space of tsi. vi is the number of values
guessed from V using tsi. ri is the unknown weight assigned
to tsi and rigi controls the number of values enumerated
from the search space of tsi. For a given V , if the tag-
rules have proportional representation, the maximum gain

gainuniform is (count(V) × G)/count
(

WSgrammar) for a
given number of guesses G. For same G, when the tag-
rules have a skewed representation, the gain of the attacker

increases (gainskew ≥ gainuniform). We prove this in Ap-
pendix.

5. PASSWORD CRACKERS
We investigate whether state-of-the-art cracking tools such
as John the Ripper (JTR) [9], Hashcat [6], and Weir Algo-
rithm [37] can crack long passwords efficiently. This is im-
portant because crackers are used in auditing user passwords
and estimating the strength of password policies [24]. We
discuss the shortcomings of these crackers in cracking long
passwords. We show ways to improve cracking efficiency
for both long passwords in general and long passwords gen-

Table 4: Data set ExSet
Password Phrase

Ihave3cats I have 3 cats
Ihave4dogs I have 4 dogs
Ihave5fish I have 5 fish
Ihad1cat. I had 1 cat.
Ihad1goat I had 1 goat

Table 5: Weir Algorithm base structures for ExSet
Trained on Passwords Trained on Phrases
Structure Prob Structure Prob
LLLLLDLLLL 0.6 LSLLLLSDSLLLL 0.6
LLLLDLLLS 0.2 LSLLLSDSLLLS 0.2
LLLLDLLLL 0.2 LSLLLSDSLLLL 0.2

erated using grammatical structures. We propose a novel
algorithm to improve cracking efficiency. Our cracking algo-
rithm uses the POS tag framework introduced in Section 3.

5.1 Shortcomings of Current Crackers
A password cracker tries to recover a plain text value of
a password hash value. The cracker generates candidate
password guesses, hashes them, and compares them with
the available hashes until a match is found. A dictionary-
based cracker [9, 6, 37] uses a dictionary of values to generate
candidate passwords. A dictionary may contain leaked pass-
words [24], words from many languages [13], common quotes,
music lyrics, movie titles [27] etc. Cracker may use the dic-
tionary values as-is or transform them by applying mangling
rules. An example of a mangling rule is “capitalize first al-
phabet”, which transforms a dictionary value “password” to
“Password”. Below we explain the main shortcomings of cur-
rent crackers in cracking long passwords using the example
data set, ExSet in Table 4 and a dictionary, ExD = {I, have,
had, cats, dogs, fish, cat, goat}.

JTR in Wordlist mode and Hashcat are dictionary-based
crackers. Their mangling rules can combine a single dic-
tionary value in different ways, for example “catscats” or
“catsstac” from “cats”. They can append, prefix or insert
specific strings to a dictionary value, and delete parts of the
dictionary value. However, JTR can not combine multiple
values from the dictionary to form longer passwords. To
crack passwords such as “Ihave3cats” from ExSet using dic-
tionary ExD, user has to (1) write multiple mangling rules
for example “prefix I”, “append had” or “prefix Ihave” or (2)
explicitly add the value “Ihave3cats” to the dictionary ExD.
To add longer values to the dictionary, user has to gener-
ate the values himself or collect them from existing sources
such as books, Web etc. Hashcat provides a combination
mode that can automatically combine any two values from
the input dictionary. For more than two values, Hashcat
faces same issues as JTR.

Weir Algorithm is another dictionary based technique that
improves the cracking efficiency by improving the order in
which mangling rules are applied to the values in the dic-
tionary. Weir Algorithm requires a training corpus of pass-
words from which it creates a set of base structures. A base
structure in Weir Algorithm is a sequence of “L”, “D”, and

“S” which stand for “Letter”, “Digit”, and “Special Symbol”.
Each base structure is associated with a probability. Weir
Algorithm generates the base structures listed in Table 5
when trained on passwords from dataset ExSet. Weir Al-
gorithm learns the digits and special symbols to insert into
“D” and “S” from the training corpus. For letter sequences
in a base structure Weir Algorithm tries to fit values from
the dictionary whose length exactly matches the length of
the letter sequence. For example, for “LLLL” in the base
structure “LLLLDLLLS”, it tries to fit values {have, cats,
dogs, fish, goat} from dictionary ExD. It cannot, however,
combine shorter values such as“I”and“had”to form a longer
value “Ihad”. With the base structures in Table 5 Weir Al-
gorithm fails to crack any password from dataset ExSet be-
cause“Ihave”and“Ihad”are not in dictionary ExD. Weir Al-
gorithm cannot combine values from the dictionary to form
longer values. The user has to manually generate longer val-
ues and add them to the dictionary as in the case of JTR
and Hashcat.

To force Weir Algorithm to generate longer values, we can
train it with passwords containing words separated by a sin-
gle space. We have to then strip out the spaces from the gen-
erated password guesses. Weir Algorithm treats space as a
special symbol. In our example, if we train Weir Algorithm
on the phrases listed in dataset ExSet, it generates base
structures e.g. “LSLLLSDSLLLL” and is able to crack pass-
words such as “Ihad3cats” using dictionary ExD. However,
note that this is an approximation of generating all possi-
ble word combinations from the input dictionary, and is not
an optimal approach for targeting long passwords generated
using grammatical structures. For example, Weir Algorithm
generates password guesses {Ihad1had, Ifish5have, Icats3fish
. . . } that may not be useful. From Section 3 we know that
the search space of all word sequences can be more than 50%
larger than the search space of word sequences generated us-
ing grammatical structures, and that the gap increases with
length (Table 3).

An alternative to heuristic dictionary technique is intelligent
brute-force technique. An intelligent brute-force technique
such as JTR Incremental mode eventually enumerates the
entire password search space. JTR Incremental mode uses
a Markov model trained on 3-gram letter frequency distri-
bution to generate password guesses. We observe from our
experiments that using letter frequencies is effective for con-
ventional short length passwords that are mostly a sequence
of characters, but not for longer passwords consisting of mul-
tiple words.

5.2 Evaluation on Long Password Dataset
We evaluate the cracking efficiency of JTR, Hashcat and
Weir Algorithm via a set of experiments involving a pub-
lished long password dataset [24]. We briefly described this
long password data set in Section 1. The dataset contains
1434 passwords of minimum length 16 characters, and was
collected as part of a field study. Subjects could create their
passwords using any character except the space character.
To test the cracking efficiency on long passwords, we use
the complete long password dataset, henceforth referred to
as P16. To test the cracking efficiency on long passwords
with underlying grammatical structures, we use a subset
from P16. We are not aware of any datasets (public or

Table 6: Dictionaries used for evaluating crackers.
Dictionary “L” is a large dictionary combining the
datasets Myspace, Rockyou, Brown, 1gram, Dic-
0294, Basic Full, Basic Alphabetic, Free Full, Free
Alphabetic, Paid, Alphabetic, Paid Lowercase. In
column Name “-x” indicates minimum length of the
words in the dictionary.
Name #Words Description
L-8 35267653 Minimum length 8 values from L
LASCII 39251222 All length ASCII values from L
GW1-8 6603610 Google Web Corpus 1-gram
GW25-8 3625636435 Google Web Corpus 2-5 grams
B210 5942441 Brown 2-10 gram word sequences

otherwise) that only contain user-selected, long passwords
with underlying grammatical structures. We manually ex-
amine each password in P16 using tools such as the Microsoft
Word Breaker [11, 36], and identify passwords with multiple
words. We initially include all passwords with two or more
words (e.g. “compromisedemail”, “thereisnomored0ts”) ex-
cept those that contain repetitions of a single word (e.g.
“elephantelephant”). We further categorize the passwords
into three groups: simple phrase, phrase with symbol sub-
stitution and phrase with extra symbols. Table 1 shows
example for each category. For our experiments, we use all
passwords from the “Simple” category. Our dataset contains
178 passwords of which 144 are 2 to 5 words in length. We
henceforth refer to this dataset as P16S. The crackers use
the dictionaries described in Table 6. The dictionary “L”
contains publicly available datasets, the dictionary “GW”
contains data from the Google Web Corpus and the dictio-
nary “B” contains data from the Brown Corpus.

We tabulate the experimental results in Table 7. We allow
all experiments to make up to 2.5E12 guesses. We indicate
if an experiment terminated before making 2.5E12 in the
“Session Completed” column. We manually terminated two
experiments before 2.5E12 guesses due to their excessive
memory consumption. For brevity, we omit the less signifi-
cant experimental results from Table 7. In our experiments,
we try to overcome the main shortcoming of current crack-
ers, i.e., they do not generate longer values automatically,
and expect the user to add longer values to the dictionary.
Specifically, we do the following:

1. Use a better dictionary of long values: we use the
Google Web Corpus as a dictionary. Experiments on
long password datasets until now have not used the
Google Web Corpus, but depend on other publicly
available datasets similar to dictionary “L”. In exper-
iment “JTR GW25-8”, using Google Web Corpus we
cracked 20.5% of long passwords from dataset P16. For
the same number of guesses, published experiments
crack 6% [24]. For long passwords with grammatical
structures, we crack 27.7% of passwords with Google
Web Corpus compared to 6.9% with dictionary “L”.

2. Use workarounds to generate longer values automati-

cally : we use the workaround for Weir Algorithm ex-
plained in Section 5.1. From experiment “Weir Space
LASCII”, we find that this approach generates exceed-

Table 7: Performance of crackers on long passwords. Experiment lists the name of the experiment. For JTR
experiments, NM indicates that mangling rules were not used. %P16 Cracked is the percentage of passwords
cracked out of 1434 long passwords in P16. %P16S 2-5 Cracked is percentage of passwords cracked out of
144 long passwords of length 2 to 5 words in P16S. P16S is a subset of P16 that contains long passwords
with underlying grammatical structures. We tested on passwords of length 2 to 5 as Google Web Corpus has
n-grams of length up to 5. Guesses is the total number of password guesses generated. Session Completed
indicates if the experiment completed after Guesses.

Experiment %P16 %P16S 2-5 Total Session
Cracked Cracked Guesses Completed

JTR L-8 13.6 6.9 2.31E10 Yes
JTR L-8 NM 8.5 4.8 3.42E7 Yes
JTR GW25-8 20.5 34.7 2.48E12 Yes
JTR GW25-8 NM 11.08 27.7 3.4E9 Yes
Weir LASCII 12 4.8 1.07E12 No
Weir Space LASCII 7.6 3.4 1.26E12 No
JTR Incremental 0 0 2.48E12 No

ingly large number of guesses and fails to improve
cracking efficiency of long passwords.

JTR L-8, JTR L-8 NM, JTR GW25-8, JTR GW25-
8 NM: we run JTR in word mode using 4 dictionaries:
L-8, B210, GW1-8 and GW25-8. We first run JTR without
mangling rules, and then run it again with the standard
JTR mangling rules. Dictionary values have minimum of
8 characters. Mangling rules can concatenate two values
to form 16 character length guesses. JTR experiment using
GW25-8 performs better than other experiments by cracking
20.5% of long passwords and 34.7% of long passwords with
grammatical structures using 2.48E12 guesses. Even with
lower number of guesses it outperforms other experiments.

Weir LASCII: we first train the Weir Algorithm using
minimum 16 character passwords from the Myspace and
Rockyou datasets, and then we run it using the dictionary
LASCII. We had to terminate this experiment before 2.5E12
guesses as the memory consumption became unwieldy. Weir
LASCII experiment does not match the performance of JTR
GW25-8 experiment.

Weir Space LASCII: we train Weir Algorithm on word se-
quences of 1 to 10 words from the Brown Corpus. The words
were separated with a single space. After training, we run
the cracker using the dictionary LASCII. We strip the the
spaces from the generated guesses, and check if the guesses
crack any long passwords. Weir LASCII experiment does
not match the performance of JTR GW25-8 experiment.

JTR Incremental: we train JTR Incremental mode on
minimum 16 character passwords from Myspace and Rock-
you datasets. We configure it to generate passwords between
16 and 23 characters in length inclusive. JTR Incremental
mode uses Markov model at a character level. JTR Incre-
mental mode experiment fails to crack any passwords.

From our experiments we see that using a good dictionary
of long password values can improve cracking efficiency of
long passwords e.g. 20.5% versus 6%. However, relying only
on existing sources such as Google Web Corpus to build dic-
tionaries may not be ideal. Existing sources contain values
that people use often and by relying on them we may fail

to crack passwords that contain uncommon and nonsensi-
cal phrases e.g. “the communist fairy”. Building a Markov
model based on word gram frequencies as opposed to letter
gram frequencies may be useful. However, training these
word gram models on existing sources can run into simi-
lar issues. We explore a novel technique to automatically
generate longer password values in the following section.

5.3 Grammar Aware Cracking
A cracker should ideally emulate user behavior to generate
password candidates. We develop a proof-of-concept cracker
that generates long passwords using grammatical structures.
We use the POS tag framework introduced in Section 3 to
automatically combine words into longer password values.
The main challenges in our approach are: (1) identify a set
of grammatical structures (tag-rules) that users prefer. It is
possible to identify such tag-rules from existing corpus e.g.
the Brown Corpus or long password datasets; and (2) build
a dictionary for each individual POS tag in the tag-rules.
The level of difficulty involved in building tag dictionaries
depends on the type of POS tag. Closed tags such as “De-
terminer” and “Conjunction” (e.g. the, and) contain small
number of values that do not change much with time. On
the other hand, open tags such as“Noun”and“Noun Proper”
have large dictionaries and also grow with time.

Table 8: Performance of grammar-aware cracker
against passwords of length 2-5 words in
P16S. %Cracked with BWeb is the percentage
of passwords cracked using dictionary BWeb and
%Cracked with BWeb90 is the percentage of pass-
words cracked with dictionary BWeb90. %Exclusive
is the percentage of 2-5 word phrases cracked by
grammar-aware cracker, but not by JTR GW25-8
or other experiments in Table 7.

Guesses %Cracked %Cracked %Exclusive
with BWeb with BWeb90

5E10 9.7 18.7 4.8
1E12 14.5 25 9
2.5E12 15.2 27 10.4
10E12 20.1 29.1 11.8
40E12 25.6 35.4 13.8

Table 9: Comparison of passphrase strength. It can be seen that strength is not a direct function of length.
Column Tag-Rule lists the tag-rule that can generate the passphrase. Column Guesses is the based on the
size of the search space of the corresponding tag-rule and the effort required to mangle the phrase. Column
Time is an estimate of the time required for guessing the given password.

Passphrase Tag-Rule Guesses Time

Th3r3 can only b3 #1! EX MOD V DET PRO 1.3E12 22 min
Hammered asinine requirements. VD ADJ N 12.6E12 3.5 h
Superman is $uper str0ng! NP V ADJ ADV 12.3E15 142 d
My passw0rd is $uper str0ng! PRO NP V ADJ ADV 1.7E18 56 yr

Our main goal is to evaluate the value in pursuing a grammar
aware cracking approach. Will a grammar-aware cracker al-
low an attacker to crack passwords that can not otherwise be
cracked? We assume that an attacker has access to a good
set of tag-rules. We believe that assuming otherwise leads
to a security-through-obscurity model. As use of long pass-
words increases, it is likely that long password data sets will
become public, and attackers will be able to study specific
tag-rules from these datasets. To simulate a scenario that
provides maximum advantage to an attacker, we extract tag-
rules from P16S long password dataset used in Section 5.2.
We tag the passwords in P16S using the the CLAWS [22]
POS tagger.

Having a set of tag-rules, we proceed to build dictionaries
for individual tags. First, we built a dictionary for each tag
using words present in the Brown Corpus and a small web
text corpus [12]. We included web text corpus as the Brown
Corpus was compiled in year 1961 does not contain Internet
related words. We used all words from the Brown Corpus
and all words that occurred at least 10 times in the web
text corpus (373 words). The words in the Brown Corpus
are already tagged, and we identified the tags for the words
in the web text corpus using CLAWS. If a word has a noun
tag, then we assign it to the noun dictionary and so on. We
refer to this first set of tag dictionaries as BWeb. Next, we
built an alternate set of tag dictionaries that we refer to as
BWeb90. We reduced the size of the dictionary for all POS
tags except “Noun”, “Proper Noun”, “Adjective”, and “Car-
dinal Number”. We computed the cumulative probability
distribution of word frequencies within each tag dictionary
and discarded words that did not meet the 0.9 cumulative
probability cutoff. Our intuition for BWeb90 is that users
often use few words for closed tags such as “Determiner”and
“Conjunction”.

The inputs to the grammar aware cracker are a set of tag-
rules, a set of individual tag dictionaries, and the maximum
number of guesses it can make. The cracker computes the
size of each tag-rule (refer to Section 3 for details), sorts
the tag-rules by their size, and selects subset of smallest
tag-rules whose sizes add up to the number of guesses. The
cracker then generates password candidates using the subset
of tag-rules and the tag dictionaries.

In Table 8, we tabulate the performance of our grammar-
aware cracker. The columns “%Cracked with BWeb” and
“%Cracked with BWeb90” list the percentage of 2-5 word
passwords from P16S cracked using the dictionaries BWeb
and BWeb90 respectively. The “Exclusive” column lists the
percentage of the total dataset that was exclusively cracked

by grammar-aware cracker, but not by other crackers. We
compare the perfromance of grammar-aware cracker with
the perfromance of other crackers on P16S2-5 in Table 7.
For 5E10 guesses, grammar-aware cracker cracked 18.7% of
passwords, which is better than “Weir Algorithm” (4.8%)
and “JTR Incremental” (0%) experiments. Although not
listed in Table 8, it performs better than “JTR L-8” for
2.3E10 guesses. At 2.5E12 guesses it cracks 27% passwords,
but that is not better than the performance of “JTR GW25-
8” (34.7%). However, grammar-aware cracker cracks 10%
new passwords from P16S2-5 dataset. This 10% was not
cracked by “JTR GW25-8” or other experiments. Further,
grammar-aware cracker consumes < 10MB of storage com-
pared to > 50GB for JTR experiment using Google Web
Corpus. It is highly scalable as number of guesses increases,
and easier for operations such as network transfer and dic-
tionary sorting. It also provides flexibility in targeting dif-
ferent user groups e.g. we can use different “Proper Noun”
dictionaries for users from North America versus Asia. We
feel that the initial results look promising and that using
a grammar-aware cracker can indeed improve the cracking
efficiency of long passwords.

6. POLICY IMPLICATIONS
In this section, we highlight the need for policy makers to
understand the impact of grammatical structures on secu-
rity of long passwords so they can implement secure pass-
word policies. We consider the example of passphrase poli-
cies. We reexamine some of the implicit assumptions within
passphrase policies in light of the results on search space and
guessing from Sections 3, 4 and 5. Many policies consider
a passphrase as a long sequence of characters or words [10,
2, 3, 7] and estimate security metrics such as size of search
space and guessing effort accordingly [8, 17]. However, when
users choose sentence-like or phrase-like passphrases, due to
grammatical structures the search space and guessing effort
will decrease. Further, because of structure, the strength of
the passphrase does not increase uniformly with the length
i.e. a longer passphrase is not necessarily stronger than a
shorter passphrase.

6.1 Relationship between Passphrase Strength
and Length

Consider the passphrase examples in Table 9. The examples,
“Th3r3 can only b3 #1!”, “Superman is $uper str0ng!” and
“My passw0rd is $uper str0ng!” are from technology and aca-
demic websites [5, 15, 3]. The example, “Hammered asinine
requirements.” is a synthetic example based on a recommen-
dation to use nonsensical phrase [30]. The tag-rule column
lists one of the grammatical structures that can generate the

Figure 6: Word and character statistics for long
passwords in dataset P16S. We also plot the his-
tograms for number of characters (Top) and number
of words (Side). Note how total number of char-
acters in the passwords tends to remain the same
as the number of words increases (shaded oval).
Users seem to meet the policy requirement of min-
imum 16 characters with fewer long words or more
short words. The passwords “compromisedemail”
and “thosedamnhackers” both have 16 characters,
but 2 and 3 words respectively.

corresponding passphrase. The number of guesses lists the
total number of passphrases the corresponding tag-rule can
generate, that is the size of the tag-rule search space. The
guessing estimates are based on the grammar aware cracking
approach from Section 5. The time column lists the total
time required to guess all the passphrases generated by the
tag-rule, and are based on a guessing rate of 1 billion guesses
per second. This rate is realistic if we consider that current
state of the art GPU accelerated machines can achieve up
to 33 billion comparisons per second and can be built with
less than USD 3000 [16]. Looking at the guessing effort and
time estimates, it is clear that passphrase strength is not a
direct function of the number of words or characters in the
passphrase. The passphrase “Th3r3 can only b3 #1!” has
more words than “Hammered asinine requirements.”, but is
one order of magnitude weaker. Similarly, “Hammered asi-
nine requirements.” has more characters than “Superman is
$uper str0ng!”, but is one order of magnitude weaker. The
examples, “Th3r3 can only be #1!” and “My passw0rd is
$uper str0ng!” vary in strength by three orders of magni-
tude, but satisfy the composition requirements of the same
passphrase policy [3, 4]. Underlying structures, and not just
the number of characters or words determine the overall
strength of a passphrase.

6.2 User Behavior and Passphrase Policy
While studying the long password data set [24], we observed
that users tend to choose fewer long words or more short
words to generate a password that meets the policy require-
ment of minimum 16 characters. Consider the word and
character statistics from the P16S long password dataset in
Fig. 6. The shaded oval in the figure highlights the pass-
words with 19 characters (x-axis), and between two to eight
words (y-axis). We can observe similar behavior for pass-
words with 16, 17, etc. characters. For example, the pass-

words “compromisedemail” and “thosedamnhackers” contain
16 characters, but two and three words respectively. From
our results, we know that two passwords of equal length
(same number of characters), but different number of words
may vary in strength by orders of magnitude. Interestingly,
we found some explanation for this user behavior in the
field of cognitive psychology. As Jahnke and Nowaczyk ex-
plain regarding experiments on word-length and short-term
memory [23, chap. 4], “Strings of short words (e.g., cup,
war) given in tests of immediate memory are much more
likely to be recalled correctly than are equally long strings
of equally familiar long words (e.g., opportunity, university).
Stated alternatively, subjects can remember for immediate
recall about as many words as they can say in 2 s, and ob-
viously they can say more short than long words in that
time.” Passphrase policies such as “choose a password that
contains at least 15 characters and at least four words with
spaces between the words” [7] may unwittingly allow weaker
passphrases unless they consider user behavior and effect of
structure.

6.3 Passphrase Entropy
Some passphrase security evaluations [32] use the concept
of entropy of English language [34]. Informally, entropy
measures how much the values emitted by a source can be
compressed. Higher compression is achieved when values
repeat more often. Entropy can be a useful measure to es-
timate search space. However, entropy estimations have to
be based on representative probability distributions of the
source emitting the values. It is incorrect to use estima-
tion derived for one source for another without verifying if
the two sources have similar probability distributions. To
illustrate this point, in Fig. 2, we plot the search space esti-
mation using fixed entropy estimation equation 21.75×4.26×i

where i is the number of words in the password. We use the
estimate of 1.75 bits per character for printed English [21],
and 4.26 average word length statistics from the Brown Cor-
pus 2. In [21], a 3-word gram language model was trained
on large amounts of printed English sources, and was tested
on the Brown Corpus. We observe from Fig. 2 that the esti-
mation for 3-word phrases closely matches the true number
of unique 3-word phrases in Brown Corpus. However, for
other lengths there is varying degrees of inaccuracy. This is
because of the difference in probability distribution used by
the estimation model and the true probability distribution of
n-word phrases. To our knowledge there is no study of prob-
ability distribution of user chosen passphrases. Passphrases
may also have different probability distributions for differ-
ent user groups and policies. Hence using single entropy
estimation derived from printed English may be incorrect.

7. CONCLUSIONS
Long passwords is a promising user authentication mecha-
nism. However, to achieve the level of security and usability
envisioned with long passwords, we have to understand the
effect of structures present in them. Further, we have to
make policies and enforcement tools cognizant of the effect
of structures. As a first step, we developed some techniques
to achieve these goals. We studied grammatical structures,
but other types of structures such as postal addresses, email
addresses and URLs present within long passwords may have
similar impact on security. More research is necessary to
fully understand the effect of structures on long passwords.

References
[1] Amazon payphrase. www.amazon.com/payphrase, 2011.

[2] Bitcoin passphrase policy. https://en.bitcoin.it/

wiki/Securing_your_wallet#Password_Strength,
2012.

[3] Carnegie mellon university passphrase policy.
http://www.cmu.edu/iso/governance/guidelines/

password-management.html, 2012.

[4] Carnegie mellon university passphrase policy faq.
http://www.cmu.edu/computing/doc/accounts/

passwords/faq.html#8, 2012.

[5] Cheap GPUs rendering strong passwords useless.
http://it.slashdot.org/story/11/06/05/2028256/

cheap-gpus-rendering-strong-passwords-useless,
2012.

[6] Hashcat advanced password recovery. http://

hashcat.net/oclhashcat-plus/, 2012.

[7] Indiana university passphrase policy. http://kb.iu.

edu/data/acpu.html#atiu, 2012.

[8] Indiana university passphrase policy strength es-
timation. http://protect.iu.edu/cybersecurity/

safeonline/passphrases, 2012.

[9] John The Ripper password cracker. http://www.

openwall.com/john/, 2012.

[10] Massachusetts Institute of Technology passphrase pol-
icy. http://ist.mit.edu/security/passwords, 2012.

[11] Microsoft word breaker for web. http:

//research.microsoft.com/en-us/um/people/

kuansanw/wordbreaker/, 2012.

[12] NLTK web text corpus. http://nltk.googlecode.

com/svn/trunk/nltk_data/index.xml, 2012.

[13] Openwall wordlists collection. http://www.openwall.

com/wordlists/, 2012.

[14] University of maryland passphrase policy. http://

www.security.umd.edu/protection/passwords.html,
2012.

[15] University of minnesota passphrase policy.
http://www.oit.umn.edu/security/topics/

choose-password/index.htm, 2012.

[16] Whitepixel GPU Hash Auditing. http://whitepixel.
zorinaq.com/, 2012.

[17] T. Baekdal. Passphrase usability and strength
estimation. http://www.baekdal.com/insights/

password-security-usability, 2012.

[18] J. Bonneau. The science of guessing: analyzing an
anonymized corpus of 70 million passwords. In 2012

IEEE Symposium on Security and Privacy, May 2012.

[19] J. Bonneau and E. Shutova. Linguistic properties of
multi-word passphrases. In USEC ’12: Workshop on

Usable Security, March 2012.

[20] T. Brants and A. Franz. Web 1T 5-gram Version 1. Lin-

guistic Data Consortium, Philadelphia, PA. Philadel-
phia, PA, 2006.

[21] P. F. Brown, V. J. D. Pietra, R. L. Mercer, S. A. D.
Pietra, and J. C. Lai. An estimate of an upper bound
for the entropy of english. Comput. Linguist., 18(1):31–
40, Mar. 1992.

[22] CLAWS. Part-Of-Speech tagger for English. http:

//ucrel.lancs.ac.uk/claws/, 2012.

[23] J. C. Jahnke and R. H. Nowaczyk. Cognition. Prentice-
Hall, Inc., Upper Saddle River, New Jersey, USA, 1998.

[24] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay,
T. Vidas, L. Bauer, N. Christin, L. F. Cranor, and
J. Lopez. Guess again (and again and again): Measur-
ing password strength by simulating password-cracking
algorithms. In Proceedings of the 2012 IEEE Sympo-

sium on Security and Privacy, May 2012.

[25] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek,
L. Bauer, N. Christin, L. F. Cranor, and S. Egel-
man. Of passwords and people: measuring the effect
of password-composition policies. In Proceedings of the

2011 annual conference on Human factors in comput-

ing systems, CHI ’11, pages 2595–2604, New York, NY,
USA, 2011. ACM.

[26] H. Kucera and W. N. Francis. Computational analy-

sis of present-day American English. Brown University
Press, Providence, RI, 1967.

[27] C. Kuo, S. Romanosky, and L. F. Cranor. Human selec-
tion of mnemonic phrase-based passwords. In Proceed-

ings of the second symposium on Usable privacy and

security, SOUPS, pages 67–78, New York, NY, USA,
2006. ACM.

[28] C. D. Manning and H. Schütze. Foundations of Statis-

tical Natural Language Processing. MIT Press, Cam-
bridge, MA, USA, 1999.

[29] A. Narayanan and V. Shmatikov. Fast dictionary at-
tacks on passwords using time-space tradeoff. In Pro-

ceedings of the 12th ACM conference on Computer and

communications security, CCS, pages 364–372, New
York, NY, USA, 2005. ACM.

[30] PGP. FAQ: How do I choose a good password or
phrase? http://www.unix-ag.uni-kl.de/~conrad/

krypto/passphrase-faq.html, 2012.

[31] J. O. Pliam. On the incomparability of entropy and
marginal guesswork in brute-force attacks. In Proceed-

ings of the First International Conference on Progress

in Cryptology, INDOCRYPT, pages 67–79, London,
UK, 2000. Springer-Verlag.

[32] S. N. Porter. A password extension for improved human
factors. Computers & Security, 1(1):54–56, 1982.

[33] S. Schechter, C. Herley, and M. Mitzenmacher. Popu-
larity is everything: A new approach to protecting pass-
words from statistical-guessing attacks. In Proceedings

of the 5th USENIX conference on Hot topics in security,
HotSec, pages 1–8, Berkeley, CA, USA, 2010. USENIX
Association.

[34] C. E. Shannon. Prediction and entropy of printed En-
glish. Bell Systems Technical Journal, 30:50–64, 1951.

[35] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L.
Mazurek, L. Bauer, N. Christin, and L. F. Cranor. En-
countering stronger password requirements: User atti-
tudes and behaviors. In Proceedings of the Sixth Sym-

posium on Usable Privacy and Security, SOUPS, pages
2:1–2:20, New York, NY, USA, 2010. ACM.

[36] K. Wang, C. Thrasher, and B.-J. P. Hsu. Web scale
nlp: a case study on url word breaking. In Proceedings

of the 20th international conference on World wide web,
WWW ’11, pages 357–366, New York, NY, USA, 2011.
ACM.

[37] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek.
Password cracking using probabilistic context-free
grammars. In Proceedings of the 2009 30th IEEE Sym-

posium on Security and Privacy, SP, pages 391–405,
Washington, DC, USA, 2009. IEEE Computer Society.

APPENDIX
A. INCREASE IN GAIN OF AN ATTACKER
For a representative uniform sample set, the maximum gain
of an attacker depends only on the number of guesses to be
made, G, and the ratio of the search space size to the sample
size. From (4),

count(TSgrammar)
∑

i=1

rivi

=
count(V)

count (WSgrammar)

count(TSgrammar)
∑

i=1

rigi (6)

=
count(V)

count (WSgrammar)
G, (7)

where the set of weights, RU = {ri}, is not unique i.e. more
than one choice of {ri} can yield the same maximum gain.
Hence, without loss of generality, we can choose a rule setRU

of length k ≤ count
(

TSgrammar) such that for ri ∈ RU ,

k
∑

i=1

rigi = G (8)

ri = 1, 1 ≤ i ≤ k − 1, (9)

0 < ri ≤ 1, i = k (10)

Let vUi and vSi denote the values in the representative uni-
form distribution and the skewed sample distribution. The

following steps prove that gainskew≥gainuniform.

1. If vSi ≥ vUi , ∀i then riv
S
i ≥ riv

U
i , ∀i. Hence, gainskew ≥

gainuniform. Proved. Else go to next step.

2. Find a new rule set Rp = {ri}, 1 ≤ i ≤ k′ such that
∑k′

i=1 rigi = G and vSi ≥ vUi , ∀i. If found, gainskew ≥

gainuniform. Proved. Else Rp only contains rules with
vSi ≥ vUi and the guessing constraint is not satisfied.
Go to next step.

3. At this point, we could not find a rule set where for
each rule we see an increase in gain compared to the
uniform distribution. So, in our rule set we must in-
clude some rules for which vSi < vUi . We will show that
the apparent loss in gain due to this will be more than
balanced by the increase in gain due to other rules for
which vSi > vUi .

There exists a set R′ ⊆ TSgrammar where R′ ⊃ Rp.
For a uniform distribution, R′ is an instance of RU

satisfying the guessing constraint. With a new skewed
distribution, we know that for each rule of Rp in R′,
vSi ≥ vUi . For remaining rules in R′, vSi < vUi . For
these remaining rules, ri = 1 for all but one element
and 0 < ri ≤ 1 for the last element. The decrease in
gain due to the decrease in vSj values in R′ − Rp are

compensated by the increase in vSi of rules contained
in Rp. ri = 1 for all rules in Rp and all except one rule
in R′ − Rp. For each rule j with rj = 1 in R′ − Rp,
the decrease in vSj is compensated by an increase in

vSi for some rule i ∈ Rp. The last rule in R′ − Rp for
which rj < 1, the decrease in vSj is compensated by

vSi of some rule i in Rp with corresponding ri = 1.

Hence, the overall gain gainskew of R′ is greater than

or equal to gainuniform. Recall that the rules in set
R′ already satisfies the guessing constraint. Proved.

