Optimal Security for Keyed Hash Functions: Avoiding Time-Space Tradeoffs for Finding Collisions

Cody Freitag

Cornell Tech

Ashrujit Ghoshal

University of Washington

Ilan Komargodski

Hebrew University and NTT Research

Cryptographic hash functions and collision resistance

Applications:

- Hash and sign
- Proofs of Work
- Password authentication
- SNARKs

Only relevant for uniform attackers Non-uniform adversary can hardwire collisions Keyed hash functions and collision resistance

Family of hash functions $\{H(k,.)\}_{k \in \{0,1\}^n}$

Collision resistance: For random k, hard to find $M \neq M'$: H(k, M) = H(k, M')

Given *n*, how would you build such *H*?

Practice for Building *H*

- Design a single $h: \{0,1\}^{2n} \rightarrow \{0,1\}^n$
- Iterate it in some way to get $H: \{0,1\}^n \times \{0,1\}^* \rightarrow \{0,1\}^n$
- (Keyed) Merkle-Damgård

Back to Collision Resistance

- Is *H* collision resistant?
- Model $h: \{0,1\}^{2n} \rightarrow \{0,1\}^n$ as a random oracle
- Adversary is non-uniform

Auxilliary-Input Random Oracle Model (AI-ROM) [Unruh07]

 $A = (A_1, A_2)$

Establishing a baseline

*A*₁: Preprocessing

Remember collision for $\approx S$ different keys A_2 : Online

If key k not among the $\approx S$ keys, do birthday attack

$$\operatorname{Adv}^{H}(S,T) \ge \Omega\left(\frac{S}{2^{n}} + \frac{T^{2}}{2^{n}}\right)$$

Theorem. [DGK17] Adv^G(S,T) $\leq O\left(\frac{S}{2^n} + \frac{T^2}{2^n}\right)$

Random $G: \{0,1\}^n \times \{0,1\}^{2n} \to \{0,1\}^n$

What about keyed MD?

Time-space tradeoff for MD collisions

Numerous follow up works analyzing various properties of keyed MD [ACDW20,GK22,AGL22]

Is this tradeoff inherent to any iterative construction?

What's the right way of turning a single hash function into a keyed family of hash functions?

Is it possible to avoiding a security loss?

Our Results

				Processir
		Security	Assumption	# of h calls
	MD	$ST^2/2^n$		M/n
Follow from known results		$S/2^{n} + T^{2}/2^{n}$		Μ
Hard & technical			$ST^{2} < 2^{n}$	
			Conjecture this is r	not

Construction H_1

[Goldwasser-Bellare 2008, uniform setting]

M = total input length

M

Construction *H*₂

	Security	Assumption	# of <i>h</i> calls
H_2	$S/2^{n} + T^{2}/2^{n}$	S < T	2 <i>M</i> /n

By reduction to security of two-block case [ACDW20]

M = total input length

Construction *H*₃

Proof via the multi-instance framework [AGL22]

Conclusions

- New way of building keyed families of hash function
 - Via Merkle-tree-based keyed hashing approach
- Prior works focus on analyzing existing weak variants

Open problems

- Prove conjectured security of H_3 for $ST^2 > 2^n$
- Other preprocessing resistant constructions

Paper: ePrint/2023/348

