
Ashrujit Ghoshal
University of Washington

CRYPTO 2022

Time-Space Tradeoffs for Bounded-Length
collisions in Merkle-Damgård hashing

1

Ilan Komargodski
Hebrew University and NTT Research

Iterative hashing

e.g., Merkle Damgård hashing [Mer89, Dam89], sponge [BDPV07]

Construct a VIL hash function from an underlying FIL primitive

Hash functions need to handle variable input lengths
• password hashing
• hash and sign
• commitments

Cannot design a different hash for every length

Merkle-Damgård

3

Collision resistance:
Given a random salt 𝑎, hard to find 𝑀 ≠ 𝑀′ such that MD! 𝑎,𝑀 = MD! 𝑎,𝑀"

Used in MD5, SHA-1,
SHA-2𝑎

𝑀# 𝑀$

ℎ ℎ ℎ

𝑀&

𝑥
…

𝑎 ∈ [𝑁]

𝑏 ∈ [𝑁]

𝑐 ∈ [𝑁]ℎ
MD!(𝑎,𝑀) = 𝑥
𝑀 = 𝑀#, 𝑀$, … ,𝑀&

∈ [𝑁]
salt

Complexity of finding collisions

• Model ℎ as a random oracle

• Using 𝑇 ≈ 𝑁 queries, can find collisions

• This is necessary

• What about adversaries with large preprocessing?

• birthday-style attack no longer optimal

• Scenario studied by [Hellman80, Fiat-Naor99, Unruh07,…]

𝐴!

Auxiliary-input random oracle model (AI-ROM) [Unruh07]

5

𝐴"

“pre-processing” phase “online” phase

= (𝐴#, 𝐴$)

ℎ
ℎ

𝑆 bits

Adv' 𝑆, 𝑇 = max
(,* adv +

Pr 𝐴 wins

𝐴

𝑇 queries

𝑎←
$
[𝑁]

𝐴 wins if 𝑀" ≠ 𝑀, MD! 𝑎,𝑀 = MD!(𝑎,𝑀")

𝑀,𝑀"

Prior work

6

Theorem. [CDGS18] Adv' 𝑆, 𝑇 = Θ (*!

'

An observation: the attack finds collisions of length Ω(𝑇)!

Say, 𝑇 ≈ 2-.⇒ petabytes sized collision!

Shorter collisions are provably harder to find

Theorem. [ACDW20] Adv',𝟐 𝑆, 𝑇 ≤ O (*
' +

*!

'

2-block collision

7

“the optimal attack for finding 𝐵-block collisions has

advantage at most #𝑂 #$%
&
+ $!

&
”

Theorem (STB attack). [ACDW20] Adv',𝑩 𝑆, 𝑇 ≥ LΩ (*&
' + *!

'

The STB conjecture [ACDW20]

Was unresolved for 𝟑 ≤ 𝑩 ≪ 𝑻

8

This work:
Proof of the STB conjecture for
• 𝑩 = 𝑶(𝟏)
• 𝑺𝟒𝑩𝟐 ∈)𝑶(𝑻)

Recently improved by Akshima, Guo, Liu [AGL22]

Next

See paper

Main theorem

9

Theorem. [this work]

Adv',& 𝑆, 𝑇 ≤ 𝑂
𝑆𝑇𝐵$ log 𝑆 &

𝑁
+
𝑇$

𝑁

For constant 𝐵,

Adv',& 𝑆, 𝑇 ≤ V𝑂 (*
' +

*!

'

Proof via multi-instance framework [IK10, CGLQ20, ACDW20]

10

𝐴"

(0(, 𝑎#)

…

(𝑀#, 𝑀#")

Multi-instance framework [CGLQ20, ACDW20]

ℎ

𝑇 queries

𝑎#, 𝑎$, … , 𝑎2←
$
[𝑁]

𝐴"

(0(, 𝑎$)

(𝑀$, 𝑀$
")

ℎ

𝑇 queries
𝐴"

(0(, 𝑎2)

(𝑀2, 𝑀2
")

ℎ

𝑇 queries

𝐴$ wins if ∀𝑖 ∈ 𝑢
1. 𝑀3 ≠ 𝑀3

" 2. MD! 𝑎3, 𝑀3 = MD! 𝑎3, 𝑀3
" 3. 𝑀3 , 𝑀3

" ≤ 𝐵

11

Multi-instance lemma. Let 𝑢 = 𝑆 + log𝑁. Define 𝜀: = max
+!

Pr[𝐴$ wins]. Then

Adv',& 𝑆, 𝑇 ≤ 𝜀
#
2

Will prove:

𝜀 ≤ 𝑂 2*&! 456 2 "

'
+ *!

'

2

From multi-instance lemma, it follows

Adv',& 𝑆, 𝑇 ≤ L𝑶 (*
'
+ *!

'

For constant 𝐵, 𝑢 = 𝑆 + log𝑁

𝜀 ≤ L𝑶 (*
' +

*!

'

2

Upper bounding multi-instance advantage

12

Technique: compression argument

Lemma [GT00,DTT10]. Let 𝜀 ≔ Pr
7,8
[Dec Enc 𝑥, 𝑟 , 𝑟 = 𝑥]. Then

log 𝒴 ≥ log 𝒳 − log
1
𝜀

Enc Dec𝑥 ∈ 𝒳 𝑦 ∈ 𝒴 𝑥 ∈ 𝒳

𝑟←
$
ℛ

13

Simplifying assumption: Only queries of the form ℎ 𝑎3,∗ when 𝐴$ run on 𝑎3

𝐴"

(0(, 𝑎#)

…

(𝑀#, 𝑀#")

ℎ

𝑇 queries

𝑎#, 𝑎$, … , 𝑎2←
$
[𝑁]

𝐴"

(0(, 𝑎$)

(𝑀$, 𝑀$
")

ℎ

𝑇 queries
𝐴"

(0(, 𝑎2)

(𝑀2, 𝑀2
")

ℎ

𝑇 queries

Our strategy: Encode ℎ, {𝑎#, 𝑎$, … , 𝑎2} using 𝐴$ that always wins

Compression lemma ⇒ upper bound Pr[𝐴$ wins]

Encoding

14

𝐴"

(0(, 𝑎#)

ℎ
(𝑥#, 𝑦#)

𝑧#

(𝑥9, 𝑦9)

𝑧9

(𝑥:, 𝑦:)

𝑧:

𝑧! 𝑧"…

(𝑗, 𝑘)

…

…

… 𝑧#

𝑎! … 𝑎$

…

Unqueried entries of ℎ

𝑧%…

𝐴"

(0(, 𝑎2)

ℎ…

𝑧: = 𝑧9

(𝑝, 𝑞)

Decoding

15

𝐴"

(0(, 𝑎#)

ℎ
(𝑥#, 𝑦#)

𝑧#

(𝑥:, 𝑦:)

𝑧: = 𝑧9

𝑧! 𝑧"…

(𝑗, 𝑘)

…

…

… 𝑧#

𝑎! … 𝑎$

…

Unqueried entries of ℎ

𝑧%…

𝐴"

(0(, 𝑎2)

ℎ…

(𝑝, 𝑞)

Collision for every salt
⇒ Savings= 𝑢(log𝑁 − 2 log 𝑇)

Using the compression lemma,

𝜀 ≤
𝑇$

𝑁

2

However, cannot assume only queries of the form ℎ 𝑎3,∗ are made when 𝐴$ run on 𝑎3

omit an answer remember two indices

Query graph

16

𝐴"

(0(, 𝑎#)

ℎ
(𝑥#, 𝑦#)

𝑧#

𝑥# 𝑦# 𝑧#
(𝑧#, 𝑦$)

𝑧$

𝑦$ 𝑧$
(𝑥#, 𝑦D)

𝑦D

Graph grows across all of 𝐴$’s runs

How do 𝐵-block collisions look like?

Note: 𝐴$ may repeat queries across different runs

Assume wlog 𝐴$ makes all ℎ queries needed to compute collision

Collision structure

17

The mouse structure

𝑎

𝑎 𝑎 𝑎

tail
body

tip

no lower body Self loop body No tail

Isolate one mouse structure per salt

≤ 𝐵

Types of queries

• New queries: queries made for the first time
• wlog no queries repeated in single 𝐴$ run
• query not made in any previous 𝐴$ run ⇒ new query

• Repeated queries
• repeated-mouse queries: query present in some earlier mouse structure
• repeated-non-mouse queries: other queries

18

Assume: Before running 𝐴$ on 𝑎3, ℎ(𝑎3,∗) not queried

⇒ every mouse structure has a new query

Classifying mouse structures

19

𝑎3 𝑎3

𝑎3

1) Colliding new queries

3) New query touching repeated-mouse query

𝑎3

2) Self loop body

Classifying mouse structures (2)

20

𝑎3

4. At least one repeated-mouse query

𝑎3

5. No repeated-mouse query

𝑎3

𝑎3
𝑎3

21

Goal: for every mouse structure save at least

𝛿 = min log
𝑁
𝑇$
, log

𝑁
𝑢𝑇𝐵$ log 𝑢 & bits

Using the compression lemma,

𝜀 ≤ max
𝑇$

𝑁 ,
4𝑢𝑇𝐵$ 3 log 𝑢 &

𝑁 ≤ 𝑂
𝑢𝑇𝐵$ log 𝑢 &

𝑁 +
𝑇$

𝑁

2

Total savings ≥ 𝑢 ⋅ 𝛿 bits

22

Recall assumption: Before running 𝐴$ on 𝑎3, ℎ(𝑎3,∗) not queried

Why is it reasonable?

Because otherwise save on 𝑎3

Savings = log 𝑁 − log 𝑢𝑇 ≥ 𝛿

That suffices! omit 𝑎3

add query index of ℎ(𝑎3,∗)

Easy case examples

23

𝑎3

Colliding new queries

Savings:
log 𝑁 − 2log 𝑇 ≥ 𝛿

𝑞#

𝑞$

Say 𝑞$ after 𝑞#

answer of 𝑞$ “local” indices of 𝑞#, 𝑞$

𝑎3

New query touching repeated-mouse query

𝑞E 𝑞D

Savings:
log 𝑁 − log 𝑇 − log 𝑢𝐵 ≥ 𝛿

answer of 𝑞E index of 𝑞E index of 𝑞D

Hard case example

24

At least one repeated-mouse query

Strategy:
Omit answer of 𝑞$,
Remember:
• index of 𝑞#
• index of 𝑞$
• path back from 𝑞# to 𝑞$

𝑞$
𝑞#

No large multi-collision if:
≤ log 𝑢 incoming edges for all nodes

no large multi-collision ⇒ path encoding needs at most
log 𝐵 + 𝐵 log(log 𝑢)

of edges on path which edge to take on path back

25

Savings ≥ log N − (log 𝑢𝐵 + log 𝑇 + log log 𝑢 & + log𝐵) ≥ 𝛿

Strategy:
Omit answer of 𝑞$,
Remember:
• index of 𝑞#
• index of 𝑞$
• path back from 𝑞# to 𝑞$

But, what if there are large muti-collisions?

Key idea: Save from the large multi-collision!

Savings:

𝑚 − 1 log𝑁 − log
𝑢𝑇
𝑚

Saving from multi-collisions

26

When 𝑚 ≥ log 𝑢,

𝑚 − 1 log𝑁 − log
𝑢𝑇
𝑚

≥ log𝑁 − 2 log 𝑇 ≥ 𝛿

𝑚- multi-collision

Strategy:
Remember answer of first of 𝑚 queries, indices of rest

omitted answers set of query indices

Conclusion

• STB conjecture true for all constant 𝐵, when 𝑆(𝐵) ∈ $𝑂(𝑇)

• Follow up works

• STB conjecture proven for 𝑆𝑇$ ≤ 𝑁 [AGL22]

• similar question studied for sponge [FGK22]

27

Open problem:
Prove the STB conjecture or give better attacks for 𝑆𝑇) > 𝑁

Paper: https://eprint.iacr.org/2022/309

https://eprint.iacr.org/2022/309

