Time-Space Tradeoffs for Bounded-Length collisions in Merkle-Damgård hashing

Ashrujit Ghoshal

University of Washington

Ilan Komargodski

Hebrew University and NTT Research

Iterative hashing

Hash functions need to handle variable input lengths

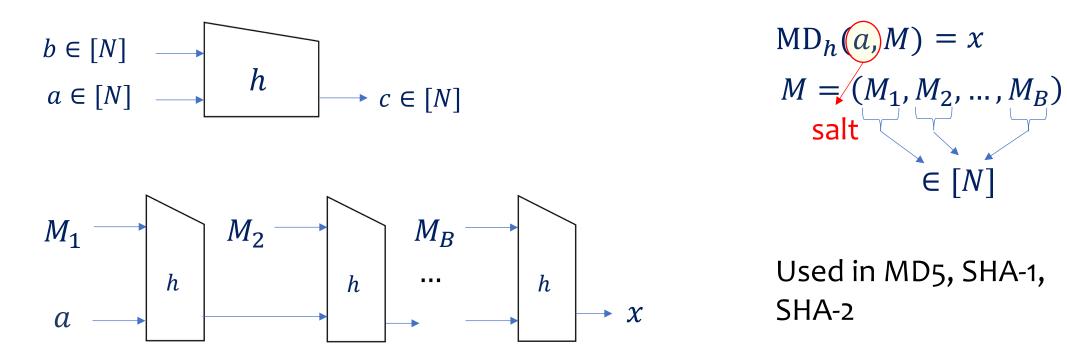
- password hashing
- hash and sign
- commitments

Cannot design a different hash for every length

Construct a VIL hash function from an underlying FIL primitive

e.g., Merkle Damgård hashing [Mer89, Dam89], sponge [BDPV07]

Merkle-Damgård



Collision resistance:

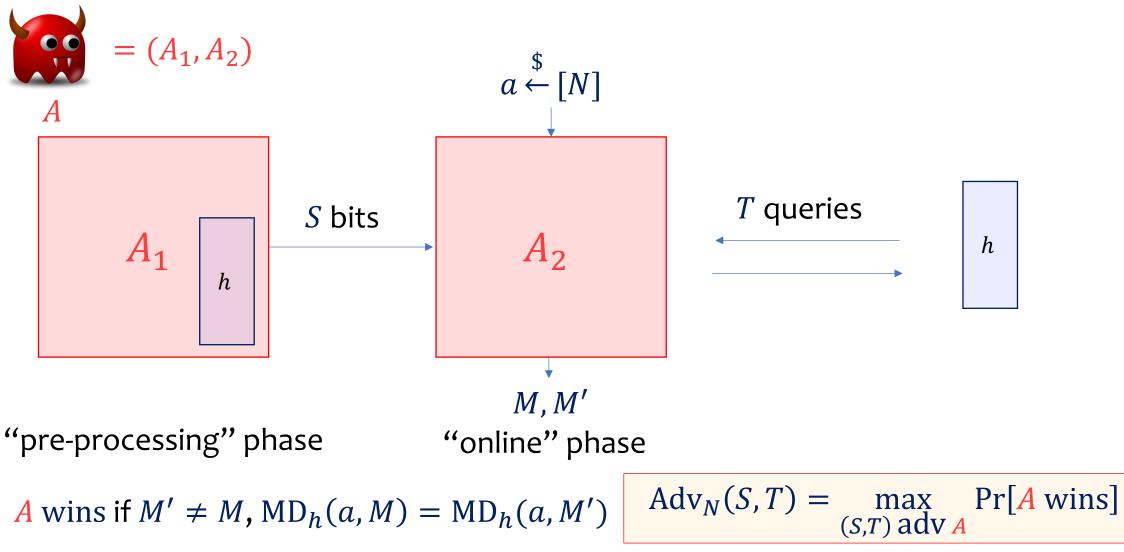
Given a random salt a, hard to find $M \neq M'$ such that $MD_h(a, M) = MD_h(a, M')$

Complexity of finding collisions

- Model *h* as a random oracle
- Using $T \approx \sqrt{N}$ queries, can find collisions
 - This is necessary

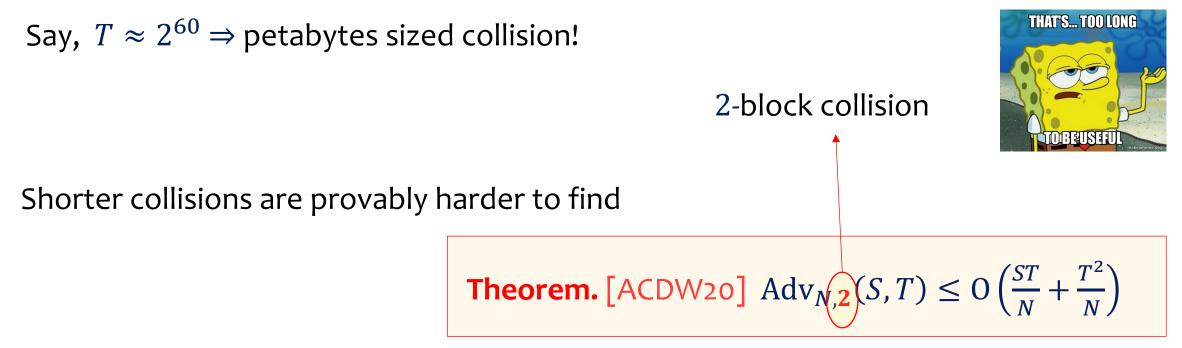
- What about adversaries with large preprocessing?
 - birthday-style attack no longer optimal
 - Scenario studied by [Hellman80, Fiat-Naor99, Unruh07,...]

Auxiliary-input random oracle model (AI-ROM) [Unruho7]



Theorem. [CDGS18]
$$Adv_N(S,T) = \Theta\left(\frac{ST^2}{N}\right)$$

An observation: the attack finds collisions of length $\Omega(T)$!

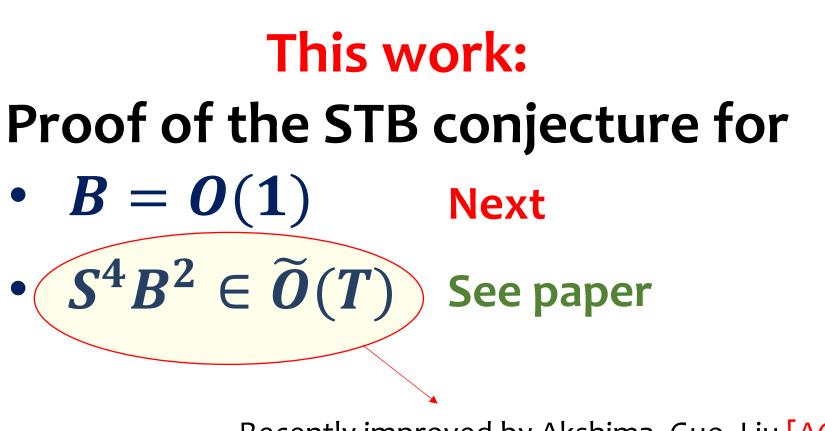


Theorem (STB attack). [ACDW20]
$$\operatorname{Adv}_{N,B}(S,T) \ge \widetilde{\Omega}\left(\frac{STB}{N} + \frac{T^2}{N}\right)$$

The STB conjecture [ACDW20]

"the optimal attack for finding *B*-block collisions has advantage at most $\tilde{O}\left(\frac{STB}{N} + \frac{T^2}{N}\right)$ "

Was unresolved for $3 \le B \ll T$



Main theorem

Theorem. [this work]

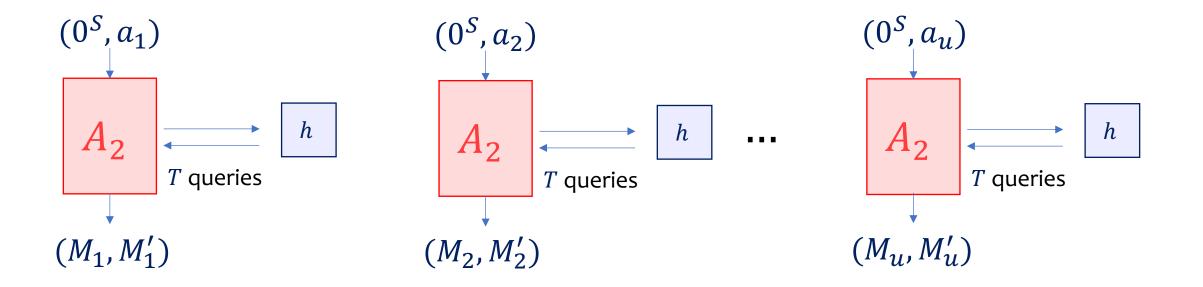
$$Adv_{N,B}(S,T) \le O\left(\frac{STB^2(\log S)^B}{N} + \frac{T^2}{N}\right)$$

For constant *B*, Adv_{*N*,*B*}(*S*,*T*) $\leq \tilde{O}\left(\frac{ST}{N} + \frac{T^2}{N}\right)$

Proof via multi-instance framework [IK10, CGLQ20, ACDW20]

Multi-instance framework [CGLQ20, ACDW20]

$$a_1, a_2, \dots, a_u \stackrel{\$}{\leftarrow} [N]$$



 A_2 wins if $\forall i \in [u]$ 1. $M_i \neq M'_i$ 2. $MD_h(a_i, M_i) = MD_h(a_i, M'_i)$ 3. $|M_i|, |M'_i| \le B$

Multi-instance lemma. Let
$$u = S + \log N$$
. Define $\varepsilon := \max_{A_2} \Pr[A_2 \text{ wins}]$. Then
 $\operatorname{Adv}_{N,B}(S,T) \le \varepsilon^{\frac{1}{u}}$

Will prove:

$$\varepsilon \leq \left(O\left(\frac{uTB^2(\log u)^B}{N} + \frac{T^2}{N}\right) \right)^u$$

For constant *B*,
$$u = S + \log N$$

 $\varepsilon \le \left(\widetilde{O} \left(\frac{ST}{N} + \frac{T^2}{N} \right) \right)^u$

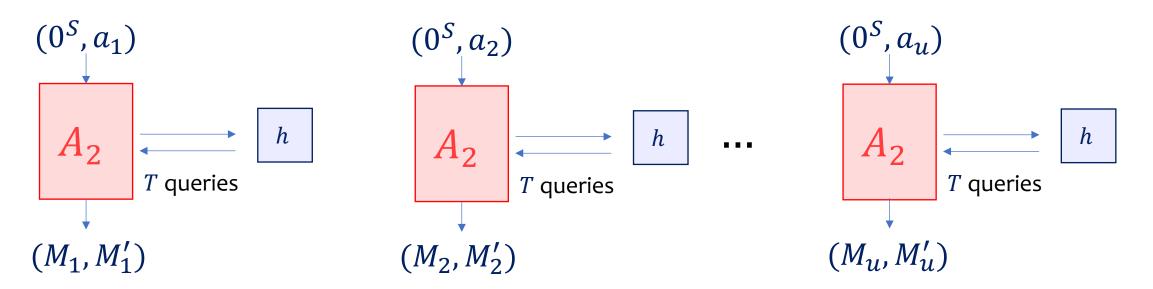
From multi-instance lemma, it follows Adv_{N,B}(S,T) $\leq \widetilde{O}\left(\frac{ST}{N} + \frac{T^2}{N}\right)$

Upper bounding multi-instance advantage

Technique: compression argument

 $r \stackrel{\$}{\leftarrow} \mathcal{R}$ $x \in \mathcal{X}$ $x \in \mathcal{X}$ $y \in \mathcal{Y}$ Enc Dec **Lemma** [GT00,DTT10]. Let $\varepsilon \coloneqq \Pr_{x,r}[\operatorname{Dec}(\operatorname{Enc}(x,r),r) = x]$. Then $\log|\mathcal{Y}| \ge \log|\mathcal{X}| - \log\frac{1}{\varepsilon}$

 $a_1, a_2, \dots, a_u \stackrel{\$}{\leftarrow} [N]$

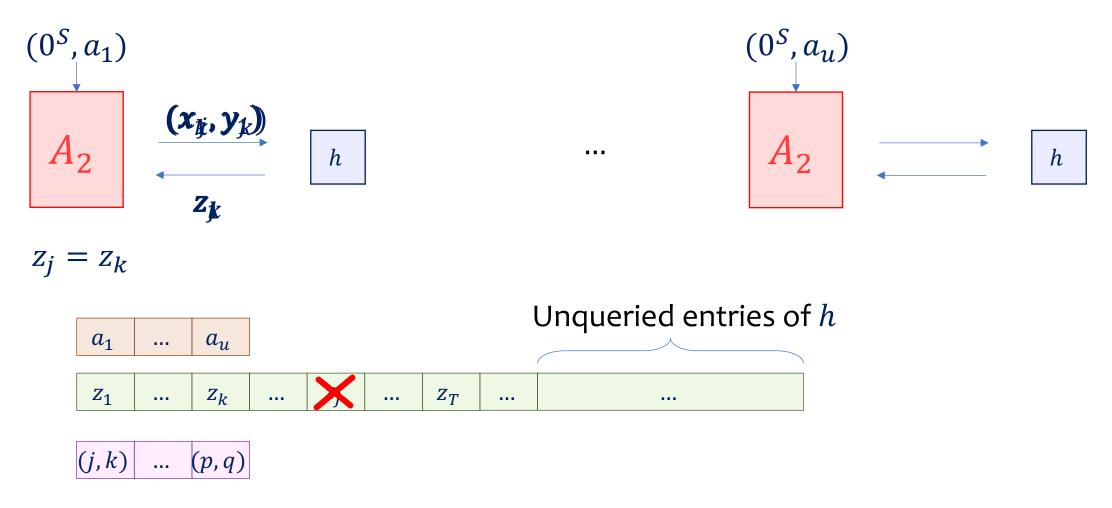


Our strategy: Encode h, $\{a_1, a_2, ..., a_u\}$ using A_2 that always wins

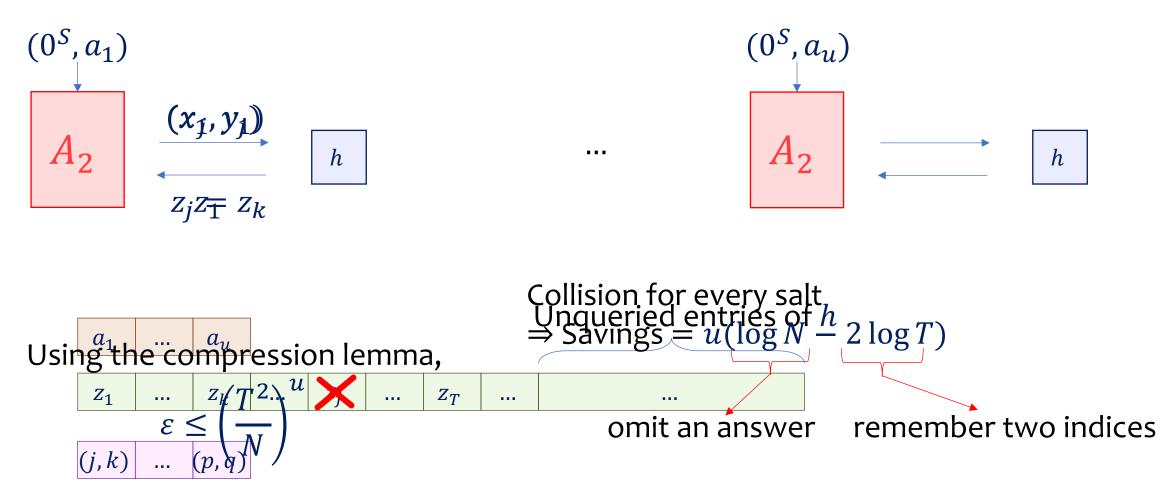
Compression lemma \Rightarrow upper bound $\Pr[A_2 \text{ wins}]$

Simplifying assumption: Only queries of the form $h(a_i,*)$ when A_2 run on a_i

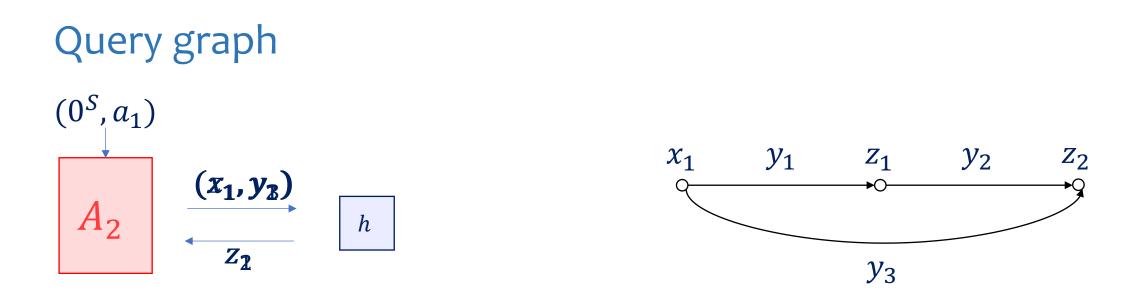
Encoding



Decoding



However, cannot assume only queries of the form $h(a_i,*)$ are made when A_2 run on a_i



Graph grows across all of A_2 's runs

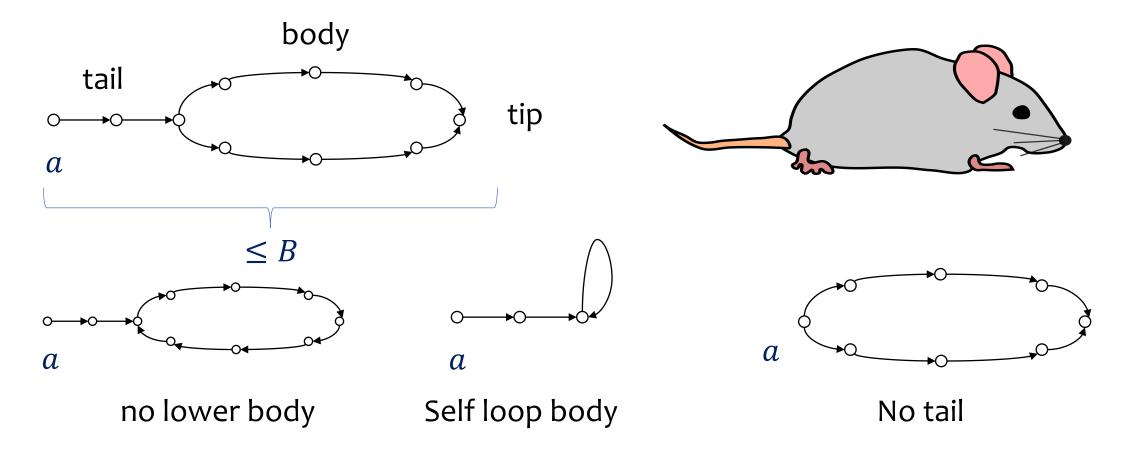
Note: A₂ may repeat queries across different runs

Assume wlog A_2 makes all h queries needed to compute collision

How do *B*-block collisions look like?

Collision structure

The mouse structure



Isolate one mouse structure per salt

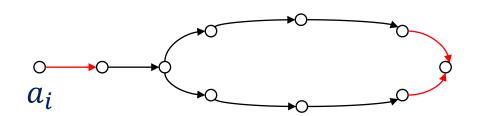
Types of queries

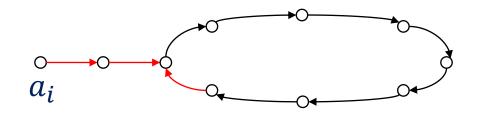
- New queries: queries made for the first time
 - wlog no queries repeated in single A_2 run
 - query not made in any previous A_2 run \Rightarrow new query
- Repeated queries
 - **repeated-mouse** queries: query present in some earlier mouse structure
 - **repeated-non-mouse** queries: other queries

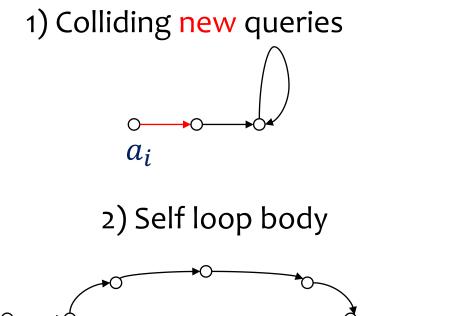
Assume: Before running A_2 on a_i , $h(a_i,*)$ not queried

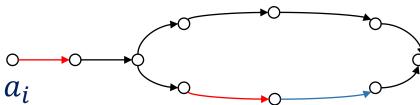
 \Rightarrow every mouse structure has a new query

Classifying mouse structures



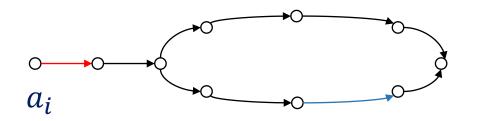




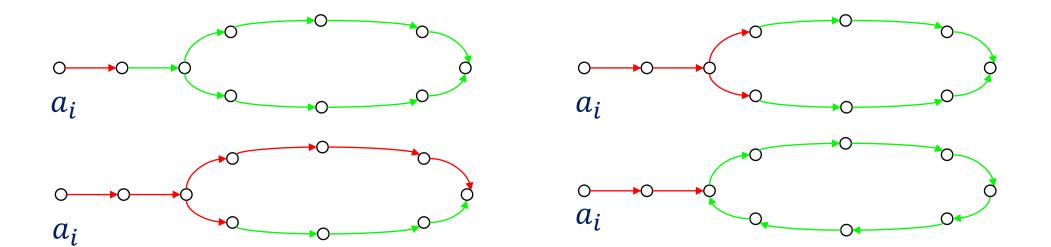


3) New query touching repeated-mouse query

Classifying mouse structures (2)



4. At least one repeated-mouse query



5. No repeated-mouse query

Goal: for every mouse structure save at least

$$\delta = \min\left\{\log\frac{N}{T^2}, \log\frac{N}{uTB^2(\log u)^B}\right\}$$
 bits

Total savings $\geq u \cdot \delta$ bits

Using the compression lemma,

$$\varepsilon \le \max\left\{\frac{T^2}{N}, \frac{4uTB^2(3\log u)^B}{N}\right\} \le \left(O\left(\frac{uTB^2(\log u)^B}{N} + \frac{T^2}{N}\right)\right)^u$$

Recall assumption: Before running A_2 on a_i , $h(a_i,*)$ not queried

Because otherwise save on a_i

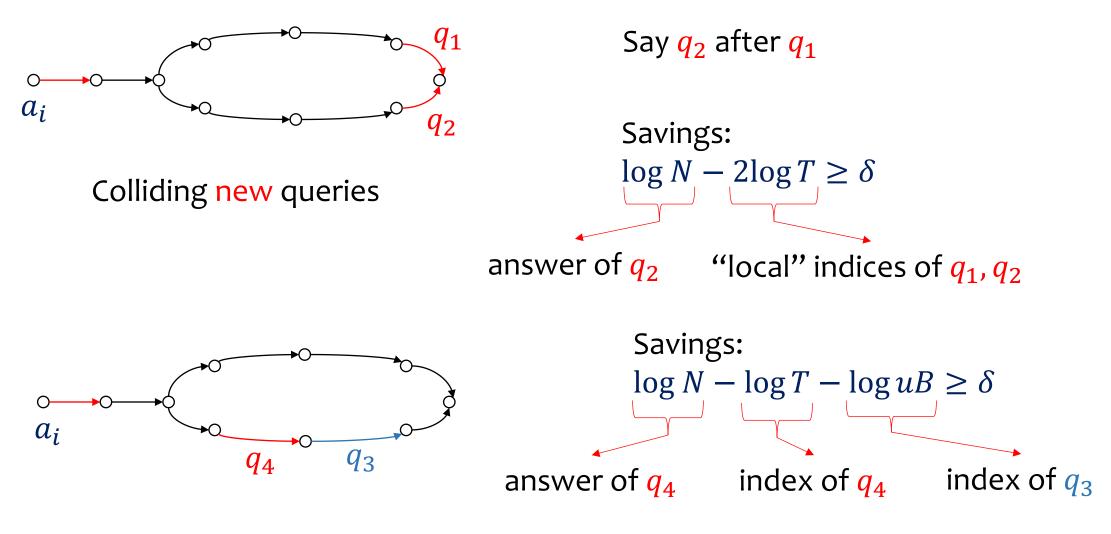
That suffices!

Savings =
$$\log N - \log uT \ge \delta$$

omit a_i
add query index of $h(a_i,*)$

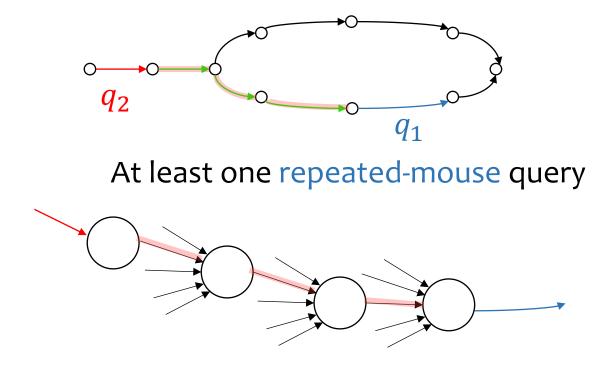
Why is it reasonable?

Easy case examples



New query touching repeated-mouse query

Hard case example



Strategy: Omit answer of q₂, Remember:

- index of q_1
- index of q_2
- **path** back from q_1 to q_2

No large multi-collision if: $\leq \log u$ incoming edges for all nodes

no large multi-collision \Rightarrow path encoding needs at most $\log B + B \log(\log u)$ # of edges on path which edge to take on path back Strategy: Omit answer of q_2 , Remember:

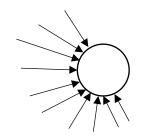
- index of q_1
- index of q_2
- **path** back from q_1 to q_2

Savings $\geq \log N - (\log uB + \log T + \log(\log u)^B + \log B) \geq \delta$

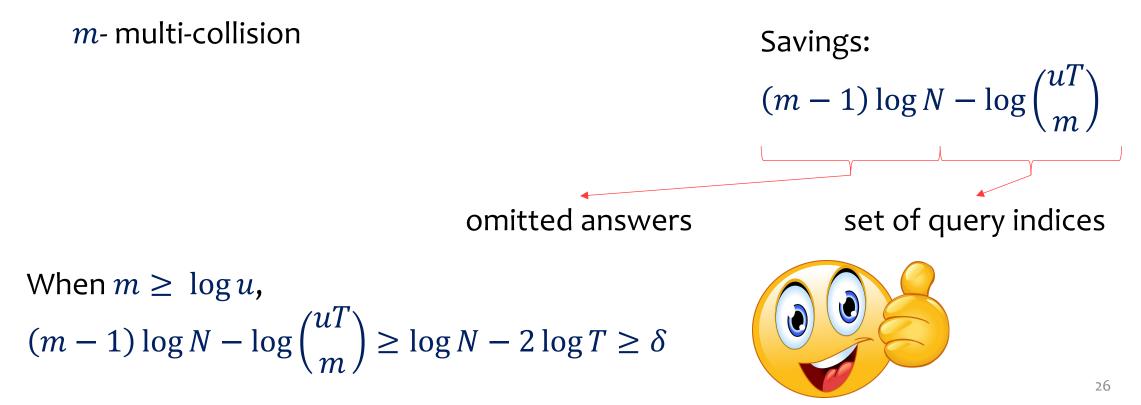
But, what if there are large muti-collisions?

Key idea: Save from the large multi-collision!

Saving from multi-collisions



Strategy: Remember answer of first of m queries, indices of rest



Conclusion

- STB conjecture true for all constant B, when $S^4B^2 \in \tilde{O}(T)$
- Follow up works
 - STB conjecture proven for $ST^2 \leq N$ [AGL22]
 - similar question studied for sponge [FGK22]

Open problem:

Prove the STB conjecture or give better attacks for $ST^2 > N$

Paper: https://eprint.iacr.org/2022/309

