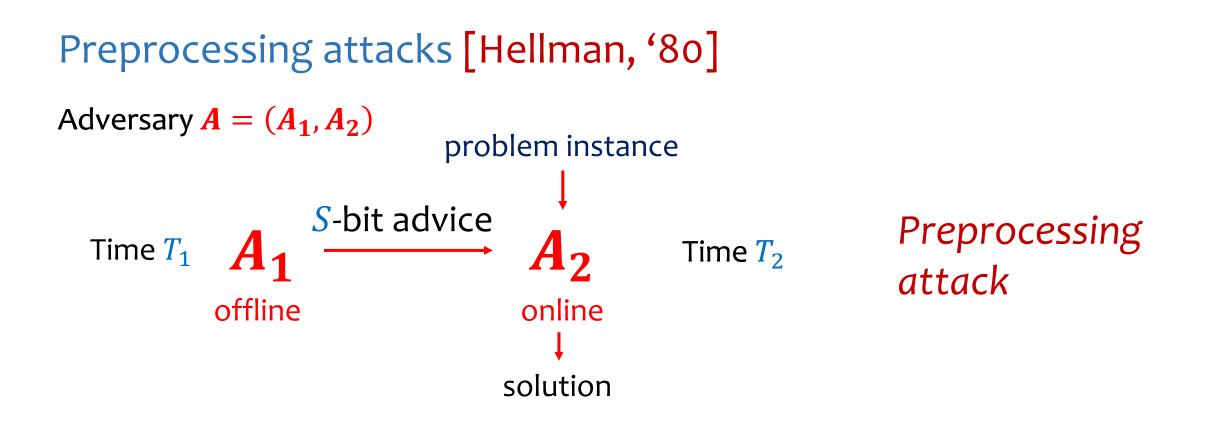
The Query Complexity of Preprocessing Attacks

Ashrujit Ghoshal

Carnegie Mellon University

Stefano Tessaro

University of Washington



"Classical" interpretation: Advice = Non-uniformity

```
[Koblitz-Menezes, '13] [Bernstein-Lange, '13]
```

In this case: offline time T_1 does not matter, only advice size S

Many works embrace this viewpoint and prove lower/upper bounds on space-time trade-offs in <u>ideal</u> models

[Hellman '80] [Yao '90] [Unruh '07] [De-Trevisan-Tulsiani '10] [Dodis-Guo-Katz '17] [Coretti-Dodis-Guo-Steinberger '18] [Coretti-Dodis-Guo '18] [Corrigan-Gibbs-Kogan '18] [Corrigan-Gibbs-Kogan '19] [Akshima-Cash-Drucker-Wee '20] [Chung-Guo-Liu-Qian '20] [Chawin-Haitner-Mazor '20] [Guo-Li-Liu-Zhang '21] [Gravin-Guo-Chiu-Lu '21] [Ghoshal-Komargodski '22] [Freitag-Ghoshal-Komargodski '22] [Akshima-Guo-Liu '22] [Freitag-Ghoshal-Komargodski '23] [Golovnev-Guo-Peters-Stephens-Davidowitz '23]

Prototypical theorem $Adv_{\text{MD},N,M,B}^{\text{ai-cr}}(S,T) \leq C \cdot \max\left\{ \left(\frac{\hat{S}TB^2 \left(\frac{3e \log \hat{S}}{\log \log \hat{S}}\right)^{2(B-2)}}{N}\right), \left(\frac{T^2}{N}\right) \right\} + \frac{1}{N} \cdot \frac{$ This talk: should we care about T_1 ?

When

(And what can we say about it?)

In some settings, we actually want to run the attack!

For a pre-processing attack to be "practical":

- Feasible *T*₁
- Worth it to run the attack!

 $T^* \coloneqq$ runtime of best online-only attack to win

To have $T_2 \ll T^*$ we need $T_1 \ge T^*$ •

Setting 1: Online phase has short time-out and must be fast!

Example: [Adrian et al. '15] – breaking (weak) discrete logarithm within TLS session

Setting 2: Advice can be recycled across multiple executions of the attack

Example: Invert RO(pwd) with N potential pwd's Online only: k passwords in time $k \times N$ [memory-less] Rainbow table: k passwords in time $N + k \times \frac{N}{s}$

Bottom line

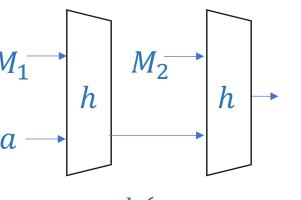
There are settings where explicit pre-processing attacks make sense and understanding the necessary offline time complexity is fundamental.

But: can we actually show anything interesting?

• E.g., rainbow tables are easily seen to be optimal (at least one of online and offline phase should take time *N*)

Interesting example

2-block Merkle-Damgård (MD) collisions $h: \{0,1\}^{2n} \rightarrow \{0,1\}^n$



 $2-MD^{h}(a, (M_{1}, M_{2}))$

Offline

• Advice: *S* triples (a_i, M_i, M'_i) such that $M_i \neq M'_i$, $M_1 \land h(a_i, M_i) = h(a_i, M'_i)$ for distinct a_1, \dots, a_S

Online

- Given salt a, find M such that $h(a, M) = a_i$ for some $i \in [S]$
- Return $(M, M_i), (M, M'_i)$

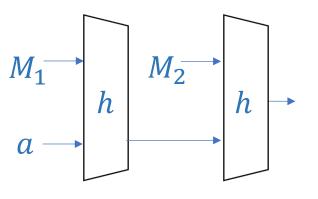
 $T_1 \approx S \cdot 2^{0.5n}, T_2 \approx 2^n/S$

$$T_1 \times T_2 \approx 2^{1.5n}$$

М

a

Interesting example 2-block Merkle-Damgård (MD) collisions $h: \{0,1\}^{2n} \rightarrow \{0,1\}^n$



 $2-\mathrm{MD}^h(a,(M_1,M_2))$

 $T_1 \times T_2 \approx 2^{1.5n}$

To get $T_2 < 2^{n/2}$, we need $T_1 > 2^n$ e.g., only worth it for more than $2^{n/2}$ collisions

Are there attacks with better trade-offs?

How do we reason about this?

- This work!

This work – in a nutshell

Toolkit* to understand inherent relationship between offline and online time in preprocessing attacks.

▷ Generic **salting** defeats preprocessing (qualitatively at least)

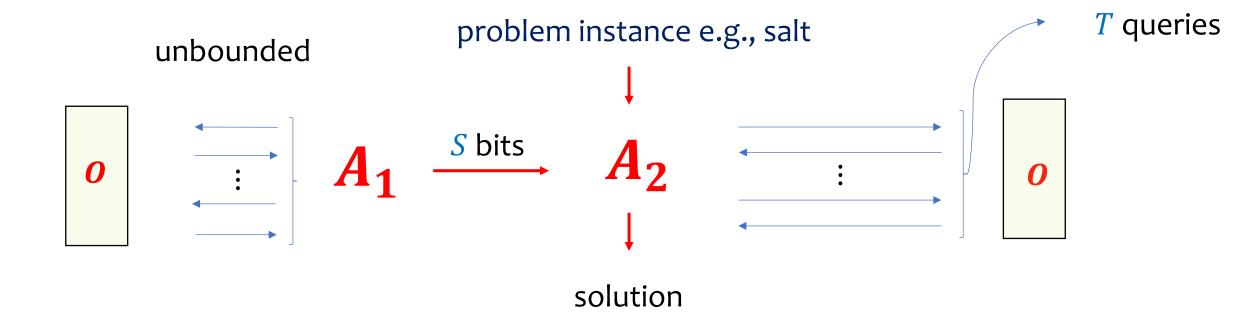
Quantitative bounds for salted random oracles

Quantitative bounds for two-block Merkle-Damgård (MD)

* <u>Only</u> prior work deals with DL with preprocessing [CorriganGibbs-Kogan '18]

Auxiliary-input (ai) ideal models

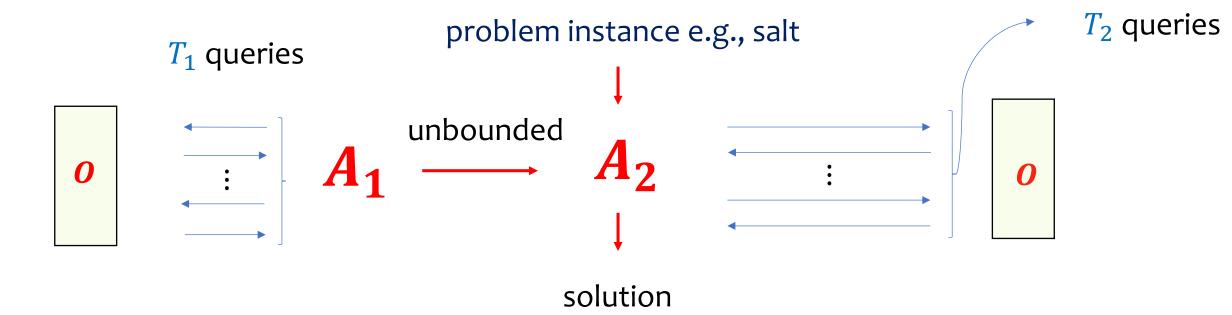
 $A = (A_1, A_2)$ O = RO, ideal cipher, GGM oracle, ...



This work -- model

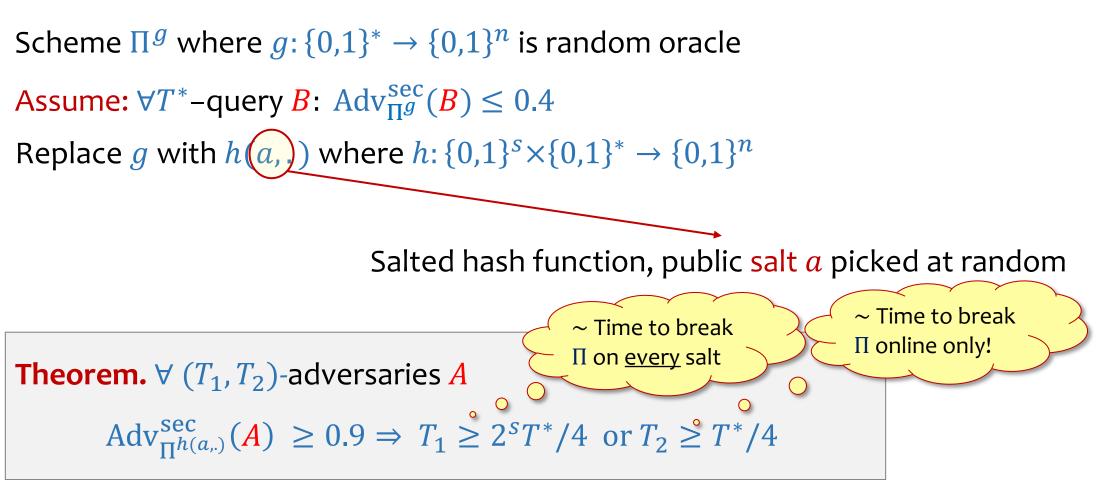
 $\boldsymbol{A} = (\boldsymbol{A_1}, \boldsymbol{A_2})$

0 = RO, ideal cipher, GGM oracle, ...



Notation: (T_1, T_2) -adversary

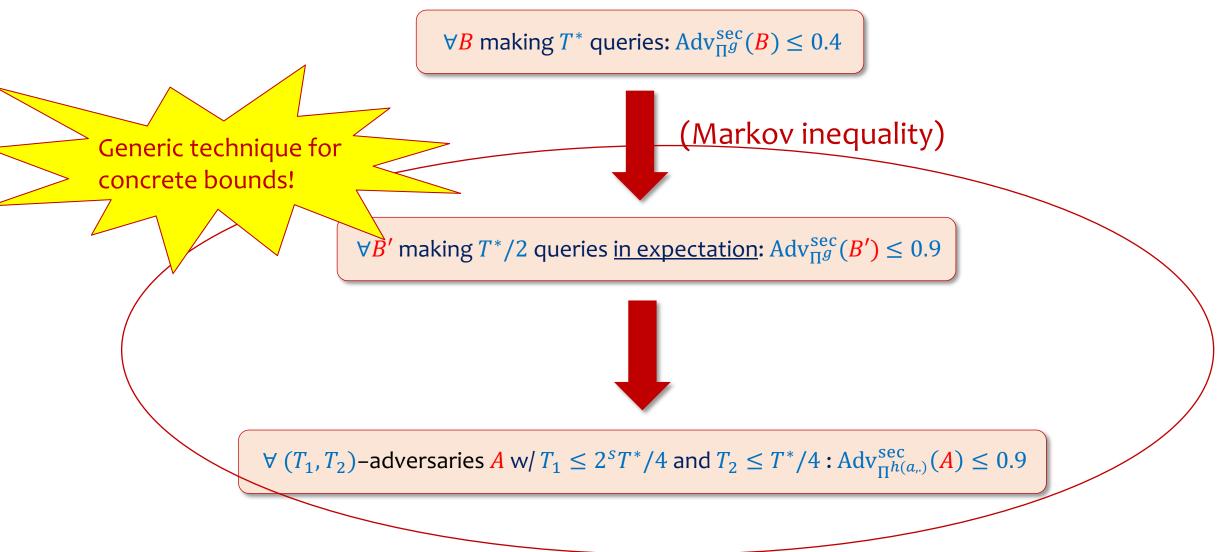
Salting defeats preprocessing



Two issues:

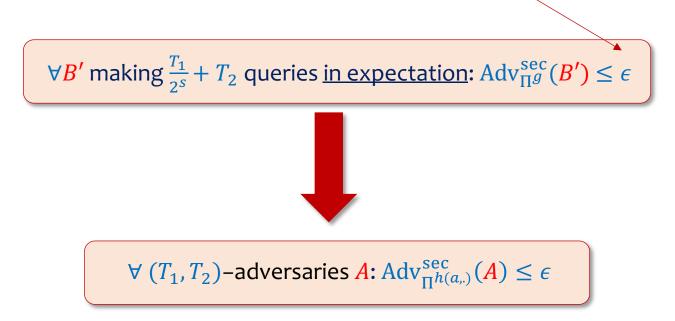
- only deals with high-advantage regime
- in some cases, not all calls are salted!

Proof idea



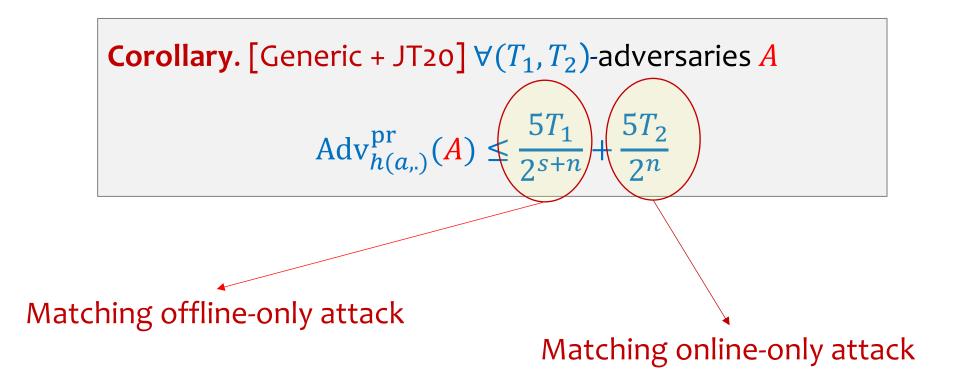
Generic technique

Use [Jaeger-Tessaro '20] to compute ϵ !

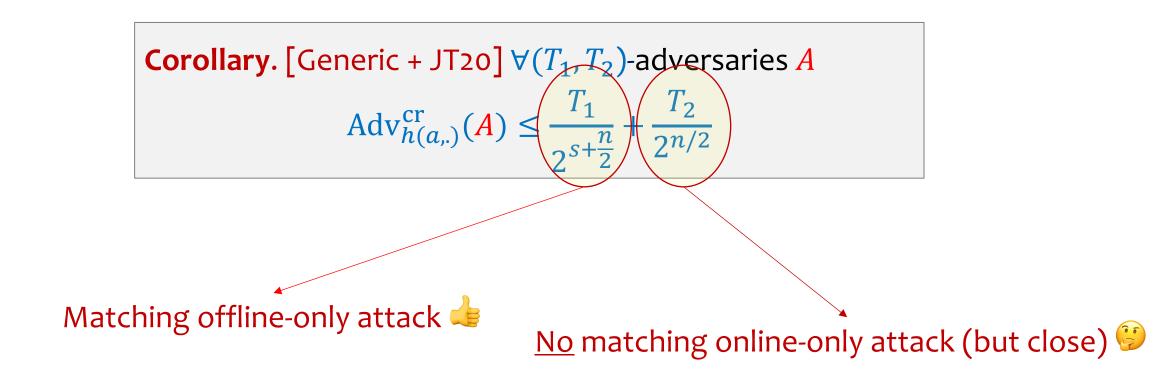


Salted Random Oracles – Generic Technique

Example. Pre-image resistance of salted random oracle $h: \{0,1\}^s \times \{0,1\}^n \rightarrow \{0,1\}^n$ Given $a \stackrel{\$}{\leftarrow} \{0,1\}^s, y \stackrel{\$}{\leftarrow} \{0,1\}^n$, find M such that h(a, M) = y



Salted Random Oracles – Generic Technique Example. Collision resistance of salted random oracle $h: \{0,1\}^s \times \{0,1\}^s \rightarrow \{0,1\}^n$ Given $a \stackrel{\$}{\leftarrow} \{0,1\}^s$, find $M \neq M'$ such that h(a, M) = h(a, M')



Salted Random Oracles – <u>Direct</u> Proof

Example. **Collision resistance** of salted random oracle $h: \{0,1\}^s \times \{0,1\}^s \to \{0,1\}^n$ Given $a \stackrel{\$}{\leftarrow} \{0,1\}^s$, find $M \neq M'$ such that h(a, M) = h(a, M')

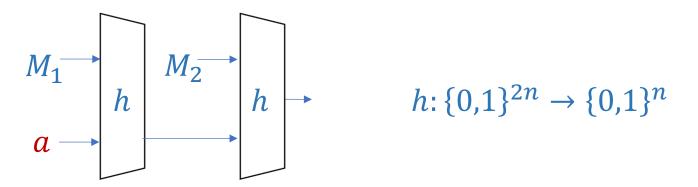
Theorem. [This work]
$$\forall (T_1, T_2)$$
-adversaries A
 $Adv_{h(a,.)}^{cr}(A) \leq \frac{T_1}{2^{s+\frac{n}{2}}} + \frac{T_2^2}{2^n}$

Proof via compression argument [we will come back to this ...]

Bottom line: Generic approach does not always give best possible bounds (but gives close enough bounds)

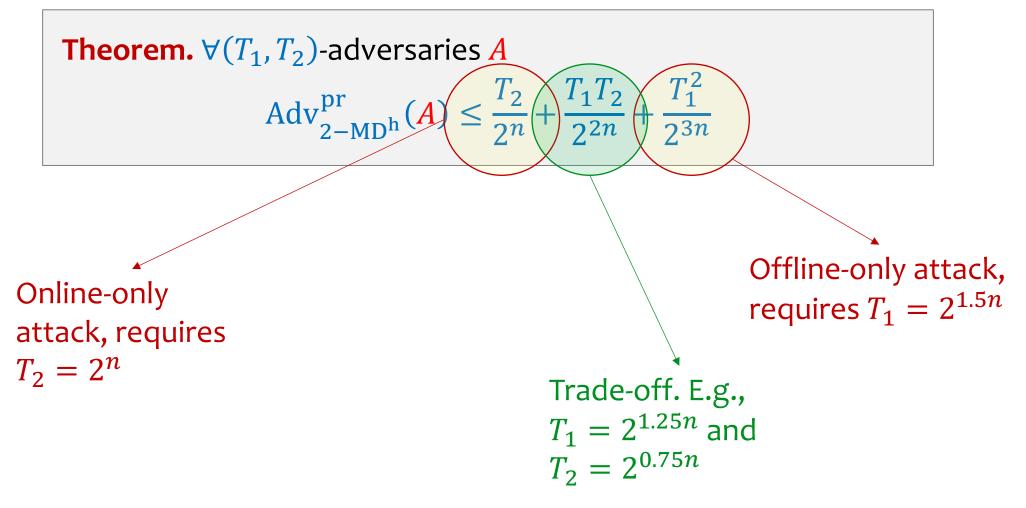
Two-block MD

Two block MD construction does not salt each call to h \rightarrow prior techniques do not apply & more challenging proofs

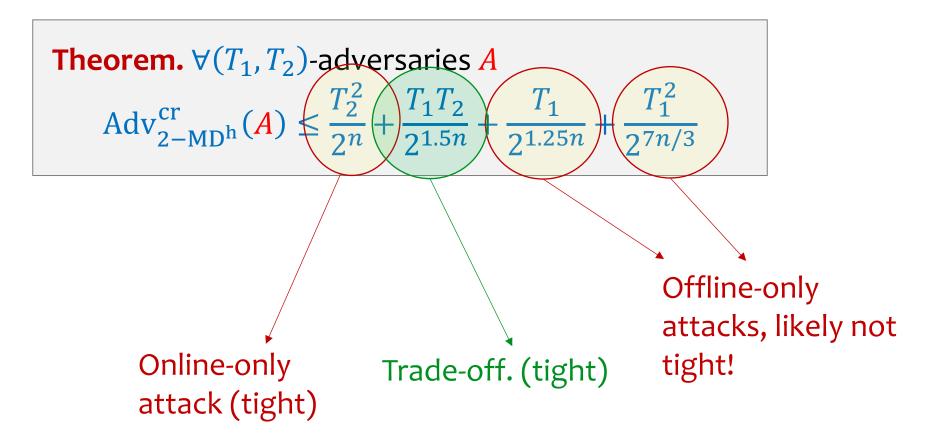


 $2-MD^{h}(a, (M_{1}, M_{2}))$

Two-block MD – Pre-image resistance



Two-block MD – Collision Resistance



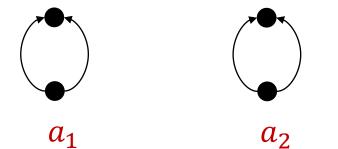
What is the main challenge behind these proofs?!

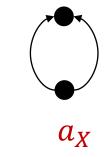
Main challenge = Offline-only attacks!

E.g., for collision resistance of salted random oracle

 $X \coloneqq \#$ salts a_i for which the adversary can find the following structures

. . .



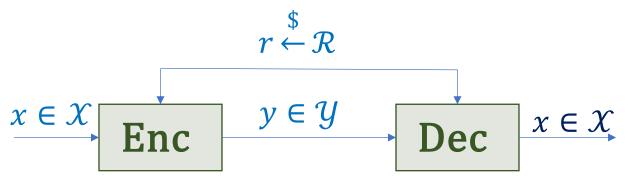


Need to upper bound E[X]

Unclear how when queries adaptive

We prove
$$\Pr\left[X \ge \max\left\{\frac{eT_1}{2^{\frac{n}{2}}}, n\right\}\right]$$
 is very small, which suffices

Technique: compression argument



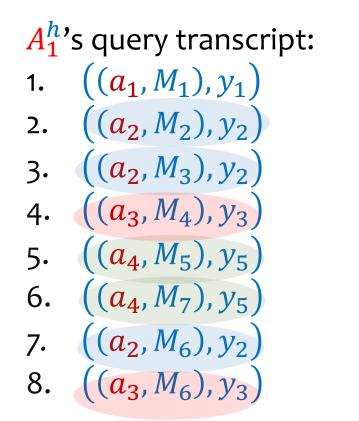
Lemma [DTT10]. Let
$$\varepsilon \coloneqq$$

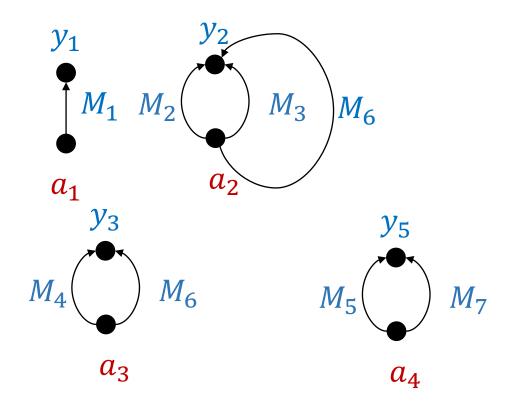
 $\Pr[\operatorname{Dec}(\operatorname{Enc}(x,r),r) = x]$. Then
 $\log|\mathcal{Y}| \ge \log|\mathcal{X}| - \log\frac{1}{\varepsilon}$

Our strategy: Encode h using A_1

Decoding would succeed as long as A_1^h finds collisions for k different salts

Encoding example





Encoding: $S = \{2,3,4,5,6,8\}$ (set indices of colliding queries for salts) $L = (y_1, y_2, y_3, y_5, y_2, \text{ rest of evaluations of } h)$

Note: only collision pair considered for a_2

Encoding: $S = \{2,3,4,5,6,8\}$ (set indices of colliding queries for salts) $L = (y_1, y_2, y_3, y_5, y_2, \text{ rest of evaluations of } h)$

How does decoding work?

Run A₁

1. $(a_1, M_1) \to y_1$ 2. $(a_2, M_2) \to y_2$ 3. $(a_2, M_3) \to y_2$ 2 $\in S$, 3 $\in S$

 $2 \in S$, but **no** query *j* on a_2 earlier such that $j \in S$ $3 \in S$ and query 2 was on a_2 and $2 \in S \Rightarrow$ collision

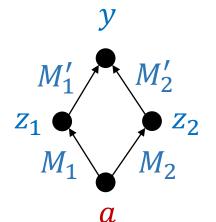
 $\epsilon \coloneqq \Pr_{h}[A_{1}^{h} \text{ finds cols for } k \text{ different salts}]$

From compression lemma, it follows

$$\log \binom{T_1}{k} \ge kn - \log \frac{1}{\epsilon} \qquad \qquad \Rightarrow \epsilon \le \frac{1}{2^n} \text{ for } k \ge \max \left\{ \frac{eT_1}{2^{\frac{n}{2}}}, n \right\}$$

2-block-MD analysis: more challenging

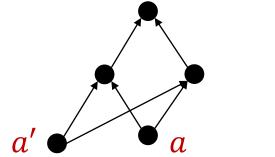
X = # salts for which collision queried in offline phase



 $h(a, M_1) = z_1, h(a, M_2) = z_2, h(z_1, M'_1), = y, h(z_2, M'_2) = y$

Very challenging to understand for $T_1 \gg 2^n$

Reason: Salts a, a' can share the $h(z_1, M_1)$ and $h(z_2, M'_2)$ queries!



Need to be very careful to avoid double counting

We give a (loose) analysis using rather **sophisticated** compression arguments ²⁶

Conclusions and open problems

- Salting generically defeats preprocessing (qualitatively) wrt to time complexity
- Quantitatively precise bounds need ad-hoc analysis
- Open problem: Close the gap for MD collisions? Extend beyond two blocks? Consider <u>both</u> advice size and pre-processing complexity?

