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Resumo

O problema de inferir a orientação de uma câmara que adquire uma sequência de v́ıdeo é
de grande interesse em Visão por Computador, surgindo aplicações nas áreas de robótica
móvel, calibração e reconstrução 3D.

As abordagens tradicionais requerem um passo intermédio de detecção de padrões
(cantos ou linhas de contorno) em cada imagem e a sua posterior correspondência entre
as várias imagens; este passo é computacionalmente pesado e requer o ajuste cuidadoso
de muitos parâmetros. Em vez disso, este trabalho sugere uma abordagem probabiĺıstica
de estimação sequencial fazendo uso de um modelo adequado a cenas urbanas, dito
mundo de Manhattan, segundo o qual a maioria dos contornos se alinha em três direcções
ortogonais.

As principais contribuições são: (i) a definição de classes de equivalência de ori-
entações equiprojectivas; (ii) a introdução de um modelo de pequenas rotações adequado
ao movimento da câmara; e (iii) a separação de cada estimação em duas partes reduzindo
a complexidade de O(N3) para O(N2). A redução do peso computacional viabiliza a
sua aplicação em tempo real. O desempenho é avaliado utilizando sequências de v́ıdeo
da Baixa Pombalina.

Palavras-chave: Visão por Computador, orientação da câmara, estimação sequen-
cial, cenas urbanas, calibração da câmara.

Classificação ACM: I.4 (IMAGE PROCESSING AND COMPUTER VISION), I.5 (PATTERN

RECOGNITION), I.3 (COMPUTER GRAPHICS), I.6 (SIMULATION AND MODELING).
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Caṕıtulo 1

Introdução

1.1 Motivação

Aplicações em áreas como Vı́deo Digital, Realidade Virtual, Robótica Móvel e Navegação
Automática requerem métodos eficientes para estimar a “pose” (i.e., a posição e a
orientação) de uma câmara de v́ıdeo, ao longo do tempo, a partir da sequência de imagens
que esta captura. De modo análogo, em Processamento de Imagem, Reconhecimento de
Padrões e Pesquisa de Imagens surge muitas vezes a necessidade de, a partir de uma única
imagem, caracterizar a estrutura tridimensional (3D) de objectos, o que muitas vezes
requer, de alguma forma, estimar a pose da câmara relativamente a esses objectos. Em
resumo, pode afirmar-se que o desenvolvimento de métodos eficientes para a estimação
da posição e/ou orientação de uma câmara, quer a partir de uma imagem, quer a partir
de uma sequência de imagens, é actualmente uma das maiores preocupações em Visão
por Computador.

As abordagens tradicionais baseiam-se na detecção de “padrões” em imagens; estes
padrões consistem geralmente em cantos de objectos ou em linhas de contorno. Em
aplicações envolvendo múltiplas imagens, uma vez detectados estes padrões em cada
imagem, o passo seguinte consiste em correspondê-los entre diferentes imagens, por ex-
emplo através de seguimento (pode encontrar-se alguns exemplos em [1, 2, 3]). Em
aplicações que utilizam uma única imagem, os métodos mais comuns envolvem o agru-
pamento de padrões (ver por exemplo [4, 5, 6]). Todavia, é consensual que tanto a
correspondência como o agrupamento automático de padrões são problemas dif́ıceis e
para os quais os resultados até agora atingidos se revelam pouco satisfatórios; existe um
sério compromisso entre robustez e comportabilidade computacional que muitas vezes
inviabiliza o seu uso em aplicações práticas. Para além disso, o facto de se basear toda
a inferência num conjunto de padrões geralmente pequeno (com relação à totalidade da
imagem) faz com que informação útil possa ser prematuramente desprezada.

No caso de múltiplas vistas, têm sido propostos métodos que estimam a estrutura
3D directamente a partir dos valores da intensidade das imagens, i.e., sem envolver a
detecção e correspondência de padrões – exemplos disso encontram-se em [7, 8]. Porém,
estas abordagens conduzem quase sempre a algoritmos complexos, de convergência lenta,
e demasiado dependentes da hipótese de que, de vista para vista, o padrão de brilho em
pontos correspondentes permanece aproximadamente constante, tornando-os por isso
muito senśıveis a rúıdo.

No caso de uma única imagem, J. Coughlan e A. Yuille propuseram recentemente
uma abordagem diferente em [9, 10] que evita a detecção e agrupamento de padrões. A
ideia consiste em utilizar conhecimento prévio sobre a estrutura do “mundo”. De facto,
em grande parte das cenas urbanas, muitos contornos estão alinhados com uma de três
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direcções ortogonais, definindo um sistema de eixos. Sob este modelo que designaram
por mundo de Manhattan, J. Coughlan e A. Yuille utilizaram técnicas de inferência
bayesiana para estimar a componente rotacional da pose 3D (i.e., a orientação) da
câmara com relação àquele sistema de eixos. O modelo de mundo de Manhattan foi
aplicado depois disso (paralelamente ao trabalho que aqui se apresenta) em [11] para
auto-calibração da câmara e estendido em [12] para ambientes urbanos mais genéricos.

O trabalho aqui apresentado inspira-se no modelo de mundo de Manhattan para
propor um novo método de estimação da orientação 3D a partir de sequências de imagens
de cenas urbanas. As contribuições originais são:

• enquanto que em [9, 10] o modelo de mundo de Manhattan é utilizado para estimar
a orientação a partir de uma única imagem, este método estende o seu uso para
sequências de imagens;

• é introduzido um novo modelo de pequenas rotações que expressa o facto de a
câmara de v́ıdeo movimentar-se suave e continuamente no espaço 3D;

• define-se o conjunto das orientações 3D em termos de classes de equivalência de
orientações equiprojectivas, onde são consideradas equivalentes as orientações que
conduzem ao mesmo conjunto de pontos de fuga e, por isso, são indistingúıveis do
ponto de vista da estimação. Mostra-se como cada classe de equivalência tem 24
elementos e se relaciona geometricamente com o grupo octaédrico das simetrias
próprias do cubo. Reduz-se o espaço de procura da solução para uma região mais
pequena que contém o conjunto quociente;

• para cada imagem, decompõe-se em dois passos a estimação dos três ângulos que
parametrizam a orientação da câmara: um passo de complexidade O(N2) onde
são estimados dois destes ângulos (elevação e torção), e outro passo de complex-
idade O(N) onde é estimado o terceiro ângulo (azimute). Esta decomposição
reduz consideravelmente o peso computacional de cada estimação, pois reduz a
complexidade de O(N3) para O(N2 + N) = O(N2);

• mostra-se teoricamente como o modelo de mundo de Manhattan é um caso par-
ticular de uma classe de mundos estruturados de dimensão arbitrária e como,
uma vez formalizada essa estrutura, todos os resultados fundamentais podem ser
extrapolados.

1.2 Conteúdo

Este trabalho está organizado da seguinte forma: no Caṕıtulo II introduz-se a geome-
tria inerente ao modelo de mundo de Manhattan, definindo-se o conceito de orientações
equiprojectivas e o modelo de pequenas rotações; mostra-se também como os mesmos
resultados teóricos podem ser extrapolados para uma classe de mundos estruturados de
dimensão arbitrária. O Caṕıtulo III debruça-se sobre a abordagem probabiĺıstica e con-
sequente implementação do algoritmo de estimação sequencial da orientação da câmara,
tendo em conta os conceitos definidos no Caṕıtulo II; discute-se ainda os resultados
experimentais da aplicação deste algoritmo a sequências de v́ıdeo reais. Finalmente, o
Caṕıtulo IV expõe as conclusões e sugere desenvolvimentos futuros.
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Caṕıtulo 2

Geometria do mundo de
Manhattan

2.1 Mundo de Manhattan

Em Visão por Computador, designa-se por mundo o espaço 3D observado por um sistema
de visão, geralmente constitúıdo por uma ou mais câmaras de v́ıdeo ligadas a uma
unidade de processamento. O sistema de navegação aqui proposto é constitúıdo por
uma única câmara de v́ıdeo digital ligada a um processador, capturando uma sequência
de imagens {I1,I2, . . . ,In}. O objectivo do sistema consiste em obter uma sequência
de estimativas {Ô1, Ô2, . . . , Ôn} da orientação da câmara para cada um destes instantes.
Considera-se parte do objectivo obter desempenhos capazes de viabilizar o uso do sistema
em tempo real, pelo que se dará ênfase à rapidez do processamento.

Em [9, 10], J. Coughlan e A. Yuille sugeriram uma nova abordagem para estimar
a orientação da câmara a partir de uma única imagem. O seu trabalho, desenvolvido
para o Smith-Kettlewell Eye Research Institute, em São Francisco, tinha como objectivo
implementar um sistema de ajuda para cegos e ambĺıopes capaz de orientá-los nas ruas,
avenidas ou no interior de edif́ıcios de uma cidade; o sistema seria constitúıdo por uma
câmara acoplada no peito do utilizador, cujas imagens seriam processadas de modo a
emitir, por exemplo, um aviso sonoro se a trajectória tendesse a desviá-lo para a estrada
ou contra um obstáculo como uma parede.

J. Coughlan e A. Yuille decidiram tirar partido da natureza “urbana” do mundo para
onde o sistema de navegação foi idealizado e, como alternativa aos métodos tradicionais,
propuseram seguir uma abordagem estat́ıstica baseada numa modelização prévia do
mundo capaz de captar essa natureza “urbana”. Assim surgiu o conceito de “mundo de
Manhattan”, que se procurará aqui definir com alguma informalidade.

Definição 2.1 Mundo de Manhattan (do inglês Manhattan world) é um modelo do
mundo segundo o qual este é constitúıdo essencialmente por objectos cujas arestas são
linhas rectas que, no seu conjunto, estão alinhadas segundo três direcções ortogonais. O
referencial ortonormado (x,y, z) definido por estas direcções designa-se por referencial
de Manhattan, sendo x, y e z designados por eixos de Manhattan.

As Figuras 2.1a-c mostram uma representação esquemática de um mundo de Man-
hattan e dois exemplos reais de mundos pasśıveis de serem modelizados como sendo “de
Manhattan”: uma fotografia de uma cena interior e outra de uma exterior. Grande parte
das cenas “urbanas” podem ser classificadas como mundos de Manhattan; as direcções
ortogonais são devidas à presença de salas, corredores, ruas, avenidas, edif́ıcios, etc. A
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própria designação é inspirada em Manhattan (Nova Iorque), que se caracteriza pelo de-
senho ortogonal das suas ruas e avenidas e pela paisagem “paralelepipédica” conferida
pelos arranha-céus.

A Baixa Pombalina, em Lisboa, é também um exemplo real de mundo de Manhattan.
Por esse motivo, grande parte das experiências realizadas resultaram de sequências de
v́ıdeo obtidas nesse local.

Recentemente, outros trabalhos adoptaram modelos inspirados no mundo de Man-
hattan para cenários ligeiramente diferentes. Um exemplo é o mundo de Atlanta [12],
que pode ser visto como uma generalização do mundo de Manhattan adaptado a cenas
onde predominam edif́ıcios paralelepipédicos que partilham uma direcção comum – a
vertical –, mas que fazem um ângulo de azimute entre si.

x y

z
(a)

(b) (c)

Figura 2.1: Mundos de Manhattan: (a) Representação esquemática; (b) Fotografia de
uma cena interior: sala de aula; (c) Fotografia de uma cena exterior: Rua de Santa
Justa, na Baixa Pombalina de Lisboa. Note-se como em (b) e (c) são viśıveis as três
direcções ortogonais dos eixos de Manhattan.

2.2 Orientação da câmara

O modelo utilizado para a câmara é o da câmara escura1. Para uma câmara calibrada,
a adopção deste modelo não implica perda de generalidade, pois o conhecimento dos
parâmetros intŕınsecos da câmara permite rectificar as imagens de modo a simular uma

1Designado na literatura anglo-saxónica por pinhole camera.
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câmara escura – em [13] e [14], por exemplo, são dados alguns exemplos de métodos de
calibração.

De acordo com este modelo, todos os raios ópticos convergem num ponto – o centro
óptico – e são projectados numa superf́ıcie planar – o plano da imagem. A distância
entre o centro óptico e o plano da imagem é designada por distância focal e o ponto
do plano da imagem mais próximo do centro óptico designa-se por ponto principal.
A Figura 2.2 representa esquematicamente a câmara escura.

X

π
X'

PC

f

– centro óptico

– ponto principal

– distância focal

– plano da imagem




C

P
f 
π

Figura 2.2: Representação esquemática da câmara escura. Um ponto X no espaço
tridimensional é projectado no ponto X′ do plano da imagem.

Sejam respectivamente (x,y, z) e (n,h,v) os referenciais do mundo de Manhattan e
da câmara. Estes relacionam-se através da equação

(n,h,v) = (x,y, z) · O , (2.1)

onde O ∈ SO(3) é uma matriz de rotação que representa a orientação da câmara.
Adoptando o sistema de coordenadas definido pelo referencial de Manhattan, vem:

O = [n,h,v]. (2.2)

A orientação tem três graus de liberdade e pode ser parametrizada por três ângulos
exprimindo três rotações sucessivas (ver Fig. 2.3):

• α, o ângulo de compasso ou azimute, correspondendo a uma rotação em torno do
eixo z;

• β, o ângulo de elevação sobre o plano xy;

• γ, o ângulo de torção em torno da linha de vista.

No texto que se segue, a orientação é frequentemente representada em função destes
parâmetros, O ≡ O(α, β, γ).

De acordo com esta parametrização, os ângulos α, β e γ relacionam-se com n, h e v
da seguinte forma:

n = [cosα cosβ, sinα cosβ, sinβ]T (2.3)

e

[h,v] = [h0,v0]
[

cos γ − sin γ
sin γ cos γ

]
, (2.4)

onde, representando por “×” o produto externo vectorial,

h0 =
z× n
||z× n|| = [− sinα, cosα, 0]T e (2.5)

v0 = n× h0 . (2.6)
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x

y

z

C

P
h0α

β

plano da imagem

v0

n

hv

γ

v0

h0

Figura 2.3: Parametrização da orientação da câmara. À esquerda: o ângulo de compasso
α e o ângulo de elevação β. À direita: o ângulo de torção γ representado no plano da
imagem.

Utilizando coordenadas homogéneas2, e escolhendo o centro óptico C como origem do
sistema de coordenadas, i.e., C = [0, 0, 0, 1]T , vem para o ponto principal P e para o
plano da imagem π:

P =
[

fn
1

]
e π =

[
n
−f

]
, (2.7)

onde f representa a distância focal. Sendo (P;n,h,v) o referencial afim da câmara,
as coordenadas homogéneas de um ponto neste referencial obtêm-se das suas coorde-
nadas homogéneas no referencial (C;x,y, z) multiplicando à esquerda por uma matriz
de transformação 4× 4 dada por

T =




nT −f
hT 0
vT 0
0T 1


 =




nx ny nz −f
hx hy hz 0
vx vy vz 0
0 0 0 1


 . (2.8)

2.3 Pontos de fuga

No espaço projectivo P3, a intersecção de quaisquer duas rectas com a mesma direcção
d é um ponto ideal. A projecção desse ponto ideal no plano da imagem designa-se
por ponto de fuga segundo d. Naturalmente, escolhida uma direcção d, o respectivo
ponto de fuga pode obter-se calculando a intersecção do plano da imagem com a recta
de direcção d que passa no centro óptico.

Posto isto, designando por Wx, Wy e Wz os vectores com as coordenadas ho-
mogéneas dos pontos de fuga segundo cada um dos eixos de Manhattan x, y e z, estes
serão necessariamente da forma [wx1, 0, 0, wx4]T , [0, wy2, 0, wy4]T e [0, 0, wz3, wz4]T , res-
pectivamente, e satisfarão πTWx = πTWy = πTWz = 0, o que, recorrendo a (2.7),
conduz a:

Wx = [f, 0, 0, nx]T , Wy = [0, f, 0, ny]T e Wz = [0, 0, f, nz]T . (2.9)

Mudando para o referencial da câmara, o que é feito utilizando a matriz T de (2.8),
correspondem aos mesmos pontos as coordenadas homogéneas TWx = [0, fhx, fvx, nx]T ,
TWy = [0, fhy, fvy, ny]T e TWz = [0, fhz, fvz, nz]T , respectivamente.

2Ver [15] para uma breve explicação desta e de outras noções de Geometria Projectiva.
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Identificando agora o plano da imagem π com o plano projectivo P2, os mesmos
pontos de fuga, vistos como pontos 2D, descrevem-se no referencial afim (P;h,v) através
dos vectores de coordenadas homogéneas vx, vy e vz (ver Figura 2.4a) dados por

vx = [fhx, fvx, nx]T = Rγ · [−f sinα,−f cosα sinβ, cosα cosβ]T , (2.10)
vy = [fhy, fvy, ny]T = Rγ · [f cosα,−f sinα sinβ, sinα cosβ]T , (2.11)
vz = [fhz, fvz, nz]T = Rγ · [0, f cosβ, sinβ]T . (2.12)

com

Rγ =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1


 . (2.13)

onde se recorreu a (2.3)-(2.6). Confrontando as expressões (2.10)-(2.12) com (2.2), pode
ver-se que os pontos de fuga vx, vy e vz se relacionam com as linhas da matriz de
orientação de acordo com

[vx,vy,vz] =




0 f 0
0 0 f
1 0 0


OT . (2.14)

(b)
(a)

vxvx vz

vz vy

vy



Figura 2.4: Pontos de fuga dos eixos de Manhattan sobre duas imagens de um dado. A
orientação da câmara é diferente nas imagens (a) e (b); porém, os pontos de fuga, no
seu conjunto, têm a mesma localização. Note-se como, de (a) para (b), os pontos de
fuga vy e vz são permutados.

2.4 Orientações equiprojectivas

A expressão (2.14) mostra que a orientação da câmara O pode ser estimada mediante
a localização na imagem dos pontos de fuga dos eixos de Manhattan, vx, vy e vz.
Porém, partindo apenas de uma imagem de um mundo de Manhattan, sem informação
adicional sobre a geometria do mundo, tais pontos de fuga são indistingúıveis, i.e.,
localizá-los equivale a conhecer o conjunto {vx,vy,vz}, não se sabendo, no entanto,
qual o ponto de fuga que corresponde a cada eixo de Manhattan – a possibilidade de
permutar os pontos de fuga conduz a múltiplas soluções para a orientação. Esta situação
é ilustrada nas Figuras 2.4a-b, onde se mostra como duas orientações da câmara distintas
originam o mesmo conjunto de pontos de fuga. Esta ambiguidade motiva o conceito de
equiprojectividade.
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Definição 2.2 (Orientações equiprojectivas) Seja V(O) = {vx,vy,vz} o conjunto
dos pontos de fuga determinado por uma orientação O. Duas orientações O e O′ denomi-
nam-se equiprojectivas sse possuem idênticos conjuntos de pontos de fuga, i.e., sse
V(O) = V(O′).

A equiprojectividade, como se acaba de definir, satisfaz as propriedades de reflexi-
vidade, simetria e transitividade; portanto, é uma relação de equivalência. O resultado
seguinte mostra como pode obter-se a classe de equivalência E(O) de uma dada ori-
entação, i.e., o conjunto de todas as orientações equiprojectivas com O.

Proposição 2.3 Designe-se por SP+(n) o grupo das matrizes de permutação com
sinal n× n cujo determinante é positivo (i.e., o conjunto das matrizes n× n com
entradas em {−1, 0, 1}, com exactamente um elemento não nulo por linha e por coluna
e com determinante positivo, necessariamente igual a 1).

Duas orientações O e O′ são equiprojectivas sse existir M ∈ SP+(3) tal que O′ = MO.
Cada classe de equivalência de orientações equiprojectivas tem exactamente 24 elemen-
tos, o número de elementos de SP+(3).

Demonstração: Seja V(O) = [vx,vy,vz] a matriz definida pelos pontos de fuga
associados a O. O e O′ são equiprojectivas sse possuem os mesmos pontos de fuga a
menos de um factor de escala e de uma permutação, i.e., sse existem uma matriz de
permutação P e uma matriz diagonal Λ = diag(λ1, λ2, λ3) tais que V(O) = V(O′)ΛP. De
(2.14) tem-se

V(O) = KOT =




0 f 0
0 0 f
1 0 0


OT , (2.15)

pelo que multiplicando ambos os membros à esquerda por K−1 (K é obviamente invert́ıvel)
conclui-se que O e O′ são equiprojectivas sse OT = O′T ΛP, i.e., sse O′ = ΛPO = MO, com
M = ΛP, ou mij = λipij . Dado que O,O′ ∈ SO(3), vem |λ1| = |λ2| = |λ3| = 1, i.e.,
mij = ±pij , e detM = 1; isto equivale a ter M ∈ SP+(3). Ora, o grupo SP+(n) é isomorfo
ao grupo octaédrico das simetrias “próprias” do n-cubo e tem ordem 1

2 n! 2n, o total de
posśıveis combinações de um número par de operações de permutação e troca de sinal
com n elementos. Para n = 3, vem 1

2 3! 23 = 24, sendo este o número de elementos de
cada classe de equivalência definida pela relação de equiprojectividade.

z = 0

z = f

x = f
y = 0

x = 0
y = f

x = – f
y = 0

x = 0
y = – f

x = f
y = 0

z = – f

Figura 2.5: Localização 3D dos pontos principais de orientações equiprojectivas, nos
octantes de uma esfera de raio f centrada em C. Representam-se duas classes de equi-
valência: os pontos brancos e os pontos pretos; os segundos são o “reflexo” dos primeiros.
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A Figura 2.5 ilustra duas classes de equivalência formadas por orientações equipro-
jectivas, em que uma é o “reflexo” da outra.

O conceito de equiprojectividade revela-se útil em qualquer problema de estimação
de orientação ou de localização de pontos de fuga, visto que permite reduzir os espaços
de procura. Assim, em vez de se procurar sobre todo o domı́nio SO(3), pode recorrer-se à
relação de equivalência definida pela equiprojectividade e utilizar um espaço de procura
para a orientação mais pequeno que contenha o conjunto quociente SO(3)/SP+(3). A
proposição seguinte formaliza este recioćınio:

Proposição 2.4 Toda a orientação O ∈ SO(3) tem uma equiprojectiva O′ ∈ R, onde R
é uma região em SO(3) definida por:

R =
{
O(α, β, γ) ∈ SO(3) : α ∈

]
−π

4
,
π

4

]
, β ∈

]
−π

4
,
π

4

]
, e γ ∈ ]−ϕ,ϕ]

}
, (2.16)

com ϕ = arctan
√

2 ≈ 54.7◦. Uma afirmação equivalente é: qualquer que seja a ori-
entação da câmara, existe pelo menos um ponto de fuga na região representada na
Fig. 2.6.

0

f

ϕ 54.7∼∼

Figura 2.6: Representação do plano da imagem. É garantida a existência de pelo menos
um ponto de fuga na região a sombreado.

Demonstração: Por simplicidade, vamos utilizar coordenadas cartesianas para
os pontos de fuga, i.e., ṽi = [vi1/vi3, vi2/vi3]T = [fhi/ni, fvi/ni]T para i ∈ {x, y, z},
sendo vi = [vi1, vi2, vi3]T as coordenadas homogéneas. Como se poderá ver recorrendo
a limites, a eventual existência de pontos “no infinito”, i.e., para os quais vi3 = 0, não
implica perda de generalidade. De (2.10)-(2.12) tem-se (para i, j ∈ {x, y, z})

ṽT
i ṽj =

{
f2

(
1
n2

i
− 1

)
se i = j

−f2 se i 6= j,
(2.17)

o que permite obter tanto a distância euclidiana di = (ṽT
i ṽi)1/2 entre os pontos ṽi e

p̃ = [0, 0]T como o ângulo θij = arccos evT
i evj

didj
formado pelas linhas [p̃ṽi] e [p̃ ṽj ], com

i 6= j.
Considere-se agora o disco D com raio f e centro em p̃, i.e., D = {(u, v) ∈ R2 :

u2 + v2 ≤ f2}. Temos que ṽi ∈ D sse di ≤ f , o que, por (2.17), é equivalente a
n 2

i ≥ 1/2. Visto que n2
x + n2

y + n2
z = 1, a condição n 2

i ≥ 1/2 implica n2
j ≤ 1/2 para

qualquer j 6= i, o que significa que não pode existir mais que um ponto de fuga no
interior do ćırculo D. Para além disso, os três pontos de fuga estão todos na fronteira
ou no exterior de D sse n2

i ≤ 1/2, para i ∈ {x, y, z}.
Para completar a demonstração, é ainda necessário o seguinte resultado intermédio:
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Lema 2.5 Quaisquer dois pontos de fuga ṽi e ṽj, com i 6= j, verificam cos θij ≤ 0.
Para além disso, se ṽk ∈ D, com k 6= i e k 6= j, então cos θij ≥ −1

3 .

Demonstração (do lema): A primeira afirmação é consequência imediata de (2.17).
Para demonstrar a segunda afirmação, obtém-se min cos θij = − f2

min didj
em função de ni

e nj , no domı́nio definido por n2
i + n2

j ≤ 1/2. O mı́nimo ocorre em |ni| = |nj | = 1
2 com

valor −1/3.

Uma vez que 1
2 arccos(−1

3) = arctan
√

2 ≈ 54.7◦, a existência de um ponto de fuga na
região a sombreado da Figura 2.6 é uma simples consequência do Lema 2.5. Para se obter
(2.16), considere-se uma orientação O e seja ṽi um ponto de fuga localizado nessa região
a sombreado. A Proposição 2.3 garante então a existência de uma orientação equipro-
jectiva O′ com pontos de fuga {ṽ′x, ṽ′y, ṽ′z} satisfazendo: (i) ṽ′z = ṽi, e (ii) d′x ≤ d′y. De
(2.10) – (2.13) temos, devido a (i), que β′ ∈ ]−π/4, π/4] e γ′ ∈ ]− arctan

√
2, arctan

√
2
]
,

e devido a (ii), que α′ ∈ ]−π/2, π/2], o que conclui a demonstração.

2.5 Modelo de pequenas rotações

Vamos agora assumir que a câmara se move e adquire uma sequência de imagens
{I1, . . . ,IN}. Seja Ok = O(αk, βk, γk) a orientação na k-ésima imagem. A sequência de
orientações {O1, . . . ,ON} depende apenas da componente rotacional do movimento, i.e.,
é independente da translação da câmara. Numa sequência de v́ıdeo t́ıpica, a orientação
da câmara varia suave e continuamente. Esta propriedade é formalizada introduzindo o
modelo de pequenas rotações, que a seguir se descreve.

Definição 2.6 (modelo de pequenas rotações) Seja Rk(ρk, ek) ∈ SO(3) a compo-
nente rotacional do movimento da câmara entre a (k−1)-ésima e a k-ésima imagem,
onde ρk e ek representam o ângulo e o eixo de rotação, respectivamente. Independen-
temente de ek, diz-se que a câmara é consistente com o modelo das pequenas rotações
µ(ξ) sse existe um “pequeno” ângulo fixo ξ tal que |ρk| ≤ ξ para qualquer k.

Nas experiências realizadas (ver Secção 3.5), usou-se o modelo de pequenas rotações
µ(5◦), o que implica que para uma taxa de amostragem de 12.5 Hz o ângulo de rotação
é sempre menor que 62.5◦ em cada segundo; trata-se de uma hipótese intuitivamente
razoável.

A proposição seguinte expressa como as variações dos ângulos de compasso, elevação
e torção entre imagens consecutivas podem ser limitadas devido ao modelo de pequenas
rotações.

Proposição 2.7 Se o movimento da câmara é consistente com o modelo de pequenas
rotações µ(ξ), então, em qualquer instante k, aplicam-se as seguintes restrições:

• A variação do ângulo de elevação, ∆β = βk − βk−1, satisfaz

|∆β| ≤ ξ. (2.18)

• A variação do ângulo de compasso, ∆α = αk − αk−1, satisfaz

|∆α| ≤ aξ(βk, βk−1) ≡
{

arccos
(
1− cos |∆β|−cos ξ

cos βk−1 cos βk

)
se |βk−1 + βk| ≤ π − ξ

π
2 caso contrário.

(2.19)
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Se Ok−1 se encontra na região R expressa em (2.16), então, independentemente
de βk e βk−1:

|∆α| ≤ max
|βk−1|≤π

4

aξ(βk, βk−1) = arccos(2 cos ξ − 1). (2.20)

• A variação do ângulo de torção, ∆γ = γk − γk−1, satisfaz

|∆γ| ≤ gξ(βk−1), (2.21)

onde gξ é uma função par crescente em [0, π
2 ] com gξ(0) = ξ e gξ(π

2 ) = π. Se
Ok−1 ∈ R, então |βk−1| ≤ π

4 e

|∆γ| ≤ gξ

(π

4

)
, (2.22)

A Fig. 2.7 mostra o gráfico da função gξ no subdomı́nio [0, π
4 ], para ξ = 5◦; este

valor de ξ conduz a |∆γ| ≤ 7.08◦.

0 5 10 15 20 25 30 35 40 45
4.5

5

5.5

6

6.5

7

7.5

Variação máxima 

do ângulo de torção para ξ = 5°


 [°
]

gξ(βk – 1
) = max |∆γ | [°
]

β
k – 1

Figura 2.7: Variação máxima do ângulo de torção como função do ângulo de elevação
inicial, utilizando um modelo de pequenas rotações µ(5◦).

Demonstração: Considere-se Rk(ρk, ek) como a composição de duas rotações:
Rk1(ρk1 , ek1), que transforma nk−1 em nk tendo como eixo de rotação ek1 = (nk−1 × nk)

||nk−1 × nk|| ,
seguida de Rk2(ρk2 , ek2) que “torce” a câmara em torno do eixo principal, i.e., com
ek1 = nk. Compondo estas duas rotações, e tendo em conta que ek1⊥ek2 , obtém-se
cos ρk

2 = cos ρk1
2 cos ρk2

2 . Portanto, a condição de pequenas rotações |ρk| ≤ ξ implica
tanto cos ρk1

2 ≥ cos ξ
2 como cos ρk2

2 ≥ cos ξ
2 , i.e., |ρk1 | ≤ ξ e |ρk2 | ≤ ξ. Uma vez que

cos ρk1 = nT
k nk−1, de (2.3) obtém-se

cos ξ ≤ cos ρk1 = cosβk cosβk−1 cos ∆α + sin βk sinβk−1 ≤ cos∆β, (2.23)

o que basta para provar (2.18). De (2.23), obtém-se ainda

cos∆α ≥ (cos ξ − sinβk sinβk−1)/(cosβk cosβk−1) ,

o que simplificando conduz a (2.19). Se Ok−1 ∈ R, então de (2.16) vem |βk + βk+1| ≤
π/4 + π/4 + ξ ≤ π− ξ. O valor máximo de ∆α ocorre para βk = βk−1 = π

4 , conduzindo
assim a (2.20).
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Quanto a ∆γ, não é posśıvel chegar a uma expressão simples para gξ(βk−1); no
entanto, visto que ρk é função de βk−1, βk, ∆α e ∆γ, pode estudar-se gξ fazendo
αk−1 = γk−1 = 0. Por simetria esférica tem-se que gξ é uma função par; por outro lado,
uma simples inspecção geométrica mostra que gξ(βk−1) aumenta com |βk−1|. Escrevendo
Rk como a composição de três rotações – uma para o compasso, outra para a elevação e
a última para a torção –, e recorrendo à fórmula para o produto de quaterniões, chega-se
a

|∆γ| = 2 arccos
AB − C

√
B2 + C2 −A2

B2 + C2
, (2.24)

onde A = cos ρk
2 , B = cos ∆α

2 cos ∆β
2 e C = sin ∆α

2

(
cos ∆β

2 sinβk − cosβk sin∆β
)
. A

maximização numérica de (2.24) com respeito a ∆α e βk (para ρk = ξ) aproxima gξ.

Se a orientação Ok−1 residir na região R definida em (2.16), o espaço de procura para
Ok é significativamente reduzido graças às restrições impostas pela Proposição 2.7. Em
particular, com ξ = 5◦, tem-se nestas condições

|∆α| ≤ 7.08◦ , |∆β| ≤ 5◦ e |∆γ| ≤ 7.08◦. (2.25)

Mesmo se Ok−1 /∈ R, a Proposição 2.4 garante a existência de uma orientação equiprojec-
tiva O′k−1 ∈ E(Ok−1) tal que O′k−1 ∈ R. Isto mostra como se pode utilizar conjuntamente
o modelo de pequenas rotações e as orientações equiprojectivas para reduzir significati-
vamente o espaço de procura.

2.6 Generalização para outros mundos estruturados

Muitos dos resultados obtidos nas secções anteriores, em que sempre se teve em mente
o modelo de mundo de Manhattan no espaço tridimensional, são na verdade generali-
záveis a outros modelos de mundos, não necessariamente tridimensionais, podendo ser
empregues para estimar a orientação da câmara em cenários de diferente estrutura ou
para aplicar a problemas de dimensão superior, não necessariamente provenientes da
área de Visão por Computador.

De facto, o mundo de Manhattan pode ser visto como um caso particular de mundo
estruturado, tridimensional, onde a maior parte da informação relevante está “alinhada”
segundo três direcções ortogonais, x, y e z. Ora, este racioćınio pode generalizar-se a
uma classe de mundos estruturados, n-dimensionais, onde estão em jogo m direcções
não necessariamente ortogonais, x1, · · · ,xm ∈ Rn, com m ≥ n. Sendo (a1, · · · ,an) o
referencial do mundo e (b1, · · · ,bn) um outro referencial, designado por referencial da
câmara, onde {ai}i=n

i=0 e {bi}i=n
i=0 são duas bases ortonormadas de Rn, os dois referenciais

relacionam-se por
(b1, · · · ,bn) = (a1, · · · ,an)O, (2.26)

onde O é uma matriz de transformação de coordenadas a que se pode chamar ori-
entação e que pertence ao grupo das matrizes ortogonais, O(n); caso a natureza do
problema exija que esta transformação preserve a orientação dos eixos, i.e., seja uma
rotação, tem-se O ∈ SO(n), onde SO(n) é o sub-grupo de O(n) formado pelas ma-
trizes ortogonais com determinante positivo. Em ambos os casos, utilizando o sis-
tema de coordenadas definido pelo referencial canónico do mundo, i.e., (a1, · · · ,an) =
([0, 0, · · · , 1]T , · · · , [1, 0, · · · , 0]T ), vem O = [b1, · · · ,bn].

No plano da imagem (um sub-espaço de dimensão n − 1), pode associar-se a cada
um dos pontos de fuga segundo as direcções x1, · · · ,xm respectivamente os vectores de
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coordenadas homogéneas v1, · · · ,vm ∈ Rn; introduzindo as matrizes n × m definidas
como V = [v1, · · · ,vm] e X = [x1, · · · ,xm], tem-se

V = KOTX, (2.27)

onde K é uma matriz invert́ıvel do tipo da de (2.15). Aliás, para um mundo de Manhattan
tridimensional tem-se n = 3 e X igual à matriz identidade 3×3, obtendo-se precisamente
(2.15).

O objectivo é estimar a orientação supondo que se dispõe de um mecanismo capaz
de “sondar” o mundo e obter um conjunto de estimativas para a localização dos pontos
de fuga, V = {v̂1, · · · , v̂m}. Define-se a relação de equiprojectividade em função das
direcções x1, · · · ,xm da seguinte forma: duas orientações O e O′ são equiprojectivas sse
os pontos de fuga segundo estas direcções tiverem, no seu conjunto, a mesma localização,
ou seja, usando (2.27), sse existirem uma matriz de permutação P e uma matriz diagonal
Λ tais que

KOTX = KO′TXΛP. (2.28)

Como O,O′ ∈ SO(n), deve ter-se O′ = MO com certo M ∈ SO(n); multiplicando ambos os
termos de (2.28) à esquerda por O′K−1 e à direita por XT (XXT )−1O, obtém-se por fim:

M = XΛPXT (XXT )−1 ∧ M ∈ SO(n), (2.29)

o que permite caracterizar a classe de equivalência das orientações equiprojectivas para
qualquer mundo nesta classe de mundos estruturados. Note-se que alargando o domı́nio
da orientação para O(n) (i.e., retirando a exigência de que O seja uma rotação) obtém-se
exactamente os mesmos resultados substituindo SO(n) por O(n).

Exemplo 2.8 Tome-se como exemplo um mundo tridimensional (n = 3) constitúıdo
por edif́ıcios que são prismas de base hexagonal, i.e., com direcções definidas pelos
vectores normalizados de R3: x1 = [0, 0, 1]T , x2 = [0, 1, 0]T , x3 = [

√
3/2, 1/2, 0]T e

x4 = [−√3/2, 1/2, 0]T . Fazendo X = [x1,x2,x3,x4] e tendo em conta que a multiplicação
por uma matriz de SO(3) preserva a norma, o que implica Λ = diag(±1,±1,±1) obtém-
-se, utilizando (2.29), o seguinte conjunto de soluções para M:

M ∈







±1 0 0
0 ±1 0
0 0 ±1


 ,




k1
1
2 k3

√
3

2 0
k2

√
3

2 k4
1
2 0

0 0 ±1







∩ SO(3), (2.30)

com |k1| = |k2| = |k3| = |k4| = 1 e k1k2k3k4 = −1. Cada classe de equivalência
formada pelas orientações equiprojectivas tem portanto, para este modelo de mundo,
1
2(23 +24) = 12 elementos, o que coincide com a ordem do grupo de simetrias do prisma
hexagonal.

Exemplo 2.9 (mundo de Manhattan n-dimensional) Os mundos de Manhattan
n-dimensionais são um caso particular desta classe de mundos estruturados, aqueles
para os quais se tem como “directrizes” n vectores ortonormados de Rn, i.e., para os
quais as direcções x1, · · · ,xn satisfazem, para quaisquer i, j, xT

i xj = δij, onde δij re-
presenta o delta de Kronecker e portanto a matriz X = [x1, · · · ,xn] é uma matriz de
permutação, fazendo com que (2.29) se reduza a M = ΛP ∧ M ∈ SO(n), o que equivale
a M ∈ SP+(n).

Assim, as classes de equivalência de orientações equiprojectivas, num mundo de
Manhattan n-dimensional, são isomorfas ao grupo SP+(n) das matrizes de permutação
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com sinal cujo determinante é positivo, tendo por isso 1
22nn! elementos (se se alargar o

domı́nio da orientação para O(n), tem-se M ∈ SP(n), onde SP(n) é o grupo das matrizes
de permutação com sinal, que contém SP+(n) como subgrupo, e tem 2nn! elementos).

Em Rn a orientação tem (n− 1) + (n− 2) + ... + 1 = n(n− 1)/2 graus de liberdade.
Assumindo que o mecanismo consegue obter cada uma das estimativas dos pontos de fuga
{v̂1, ..., v̂n} independentemente, é posśıvel obter estimativas de cada linha da matriz de
orientação ao mesmo tempo que se estima cada um dos pontos de fuga, através de um
procedimento recursivo com n− 1 passos: no primeiro passo, estima-se a localização do
ponto de fuga v̂1 no espaço n-dimensional – isto permite obter o sub-espaço de dimensão
n− 1 que contém todos os outros pontos de fuga; no segundo passo localiza-se v̂2 nesse
sub-espaço obtendo-se um sub-espaço de dimensão n−2 que contém os restantes; e assim
por diante até ao último passo onde se estima v̂n−1 e v̂n no espaço unidimensional. Em
cada um destes sub-espaços de dimensão p é posśıvel obter regiões Rp semelhantes à da
Proposição 2.4 onde se garante a existência de um ponto de fuga v̂n−p+1.
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Caṕıtulo 3

Estimação sequencial da
orientação

3.1 Critério de estimação

Para estimar a sequência de orientações da câmara, {O1, . . . ,ON}, a partir da sequência
de imagens observadas, {I1, . . . ,IN}, propõe-se uma abordagem probabiĺıstica de es-
timação sequencial, fazendo uso dos modelos de mundo de Manhattan (ver Secção 2.1)
e de pequenas rotações (ver Secção 2.5).

Como vimos atrás, o modelo de mundo de Manhattan assume que os contornos pre-
sentes na imagem Ik estão, na sua maioria, “alinhados” com os eixos de Manhattan
x, y e z. Ora, é sabido que o gradiente de intensidade é uma medida da magnitude e
direcção destes contornos, facto que é utilizado em numerosas técnicas de processamento
de imagem. Por conseguinte, pode considerar-se que a estat́ıstica do gradiente de inten-
sidade de cada imagem, ∇Ik, transporta informação sobre a correspondente orientação
da câmara através de uma função de verosimilhança P (∇Ik|Ok) (como apontado em
[9, 10]). Neste trabalho, esta consideração é tida em conta e adaptada a um modelo de
estimação sequencial, utilizando-se um critério de maximum a posteriori (MAP) onde a
estimativa da orientação para cada instante k é dada por

Ôk = arg max
Ok

{
P (Ok|∇Ik, Ôk−1, ..., Ô1)

}
= (3.1)

= arg max
Ok

{
P (∇Ik|Ok)

P (Ok|Ôk−1, ..., Ô1)
P (∇Ik)

}
= (3.2)

= arg max
Ok

{
P (∇Ik|Ok)P (Ok|Ôk−1, ..., Ô1)

}
, (3.3)

onde de (3.1) para (3.2) se assume que cada ∇Ik depende apenas da orientação Ok nesse
mesmo instante, e não de toda a “história” anterior. Uma estimação sequencial comple-
tamente bayesiana requeriria métodos Monte Carlo computacionalmente muito pesados
(veja-se [16], [17]). Como alternativa, considera-se este processo como um modelo de
Markov oculto (HMM1) que percorre estados {Ok} emitindo śımbolos {Ik}, e em que
cada estado só depende do estado anterior, i.e., P (Ok|Ôk−1, ..., Ô1) = P (Ok|Ôk−1). De
acordo com esta formalização, e aplicando logaritmos a (3.3), vem então:

Ôk = arg max
Ok

{
log P (∇Ik|Ok) + log P (Ok|Ôk−1)

}
(3.4)

1Do inglês hidden Markov model.
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Analisando (3.4), pode encarar-se a probabilidade a priori P (Ok|Ôk−1) como uma forma
de penalizar grandes variações entre estimações consecutivas da orientação. Experimen-
talmente verifica-se que este critério simplificado conduz a bons resultados e, explorando
as potencialidades da “equiprojectividade” e do modelo de pequenas rotações introduzi-
dos atrás, pode ser implementado com vista a funcionar em tempo real. Para a primeira
imagem da sequência, k = 1, utiliza-se

Ô1 = arg max
O1

{log P (∇I1|O1)} , (3.5)

que se obtém de (3.4) suprimindo o segundo termo, por se considerar, na ausência de
estimativas anteriores, que todas as orientações são equiprováveis.

3.2 Função de verosimilhança

Nesta secção, para simplificar a notação, omite-se o ı́ndice temporal k e deriva-se a função
de verosimilhança P (∇I|O) para uma imagem genérica. O método utilizado para obter
a função de verosimilhança é inspirado em [9, 10]; segue-se uma breve descrição.

3.2.1 Gradiente de intensidade

Em todas as imagens considera-se apenas a informação monocromática, i.e., a quanti-
dade total de luz presente em cada pixel. Existem muitos métodos para obter estimativas
do gradiente de intensidade (ver por exemplo [18, 19, 20, 21, 22] ou uma análise compara-
tiva de vários destes métodos em [23]). O que aqui se utiliza, pela sua simplicidade e rapi-
dez computacional, é o método da convolução com máscaras de Sobel. Dada uma imagem
I, elimina-se o rúıdo de alta frequência convoluindo-a com um filtro gaussiano – i.e., uma
máscara constrúıda com a função gaussiana, G(x, y) = 1/(2πσ2) exp[−(x2 + y2)/(2σ2)]
– obtendo-se uma imagem suavizada Is; de seguida, o gradiente ∇I = (∇Ix,∇Iy) é
estimado através das convoluções ∇Ix = Is ∗ Sx e ∇Iy = Is ∗ Sy, onde

Sx =



−1 0 1
−2 0 2
−1 0 1


 e Sy = −ST

x

são as máscaras de Sobel.
Por razões de desempenho computacional, são rejeitados todos os pixels cuja in-

formação se considera inútil; tais são:

• Os pixels próximos de contornos mas para os quais existem vizinhos cujo gradiente
é, em módulo, superior. Este critério de rejeição é também utilizado no algoritmo
de detecção de contornos de Canny (ver [20]) com o intuito de obter contornos
com a espessura média de 1 pixel. Designa-se na literatura anglo-saxónica por
non-maxima supression.

• Os pixels cujo gradiente, em módulo, está abaixo de um determinado limiar, o que
garante que não pertencem a contornos; este critério designa-se por limiarização.

Nas experiências efectuadas, a aplicação destes critérios de rejeição permitiu eliminar
cerca de 80% dos pixels da imagem.
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3.2.2 Classes de pixel

Cada pixel da imagem, u = [u, v, 1]T , que não tenha sido rejeitado na etapa anterior,
pode ser associado a uma classe mu ∈ {1, 2, 3, 4, 5}. As classes são definidas da seguinte
forma: as classes 1, 2 e 3 referem-se a pixels de contornos alinhados com um dos eixos
de Manhattan, x, y e z respectivamente. A classe 4 abrange os pixels que pertencem a
contornos não alinhados com qualquer daqueles eixos. Finalmente, a classe 5 inclui os
pixels que não pertencem a contornos. Estas classes distribuem-se com probabilidades a
priori {Pm(mu)}, obtidas off-line através de um detector de contornos binário e fixando
heuristicamente Pm(1) = Pm(2) = Pm(3) = 0, 5 × Pm(4). A Figura 3.1 e a Tabela 3.1
ilustram cada uma das classes de pixel.

5

1

2

3
4

Figura 3.1: Classes de pixel para uma fotografia da Rua Augusta, na Baixa Pombalina,
em Lisboa.

mu Descrição Pm(mu)
1 Pixel de um contorno alinhado com x 0,138
2 Pixel de um contorno alinhado com y 0,138
3 Pixel de um contorno alinhado com z 0,138
4 Pixel de um contorno não alinhado com x, y ou z 0,276
5 Pixel não pertencente a qualquer contorno 0,309

Tabela 3.1: Classes de pixel.

3.2.3 Funções de probabilidade da magnitude do gradiente

Seja Eu = (Eu, φu) a representação polar do gradiente da intensidade da imagem
∇I no pixel u, onde Eu = Q[(∇I2

x(u) + ∇I2
y(u))1/2] ∈ {1, ..., N} é a magnitude

do gradiente quantificada por uma função Q com N ńıveis de quantificação, e φu =
arctan(∇Iy(u)/∇Ix(u)) é a direcção do gradiente. A magnitude e a direcção do gradi-
ente são condicionalmente independentes, dada a classe do pixel. Naturalmente, a mag-
nitude do gradiente é também condicionalmente independente da orientação da câmara
e da localização do pixel. Logo,

P (Eu|mu,O,u) = P (Eu|mu) P (φu|mu,O,u), (3.6)

onde

P (Eu|mu) =
{

Pon (Eu) , se mu 6= 5
Poff (Eu) , se mu = 5,

(3.7)

e Pon(Eu) e Poff(Eu) são as funções de probabilidade da magnitude do gradiente quan-
tificado, condicionadas ao evento de o pixel u pertencer (on) ou não (off ) a um contorno,
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respectivamente. Estas probabilidades são, também elas, obtidas através de um processo
de treino que decorre off-line, em que se utiliza um detector de contornos binário. Os
seus valores (para uma quantificação logaŕıtmica e N = 20) encontram-se representados
na Figura 3.2.

2 4 6 8 10 12 14 16 18 200
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0.3

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Pon(E )u Poff (E )u

Figura 3.2: Histogramas das funções Pon e Poff. No caso de Pon, como seria de esperar,
a probabilidade de se ter valores elevados para a magnitude do gradiente em pixels de
contornos é muito maior do que a probabilidade de se ter valores reduzidos.

3.2.4 Funções de probabilidade da direcção do gradiente

Sejam θx(O,u), θy(O,u) e θz(O,u) as direcções do gradiente idealmente observado no
pixel u se mu = 1, 2 e 3, respectivamente. Estas direcções obtêm-se directamente dos
pontos de fuga, dados em função de O por (2.14). A função de probabilidade da direcção
do gradiente é

P (φu|mu,O,u) =





Pang (φu − θx(O,u)) se mu = 1
Pang (φu − θy(O,u)) se mu = 2
Pang (φu − θz(O,u)) se mu = 3
U (φu) se mu ∈ {4, 5},

(3.8)

onde U (·) é a função densidade de probabilidade uniforme em ]− π
2 , π

2 ] e Pang é mode-
lizada como uma função “caixa”, i.e.,

Pang (t) =
{

(1− ε)/(2τ) se t ∈ [−τ, τ ]
ε/(π − 2τ) se t ∈ ]− π/2,−τ [ ∪ ]τ, π/2].

Nas experiências efectuadas, estes parâmetros foram afinados para ε = 0.1 e τ = 4◦ (ver
Figura 3.3).

3.2.5 Função de verosimilhança

Finalmente, a verosimilhança conjunta é obtida de (3.6) marginalizando (i.e., somando)
sobre todos os posśıveis modelos em cada pixel e assumindo independência entre pixels
diferentes:

P (∇I|O) = P ({Eu} |O) =
∏
u

5∑

mu=1

P (Eu|mu) P (φu|mu,O,u) P (mu) . (3.9)

Aplicando logaritmos,

log P (∇I|O) =
∑
u

log

{
5∑

mu=1

P (Eu|mu) P (φu|mu,O,u) P (mu)

}
. (3.10)
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Figura 3.3: Gráfico da função Pang, a densidade de probabilidade de erro na estimação
da direcção do contorno a partir da direcção do gradiente. Naturalmente a densidade é
maior para erros pequenos. Por simplicidade e vantagem computacional, é modelizada
como uma “caixa”, onde τ controla a precisão da estimativa e ε é a probabilidade de se
cometer um erro superior a τ .

3.3 Procedimento de localização das estimativas

Como se descreveu atrás, a maximização expressa em (3.4) permite estimar a orientação
da câmara para cada imagem da sequência de v́ıdeo. O segundo termo desta expressão,
log P (Ok|Ôk−1), pode ser descrito através de uma função definida a priori ; o primeiro
termo é a função de verosimilhança descrita em (3.10). Esta maximização é um problema
de optimização tridimensional em ordem a α, β e γ, que pode ser resolvida por um algo-
ritmo de procura exaustiva nos intervalos de variação destes ângulos, com complexidade
O(N3), onde N descreve a frequência de amostragem daqueles intervalos.

Neste trabalho, propõe-se uma solução aproximada que separa o problema em dois
passos mais simples: uma optimização bidimensional em ordem a β e γ, seguida por
uma procura unidimensional em ordem a α. A complexidade do algoritmo de procura
exaustiva correspondente a estas duas optimizações sucessivas é O(N2 + N) = O(N2).
Esta aproximação advém do facto de o ponto de fuga vz ser independente do ângulo de
compasso α, como é claro de (2.12).

3.3.1 1.◦ passo: Estimação de β e γ

Dada a k-ésima imagem Ik, com k > 1, procede-se, como primeiro passo, à estimação
de βk e γk, de acordo com

(
β̂k, γ̂k

)
= arg max

β,γ

{
log P (∇Ik|β, γ) + log P (β, γ|β̂k−1, γ̂k−1)

}
, (3.11)

onde a verosimilhança log P (∇Ik|β, γ) é uma versão de (3.10) que apenas modeliza a
informação de direcção dos contornos que são consistentes com o eixo z. Mais especifi-
camente, em vez de (3.8), utiliza-se aqui

P (φu|mu, β, γ,u) =
{

Pang (φu − θz(β, γ,u)) se mu = 3
U (φu) se mu ∈ {1, 2, 4, 5}. (3.12)

Note-se que a utilização de uma distribuição uniforme é apenas uma forma de ignorar a
informação de direcção do gradiente vinda de todos os pixels excepto daqueles que estão
associados com o eixo z (i.e., com classe mu = 3) durante a estimação de βk e γk; tal
não significa que aquelas direcções sejam de facto uniformemente distribúıdas.

O segundo termo de (3.11) faz intervir P (β, γ|β̂k−1, γ̂k−1), uma função densidade
de probabilidade (f.d.p.) em duas variáveis que se modeliza como sendo gaussiana e
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“truncada” na região de interesse, i.e.:

P (β, γ|β̂k−1, γ̂k−1) =
{

λG(β, γ), se (β, γ) ∈ Iβ × Iγ

0 c.c.
, (3.13)

onde:

• G(β, γ) é a f.d.p. gaussiana em duas variáveis com valores médios (µβ, µγ) =
(β̂k−1, γ̂k−1) e variâncias (σ2

β, σ2
γ);

• Iβ =]β̂k−1−ξ, β̂k−1+ξ] é o intervalo de variação do ângulo de elevação nas condições
do modelo de pequenas rotações µ(ξ), expresso em (2.18);

• Iγ =]γ̂k−1−gξ(β̂k−1), γ̂k−1+gξ(β̂k−1)] é o intervalo de variação do ângulo de torção
nas mesmas condições, expresso em (2.21);

• λ é determinado de modo a ter-se
∫
Iβ×Iγ

P (β, γ|β̂k−1, γ̂k−1)dβdγ = 1.

A função (3.13) é definida a priori e formaliza o modelo de pequenas rotações, bem
como a suavidade na variação de βk e γk. As variâncias σ2

β e σ2
γ afinam o compromisso

entre a suavidade da sequência estimada de ângulos e a precisão dessas estimativas.
Na primeira imagem da sequência, k = 1, define-se a priori P (β, γ) como uniforme

(i.e., constante) no domı́nio dado por (2.16), Iβ×Iγ = ]−45◦, 45◦]× ]−54.7◦, 54.7◦], pelo
que em vez de (3.11) usa-se:

(
β̂1, γ̂1

)
= arg max

β,γ
log P (∇I1|β, γ). (3.14)

3.3.2 2.◦ passo: Estimação de α

Dadas as estimativas β̂k e γ̂k, pode estimar-se o ângulo de compasso αk utilizando

α̂k = arg max
α

{
log P (∇Ik|α, β̂k, γ̂k) + log P (α|α̂k−1, β̂k−1, β̂k)

}
, (3.15)

onde a verosimilhança log P (∇Ik|α, β̂k, γ̂k) é dada directamente por (3.10) e a função a
priori P (α|α̂k−1, β̂k−1, β̂k) é também uma f.d.p. gaussiana “truncada”:

P (α|α̂k−1, β̂k−1, β̂k) =
{

λG(α), se α ∈ Iα

0 c.c.
, (3.16)

onde:

• G(α) é a f.d.p. gaussiana com valor médio µα = α̂k−1 e variância σ2
α;

• Iα =]α̂k−1−aξ(β̂k, β̂k−1), α̂k−1+aξ(β̂k, β̂k−1)] é o intervalo de variação do ângulo de
compasso nas condições do modelo de pequenas rotações µ(ξ), expresso em (2.19);

• λ é determinado de modo a ter-se
∫
Iα

P (α|α̂k−1, β̂k−1, β̂k)dα = 1.

Também aqui a variância σ2
α afina o compromisso entre a suavidade da sequência esti-

mada de ângulos e a precisão dessas estimativas.
Para a primeira imagem, k = 1, define-se P (α) como uniforme em todo o domı́nio

dado por (2.16), Iα = ]−45◦, 45◦], usando-se portanto em vez de (3.15)

α̂1 = arg max
α

log P (∇I1|α, β̂1, γ̂1). (3.17)
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3.3.3 Localização das estimativas

Com base nas considerações estabelecidas acima, o algoritmo de estimação da orientação
pode ser formalizado como se segue.

Algoritmo 3.1 Objectivo: Dada uma sequência de imagens {I1, . . . , IN} de um
mundo de Manhattan, estimar a correspondente sequência de orientações da câmara,
{O1, . . . , ON}.

• Para cada imagem Ik da sequência de v́ıdeo:

1. Calcula-se o gradiente ∇Ik;

2. Através de non maxima supression e limiarização, selecciona-se os pixels {u}
que contêm informação relevante, obtendo-se {Eu} = {(Eu, φu)};

3. Estima-se β̂k e γ̂k pelo método de procura exaustiva. Se k = 1, usa-se (3.14)
com o espaço de procura Iβ × Iγ = ]−45◦, 45◦] × ]−54.7◦, 54.7◦], graças a
(2.16); se k > 1, usa-se (3.11) e o espaço de procura tem em conta as
estimativas anteriores, sendo para um modelo de pequenas rotações µ(5◦):
Iβ × Iγ =]β̂k−1− 5◦, β̂k−1 +5◦]×]γ̂k−1− 7.08◦, γ̂k−1 +7.08◦], conforme (2.25).

4. Estima-se α̂k pelo método de procura exaustiva. Se k = 1, usa-se (3.17) com
o espaço de procura Iα = ]−45◦, 45◦]; se k > 1, usa-se (3.15) e o espaço de
procura tem em conta as estimativas anteriores, sendo para o mesmo modelo
µ(5◦): Iα =]α̂k−1 − 7.08◦, α̂k−1 + 7.08◦].

5. Obtém-se a classe de equivalência E(Ôk) das orientações equiprojectivas com
Ôk = O(α̂k, β̂k, γ̂k)), recorrendo à Proposição 2.3. Escolhe-se em E(Ôk) uma
orientação O′k ∈ R, cuja existência é garantida por (2.16). Faz-se Ôk := O′k.
Como foi dito no último parágrafo da Secção 2.5, isto permite manter pe-
quenos espaços de procura na próxima iteração dos passos 3 e 4.

• Como passo final, parte-se da sequência obtida, {Ô1, . . . , ÔN} a que se associam
classes de equivalência {E(Ô1), . . . , E(ÔN )} e selecciona-se em cada E(Ôk) uma ori-
entação O′k tal que a sequência {O′1, . . . ,O′N} satisfaça, em cada instante k, o mo-
delo das pequenas rotações. Faz-se então {Ô1, . . . , ÔN} := {O′1, . . . ,O′N}.

3.4 Hipótese nula e classificação de contornos

Tal como referido em [9, 10], a estimação da orientação a partir de uma imagem permite
a posteriori :

(i) Verificar a validade do modelo de mundo de Manhattan para a imagem dada;

(ii) Classificar cada pixel da imagem de acordo com as classes {1, . . . , 5} definidas na
Tabela 3.1.

Em (i), o objectivo é evitar estimativas erradas testando estatisticamente a hipótese do
mundo de Manhattan; este teste permite detectar quando uma imagem se afasta deste
modelo e, nessa eventualidade, abster-se de estimar a orientação.

Neste trabalho, em que a estimação é sequencial, esta verificação tem ainda a mais-
-valia de permitir detectar perdas de sincronismo no modelo de pequenas rotações, i.e.,
situações em que devido à estimação errada de várias orientações consecutivas, a de-
pendência do modelo das estimativas anteriores coloca-o “à deriva”. Uma vez detec-
tadas, estas situações podem ser corrigidas forçando a estimação seguinte a decorrer
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independentemente da estimativa anterior, i.e., como se fosse a primeira imagem de
uma nova sequência.

A verificação da validade do modelo de mundo de Manhattan é feita construindo um
modelo de hipótese nula, o que é feito modificando (3.8) para P (φu|mu,O,u) = U (φu)
e calculando

Pnull({Eu}) =
∏
u

[(
4∑

mu=1

Pm(mu)

)
· Pon(Eu) + Pm(5) · Poff(Eu)

]
U (φu) , (3.18)

o que significa deixar de distinguir diferentes tipos de contorno e deixar de assumir
que a estat́ıstica da imagem reflecte qualquer tipo de estrutura tridimensional. A ve-
rosimilhança do modelo de hipótese nula é comparada com a do modelo de mundo de
Manhattan, que é aproximada por

Pmanh({Eu}) ≈ P ({Eu} |Ô)P (Ô). (3.19)

onde Ô é a orientação estimada. Se log Pmanh({Eu}) − log Pnull({Eu}) < δ para um
certo δ ≥ 0 escolhido como margem de confiança, decide-se que o modelo de mundo de
Manhattan não é suficientemente verośımil e descarta-se Ô.

Em (ii), o objectivo é classificar a posteriori os pixels da imagem com os valores
1, . . . , 5, o que é feito tomando (3.6) e fazendo:

m̂u = arg max
mu

P (Eu|mu) P (φu|mu,O,u). (3.20)

A classificação dos pixels pode ser levada a cabo com o objectivo de captar a geometria do
mundo de Manhattan: um procedimento posśıvel é agrupar os pixels classificados como
1, 2 e 3 em linhas com a direcção dos eixos de Manhattan e computar as intersecções
destas linhas, permitindo a sua reconstrução 3D por troços a menos de escalamentos.
Apesar de este procedimento poder ser efectuado utilizando apenas uma imagem, o
uso de uma sequência de v́ıdeo permite refinar a reconstrução das linhas através, por
exemplo, de restrições de proximidade baseadas no modelo de pequenas rotações. Pode
ainda estabelecer-se correspondências com estas linhas entre as várias imagens, a fim de
estimar a translação da câmara e combinar com a orientação já estimada para obter a
pose completa (posição e orientação) a menos de um escalamento. Por outro lado, os
pixels que forem classificados com m̂u = 4 pertencem a contornos não consistentes com
os eixos de Manhattan; estes podem ser utilizados para detectar objectos não alinhados
com esta estrutura (e.g., pessoas num ambiente urbano), o que tem especial interesse
em aplicações envolvendo reconhecimento de padrões.

3.5 Experiências e Resultados

A fim de avaliar a qualidade do método proposto, aplicou-se o Algoritmo 3.1 a um
conjunto de sequências de v́ıdeo adquiridas na Baixa Pombalina com uma câmara vulgar,
em movimento livre e sem nenhum cuidado especial para evitar vibrações e outros efeitos
indesejáveis. As sequências de v́ıdeo utilizadas apresentam uma resolução baixa (cada
imagem tem 288 × 360 pixels) e uma grande compressão (formato MPEG-4). Apesar
da pouca qualidade das sequências, algumas contendo imagens sub- ou sobre-expostas
devido a fortes contrastes luz/sombra, e à distorção radial que afasta a câmara do modelo
da “câmara escura”, concluiu-se que o Algoritmo 3.1 é capaz de estimar correctamente
a orientação da câmara, de que é exemplo a Figura 3.4.
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Figura 3.4: Estimativas da orientação da câmara para uma sequência na Rua da Prata,
em Lisboa. Os cubos sobrepostos nas imagens representam a orientação estimada para
os eixos de Manhattan. Representa-se a estimativa na primeira imagem da sequência
(k = 1) e para imagens seguintes, em intervalos regulares.

As imagens das Figuras 3.5 e 3.6 provêm de duas outras sequências. Note-se que
em ambos os casos a orientação é correctamente estimada, mesmo na presença de
muitos contornos não alinhados com os eixos de Manhattan (por exemplo, as pessoas
na Figura 3.6). Os gráficos em cada uma destas figuras representam as estimativas dos
ângulos que parametrizam a orientação (i.e., os ângulos de compasso, elevação e torção)
para as duas sequências. Observando o gráfico, pode ver-se que as estimativas para a
sequência da Figura 3.6 são um pouco mais ruidosas que as da Figura 3.5, o que se deve
à qualidade inferior das imagens. A suavidade destas estimativas é controlada pelas
variâncias postas em jogo nas f.d.p. (3.13) e (3.16), e que são escolhidas a priori ; nas
experiências realizadas, essas variâncias são iguais para os três ângulos e para ambas as
sequências. Naturalmente, existe um compromisso entre esta suavidade e a capacidade
de captar com precisão rotações mais bruscas da câmara.
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Figura 3.5: Esquerda: imagens 20, 30, 40 e 50 de outra sequência de v́ıdeo, no Teatro
D. Maria II, em Lisboa. Direita: gráfico temporal com as estimativas dos ângulos de
compasso, elevação e torção que parametrizam a orientação da câmara.
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Fig. 3. Frames 20, 30, 40, and 50 of a video sequence with super-
imposed cubes representing the estimated orientation of the MW
axes.

Fig. 4. As in Fig. 3, for frames 110, 130, 150, and 170 of another
vide sequence.
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Fig. 5. Camera angle estimates, for the sequences of Figs. 3 and 4.

correspondence, or edge detection and linking. Experimental re-
sults show that the method is able to handle low-quality video se-
quences, even when many spurious edges are present.
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Figura 3.6: Esquerda: imagens 110, 130, 150 e 170 de uma terceira sequência de v́ıdeo,
no Elevador de Santa Justa, em Lisboa. Direita: gráfico temporal com as estimativas
dos ângulos de compasso, elevação e torção que parametrizam a orientação da câmara.

A Figura 3.7 ilustra ainda dois exemplos de classificação de contornos, segundo o
método descrito na Secção 3.4; um para uma imagem interior e outro para uma imagem
exterior. Pode ver-se que a classificação é mais ruidosa no caso da imagem exterior, o
que é representativo das restantes experiências efectuadas.

O tempo de processamento t́ıpico para cada imagem das sequências é menor que
1 segundo, tendo os testes sido efectuados num PC com processador Pentium IV a
3.0 GHz e a implementação do algoritmo no programa MATLAB, sem utilizar código
pré-compilado. Neste momento, o algoritmo está a ser implementado em C/C++ com
o objectivo de ser utilizado em tempo real.

Figura 3.7: Exemplos de classificação de contornos para uma imagem interior e outra
exterior. Representa-se respectivamente a vermelho, verde e azul pixels de contornos
alinhados com os eixos de Manhattan x, y e z. Esquerda: Sala de aula. Direita: Praça
da Figueira, Baixa Pombalina, Lisboa.
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Caṕıtulo 4

Conclusão

Neste trabalho, propõe-se uma abordagem probabiĺıstica para estimar a orientação da
câmara a partir de sequências de v́ıdeo em cenários urbanos. A abordagem utilizada
tira partido da existência de “regularidades” nos contornos da imagem, o que é expresso
através do modelo de mundo de Manhattan. O método proposto evita os passos in-
termédios tradicionalmente empregues, como a detecção e correspondência automática
de padrões (cantos ou linhas de contorno), que por serem pouco robustos e computa-
cionalmente pesados limitam o seu uso em aplicações práticas.

Os resultados experimentais demonstram que este método é capaz de lidar correc-
tamente com sequências de v́ıdeo de baixa qualidade e baixa resolução, ainda que o
ambiente em causa se afaste razoavelmente do modelo de mundo de Manhattan, devido
à presença de muitos contornos “espúrios”. O algoritmo que aqui se introduz reduz a
complexidade do problema e possibilita obter tempos de processamento que viabilizam
o seu uso num sistema que funcione em tempo real.

As considerações teóricas introduzidas neste trabalho mostram como se pode tirar
partido das classes de equivalência de orientações equiprojectivas para reduzir o domı́nio
de procura da solução. Generaliza-se este conceito para uma classe genérica de mundos
estruturados, n-dimensionais, de que o modelo de mundo de Manhattan tridimensional é
um caso particular. Mostra-se como o mesmo conceito pode ser útil ao desenvolvimento
de algoritmos de estimação em que existe conhecimento a priori da estrutura dos dados,
independentemente da dimensão do espaço e do âmbito do problema, não se exigindo
que este esteja relacionado com Visão por Computador.

Desenvolvimentos futuros incluem:

• optimização do algoritmo com vista à implementação prática de um sistema pro-
tótipo de estimação da orientação 3D em tempo real (trabalho corrente);

• desenvolvimento de métodos para estimar adicionalmente a posição 3D da câmara
(dada a sua orientação) no sentido de obter uma calibração completa e permitir
reconstruir a trajectória e efectuar uma reconstrução 3D do mundo;

• investigação do problema de detectar automaticamente a “estrutura” do mundo,
nos casos em que não existe conhecimento prévio desta estrutura;

• avaliação da possibilidade de estender o método a problemas provindos de outras
áreas, nomeadamente em Aprendizagem, Regressão e Classificação Automática,
com posśıveis aplicações em Inteligência Artificial, Bioinformática e Processamento
de Ĺıngua Natural.
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