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Resumo

O problema de inferir a orientacao de uma camara que adquire uma sequéncia de video é
de grande interesse em Visao por Computador, surgindo aplicages nas areas de robdtica
movel, calibragao e reconstrugao 3D.

As abordagens tradicionais requerem um passo intermédio de detecgao de padroes
(cantos ou linhas de contorno) em cada imagem e a sua posterior correspondéncia entre
as varias imagens; este passo é computacionalmente pesado e requer o ajuste cuidadoso
de muitos parametros. Em vez disso, este trabalho sugere uma abordagem probabilistica
de estimacgao sequencial fazendo uso de um modelo adequado a cenas urbanas, dito
mundo de Manhattan, segundo o qual a maioria dos contornos se alinha em trés direccoes
ortogonais.

As principais contribuigbes sao: (i) a definicdo de classes de equivaléncia de ori-
entagdes equiprojectivas; (ii) a introdugao de um modelo de pequenas rotagoes adequado
ao movimento da camara; e (iii) a separacao de cada estimagao em duas partes reduzindo
a complexidade de O(N?3) para O(N?). A reducdo do peso computacional viabiliza a
sua aplicacao em tempo real. O desempenho é avaliado utilizando sequéncias de video
da Baixa Pombalina.

Palavras-chave: Visao por Computador, orientagao da camara, estimagao sequen-
cial, cenas urbanas, calibracao da camara.

Classificagao ACM: 1.4 (IMAGE PROCESSING AND COMPUTER VISION), I.5 (PATTERN
RECOGNITION), 1.3 (COMPUTER GRAPHICS), 1.6 (SIMULATION AND MODELING).
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Capitulo 1

Introducao

1.1 Motivacao

Aplicagoes em areas como Video Digital, Realidade Virtual, Robética Mével e Navegagao
Automética requerem métodos eficientes para estimar a “pose” (i.e., a posigdo e a
orientacao) de uma camara de video, ao longo do tempo, a partir da sequéncia de imagens
que esta captura. De modo analogo, em Processamento de Imagem, Reconhecimento de
Padroes e Pesquisa de Imagens surge muitas vezes a necessidade de, a partir de uma tnica
imagem, caracterizar a estrutura tridimensional (3D) de objectos, o que muitas vezes
requer, de alguma forma, estimar a pose da camara relativamente a esses objectos. Em
resumo, pode afirmar-se que o desenvolvimento de métodos eficientes para a estimagao
da posigao e/ou orientagdo de uma camara, quer a partir de uma imagem, quer a partir
de uma sequéncia de imagens, é actualmente uma das maiores preocupagoes em Visao
por Computador.

As abordagens tradicionais baseiam-se na deteccao de “padrbes” em imagens; estes
padrées consistem geralmente em cantos de objectos ou em linhas de contorno. Em
aplicagoes envolvendo muiltiplas imagens, uma vez detectados estes padroes em cada
imagem, o passo seguinte consiste em correspondé-los entre diferentes imagens, por ex-
emplo através de seguimento (pode encontrar-se alguns exemplos em [1, 2, 3]). Em
aplicagoes que utilizam uma dnica imagem, os métodos mais comuns envolvem o agru-
pamento de padroes (ver por exemplo [4, 5, 6]). Todavia, é consensual que tanto a
correspondéncia como o agrupamento automatico de padroes sao problemas dificeis e
para os quais os resultados até agora atingidos se revelam pouco satisfatorios; existe um
sério compromisso entre robustez e comportabilidade computacional que muitas vezes
inviabiliza o seu uso em aplicacGes praticas. Para além disso, o facto de se basear toda
a inferéncia num conjunto de padroes geralmente pequeno (com relagao a totalidade da
imagem) faz com que informagao 1til possa ser prematuramente desprezada.

No caso de multiplas vistas, tém sido propostos métodos que estimam a estrutura
3D directamente a partir dos valores da intensidade das imagens, i.e., sem envolver a
detecgao e correspondéncia de padroes — exemplos disso encontram-se em [7, 8]. Porém,
estas abordagens conduzem quase sempre a algoritmos complexos, de convergéncia lenta,
e demasiado dependentes da hipdtese de que, de vista para vista, o padrao de brilho em
pontos correspondentes permanece aproximadamente constante, tornando-os por isso
muito sensiveis a ruido.

No caso de uma unica imagem, J. Coughlan e A. Yuille propuseram recentemente
uma abordagem diferente em [9, 10] que evita a deteccao e agrupamento de padroes. A
ideia consiste em utilizar conhecimento prévio sobre a estrutura do “mundo”. De facto,
em grande parte das cenas urbanas, muitos contornos estao alinhados com uma de trés



direcgoes ortogonais, definindo um sistema de eixos. Sob este modelo que designaram
por mundo de Manhattan, J. Coughlan e A. Yuille utilizaram técnicas de inferéncia
bayesiana para estimar a componente rotacional da pose 3D (i.e., a orientacdo) da
camara com relagdo aquele sistema de eixos. O modelo de mundo de Manhattan foi
aplicado depois disso (paralelamente ao trabalho que aqui se apresenta) em [11] para
auto-calibracdo da camara e estendido em [12] para ambientes urbanos mais genéricos.

O trabalho aqui apresentado inspira-se no modelo de mundo de Manhattan para
propor um novo método de estimagao da orientagao 3D a partir de sequéncias de imagens
de cenas urbanas. As contribuigoes originais sao:

e enquanto que em [9, 10] o modelo de mundo de Manhattan é utilizado para estimar
a orientacao a partir de uma dnica imagem, este método estende o seu uso para
sequéncias de imagens;

e ¢ introduzido um novo modelo de pequenas rotagdes que expressa o facto de a
camara de video movimentar-se suave e continuamente no espago 3D;

e define-se o conjunto das orientagoes 3D em termos de classes de equivaléncia de
orientacoes equiprojectivas, onde sao consideradas equivalentes as orientagoes que
conduzem ao mesmo conjunto de pontos de fuga e, por isso, sao indistinguiveis do
ponto de vista da estimacao. Mostra-se como cada classe de equivaléncia tem 24
elementos e se relaciona geometricamente com o grupo octaédrico das simetrias
proprias do cubo. Reduz-se o espago de procura da solugao para uma regiao mais
pequena que contém o conjunto quociente;

e para cada imagem, decompoe-se em dois passos a estimagao dos trés angulos que
parametrizam a orientacio da cAmara: um passo de complexidade O(N?) onde
sao estimados dois destes angulos (elevacao e torgao), e outro passo de complex-
idade O(N) onde é estimado o terceiro angulo (azimute). Esta decomposicao

reduz consideravelmente o peso computacional de cada estimacao, pois reduz a
complexidade de O(N3) para O(N? + N) = O(N?);

e mostra-se teoricamente como o modelo de mundo de Manhattan é um caso par-
ticular de uma classe de mundos estruturados de dimensao arbitraria e como,
uma vez formalizada essa estrutura, todos os resultados fundamentais podem ser
extrapolados.

1.2 Conteudo

Este trabalho estd organizado da seguinte forma: no Capitulo I introduz-se a geome-
tria inerente ao modelo de mundo de Manhattan, definindo-se o conceito de orientagoes
equiprojectivas e o modelo de pequenas rotagoes; mostra-se também como os mesmos
resultados tedricos podem ser extrapolados para uma classe de mundos estruturados de
dimensao arbitraria. O Capitulo III debruca-se sobre a abordagem probabilistica e con-
sequente implementacao do algoritmo de estimacao sequencial da orientacao da camara,
tendo em conta os conceitos definidos no Capitulo II; discute-se ainda os resultados
experimentais da aplicacao deste algoritmo a sequéncias de video reais. Finalmente, o
Capitulo IV expoe as conclusoes e sugere desenvolvimentos futuros.



Capitulo 2

Geometria do mundo de
Manhattan

2.1 Mundo de Manhattan

Em Visao por Computador, designa-se por mundo o espaco 3D observado por um sistema
de visao, geralmente constituido por uma ou mais camaras de video ligadas a uma
unidade de processamento. O sistema de navegacao aqui proposto é constituido por
uma Unica camara de video digital ligada a um processador, capturando uma sequéncia
de imagens {I1,Is,...,I,}. O objectivo do sistema consiste em obter uma sequéncia
de estimativas {61, 62, . ,ﬁn} da orientacao da camara para cada um destes instantes.
Considera-se parte do objectivo obter desempenhos capazes de viabilizar o uso do sistema
em tempo real, pelo que se dara énfase a rapidez do processamento.

Em [9, 10], J. Coughlan e A. Yuille sugeriram uma nova abordagem para estimar
a orientacao da camara a partir de uma unica imagem. O seu trabalho, desenvolvido
para o Smith-Kettlewell Eye Research Institute, em Sao Francisco, tinha como objectivo
implementar um sistema de ajuda para cegos e ambliopes capaz de orientd-los nas ruas,
avenidas ou no interior de edificios de uma cidade; o sistema seria constituido por uma
camara acoplada no peito do utilizador, cujas imagens seriam processadas de modo a
emitir, por exemplo, um aviso sonoro se a trajectéria tendesse a desvid-lo para a estrada
ou contra um obstaculo como uma parede.

J. Coughlan e A. Yuille decidiram tirar partido da natureza “urbana” do mundo para
onde o sistema de navegacao foi idealizado e, como alternativa aos métodos tradicionais,
propuseram seguir uma abordagem estatistica baseada numa modelizacao prévia do
mundo capaz de captar essa natureza “urbana’. Assim surgiu o conceito de “mundo de
Manhattan”, que se procurara aqui definir com alguma informalidade.

Defini¢ao 2.1 Mundo de Manhattan (do inglés Manhattan world) € um modelo do
mundo sequndo o qual este € constituido essencialmente por objectos cujas arestas sao
linhas rectas que, no seu conjunto, estdo alinhadas sequndo trés direc¢des ortogonais. O
referencial ortonormado (X,y,z) definido por estas direc¢oes designa-se por referencial
de Manhattan, sendo x, y e z designados por eixos de Manhattan.

As Figuras 2.1a-¢ mostram uma representagao esquematica de um mundo de Man-
hattan e dois exemplos reais de mundos passiveis de serem modelizados como sendo “de
Manhattan”: uma fotografia de uma cena interior e outra de uma exterior. Grande parte
das cenas “urbanas” podem ser classificadas como mundos de Manhattan; as direcgoes
ortogonais sao devidas a presenca de salas, corredores, ruas, avenidas, edificios, etc. A



prépria designacao é inspirada em Manhattan (Nova Iorque), que se caracteriza pelo de-
senho ortogonal das suas ruas e avenidas e pela paisagem “paralelepipédica” conferida
pelos arranha-céus.

A Baixa Pombalina, em Lisboa, é também um exemplo real de mundo de Manhattan.
Por esse motivo, grande parte das experiéncias realizadas resultaram de sequéncias de
video obtidas nesse local.

Recentemente, outros trabalhos adoptaram modelos inspirados no mundo de Man-
hattan para cendrios ligeiramente diferentes. Um exemplo é o mundo de Atlanta [12],
que pode ser visto como uma generalizagdo do mundo de Manhattan adaptado a cenas
onde predominam edificios paralelepipédicos que partilham uma direccdo comum — a
vertical —, mas que fazem um angulo de azimute entre si.

(b)

Figura 2.1: Mundos de Manhattan: (a) Representacao esquemética; (b) Fotografia de
uma cena interior: sala de aula; (c¢) Fotografia de uma cena exterior: Rua de Santa
Justa, na Baixa Pombalina de Lisboa. Note-se como em (b) e (c) sao visiveis as trés
direcgoes ortogonais dos eixos de Manhattan.

2.2 Orientagao da camara

O modelo utilizado para a camara é o da cdmara escura'. Para uma camara calibrada,
a adopcao deste modelo nao implica perda de generalidade, pois o conhecimento dos
parametros intrinsecos da camara permite rectificar as imagens de modo a simular uma

!Designado na literatura anglo-saxénica por pinhole camera.



camara escura — em [13] e [14], por exemplo, sdo dados alguns exemplos de métodos de
calibragao.

De acordo com este modelo, todos os raios 6pticos convergem num ponto — o centro
6ptico — e sdo projectados numa superficie planar — o plano da imagem. A distancia
entre o centro éptico e o plano da imagem é designada por distancia focal e o ponto
do plano da imagem mais préximo do centro éptico designa-se por ponto principal.
A Figura 2.2 representa esquematicamente a cdmara escura.

f—

C- centro optico

P — ponto principal
f — distancia focal

T — plano da imagem

C

Figura 2.2: Representagao esquemética da camara escura. Um ponto X no espago
tridimensional é projectado no ponto X’ do plano da imagem.

Sejam respectivamente (x,y,z) e (n, h,v) os referenciais do mundo de Manhattan e
da camara. Estes relacionam-se através da equacao

(Il, h,V) = (X7Y7Z) -0, (2.1)

onde 0 € SO(3) é uma matriz de rotagdo que representa a orientagao da camara.
Adoptando o sistema de coordenadas definido pelo referencial de Manhattan, vem:

0=[n,h,v] (2.2)

A orientacao tem trés graus de liberdade e pode ser parametrizada por trés angulos
exprimindo trés rotagoes sucessivas (ver Fig. 2.3):

e «, o angulo de compasso ou azimute, correspondendo a uma rotacao em torno do
eixo z;

e 3, o angulo de elevac¢do sobre o plano xy;
e 7, o angulo de tor¢do em torno da linha de vista.

No texto que se segue, a orientagao é frequentemente representada em funcgao destes
parametros, 0 = 0(«, 3,7).

De acordo com esta parametrizacao, os angulos «, 3 e 7y relacionam-se com n, h e v
da seguinte forma:

n = [cos a cos 3, sin a cos 3, sin 3] (2.3)
e .
cosy —sin
[h, v] = [ho, v(] [ 7 7 ] : (2.4)
siny  cos~y

onde, representando por “x” o produto externo vectorial,

zZXn ka

hy = [—sina, cos, 0 e (2.5)

|z x nf[
Vo = n><h0. (26)



.0 | plano da imagem
]

N
Figura 2.3: Parametrizacao da orientacao da camara. A esquerda: o angulo de compasso
« e o angulo de elevagao 3. A direita: o angulo de torgao y representado no plano da
imagem.

Utilizando coordenadas homogéneas?, e escolhendo o centro éptico C como origem do

sistema de coordenadas, i.e., C = [0,0,0, 1]T, vem para o ponto principal P e para o

plano da imagem :
P:{fln] e w:[_nf], (2.7)

onde f representa a distancia focal. Sendo (P;n,h,v) o referencial afim da camara,
as coordenadas homogéneas de um ponto neste referencial obtém-se das suas coorde-
nadas homogéneas no referencial (C;x,y,z) multiplicando a esquerda por uma matriz
de transformacao 4 x 4 dada por

Il;: _f Ty ny Ty _f

w0 | | he by b o0

=1y o |~ vy vy v, O (28)
o 1 0 0 0 1

2.3 Pontos de fuga

No espaco projectivo P3, a interseccio de quaisquer duas rectas com a mesma direccdo
d é um ponto ideal. A projeccao desse ponto ideal no plano da imagem designa-se
por ponto de fuga segundo d. Naturalmente, escolhida uma direccao d, o respectivo
ponto de fuga pode obter-se calculando a intersec¢ao do plano da imagem com a recta
de direccao d que passa no centro éptico.

Posto isto, designando por Wy, Wy e W, os vectores com as coordenadas ho-
mogéneas dos pontos de fuga segundo cada um dos eixos de Manhattan x, y e z, estes
serdo necessariamente da forma [wy1, 0,0, wz4]7, [0,wy2, 0, wya]? e [0,0,w,3, w4]T, res-
pectivamente, e satisfario 77 Wy = 77 Wy = 77 W, = 0, o que, recorrendo a (2.7),
conduz a:

Wy = [£,0,0,n,]7 , Wy =[0,f0,mn,]" e W,=][0,0,fn]". (2.9)

Mudando para o referencial da camara, o que é feito utilizando a matriz T de (2.8),
correspondem aos mesmos pontos as coordenadas homogéneas TWy = [0, fhe, fve, na]?
TWy, = [0, fhy, foy,n,]T e TW, = [0, fh,, fvs,n.]T, respectivamente.

2Ver [15] para uma breve explicagdo desta e de outras nogdes de Geometria Projectiva.



Identificando agora o plano da imagem 7 com o plano projectivo P2, os mesmos
pontos de fuga, vistos como pontos 2D, descrevem-se no referencial afim (P; h, v) através
dos vectores de coordenadas homogéneas vy, vy e v, (ver Figura 2.4a) dados por

Vvx = [fhs, fog,ng]m =Ry - [~fsina, —f cosasin 3, cos acos BT, (2.10)
vy = [fhy, fog,ny]" =R, - [fcosa,—fsinasin3,sinacos g’ , (2.11)
v, = [fhs, fvs,n.)" =Ry [0, f cos B,sin 4] (2.12)
com
cosy —siny 0
R,=| siny cosy 0 |. (2.13)
0 0 1

onde se recorreu a (2.3)-(2.6). Confrontando as expressoes (2.10)-(2.12) com (2.2), pode
ver-se que os pontos de fuga vy, vy e v, se relacionam com as linhas da matriz de
orientagao de acordo com

0
flof. (2.14)
0

Figura 2.4: Pontos de fuga dos eixos de Manhattan sobre duas imagens de um dado. A
orientacao da camara é diferente nas imagens (a) e (b); porém, os pontos de fuga, no
seu conjunto, tém a mesma localizagdo. Note-se como, de (a) para (b), os pontos de
fuga vy e v, sdo permutados.

2.4 Orientacoes equiprojectivas

A expressao (2.14) mostra que a orientacdo da camara 0 pode ser estimada mediante
a localizagao na imagem dos pontos de fuga dos eixos de Manhattan, vy, vy e v,.
Porém, partindo apenas de uma imagem de um mundo de Manhattan, sem informagao
adicional sobre a geometria do mundo, tais pontos de fuga sdo indistinguiveis, i.e.,
localiza-los equivale a conhecer o conjunto {vx,Vy,Vv,}, nao se sabendo, no entanto,
qual o ponto de fuga que corresponde a cada eixo de Manhattan — a possibilidade de
permutar os pontos de fuga conduz a multiplas solucoes para a orientacao. Esta situagao
é illustrada nas Figuras 2.4a-b, onde se mostra como duas orientacoes da cAmara distintas
originam o mesmo conjunto de pontos de fuga. Esta ambiguidade motiva o conceito de
equiprojectividade.



Definigao 2.2 (Orientagées equiprojectivas) Seja V(0) = {vx, vy, Vv,} 0 conjunto
dos pontos de fuga determinado por uma orientagdo 0. Duas orientacoes 0 e Q' denomi-

nam-se equiprojectivas sse possuem idénticos conjuntos de pontos de fuga, i.e., sse
V() = V(0.

A equiprojectividade, como se acaba de definir, satisfaz as propriedades de reflexi-
vidade, simetria e transitividade; portanto, é uma relagao de equivaléncia. O resultado
seguinte mostra como pode obter-se a classe de equivaléncia £(0) de uma dada ori-
entacao, i.e., o conjunto de todas as orientagoes equiprojectivas com 0.

Proposigao 2.3 Designe-se por SPT(n) o grupo das matrizes de permutacao com
sinal n X n cujo determinante é positivo (i.e., o conjunto das matrizes n x n com
entradas em {—1,0,1}, com exactamente um elemento ndo nulo por linha e por coluna
e com determinante positivo, necessariamente igual a 1).

Duas orientagoes O e Q' sdo equiprojectivas sse existir M € SPT(3) tal que 0’ = MO.
Cada classe de equivaléncia de orientagoes equiprojectivas tem exactamente 24 elemen-
tos, o mimero de elementos de SP™(3).

Demonstragao:  Seja V(0) = [vx,Vy, Vy] a matriz definida pelos pontos de fuga
associados a 0. 0 e 0’ sdao equiprojectivas sse possuem os mesmos pontos de fuga a
menos de um factor de escala e de uma permutacao, i.c., sse existem uma matriz de
permutagao P e uma matriz diagonal A = diag(\1, A2, \3) tais que V(0) = V(0')AP. De
(2.14) tem-se

V(0) =Ko = of, (2.15)

= o O
S O~
O~ O

pelo que multiplicando ambos os membros & esquerda por K~ (K é obviamente invertivel)
conclui-se que 0 e 0’ sdo equiprojectivas sse 07 = 0'TAP, i.e., sse 0’ = APO = MO, com
M = AP, ou m;; = \ipij. Dado que 0,0" € SO(3), vem [\ = |A2] = |A\3] = 1, i.e.,
m;j = £p;j, e det M = 1; isto equivale a ter M € SP*(3). Ora, o grupo SP*(n) é isomorfo
ao grupo octaédrico das simetrias “préprias” do n-cubo e tem ordem % n! 2™ o total de
possiveis combinacoes de um numero par de operagoes de permutagao e troca de sinal
com n elementos. Para n = 3, vem % 3! 23 = 24, sendo este o nimero de elementos de
cada classe de equivaléncia definida pela relacao de equiprojectividade. [ |

Figura 2.5: Localizagdo 3D dos pontos principais de orientagoes equiprojectivas, nos
octantes de uma esfera de raio f centrada em C. Representam-se duas classes de equi-
valéncia: os pontos brancos e os pontos pretos; os segundos sao o “reflexo” dos primeiros.



A Figura 2.5 ilustra duas classes de equivaléncia formadas por orientagoes equipro-
jectivas, em que uma é o “reflexo” da outra.

O conceito de equiprojectividade revela-se til em qualquer problema de estimacao
de orientacao ou de localizacao de pontos de fuga, visto que permite reduzir os espagos
de procura. Assim, em vez de se procurar sobre todo o dominio SO(3), pode recorrer-se a
relagao de equivaléncia definida pela equiprojectividade e utilizar um espaco de procura
para a orientacdo mais pequeno que contenha o conjunto quociente SO(3)/SPT(3). A
proposicao seguinte formaliza este reciocinio:

Proposigao 2.4 Toda a orientagdo O € SO(3) tem uma equiprojectiva 0" € R, onde R
é uma regigo em SO(3) definida por:

™

Rz{O(a,ﬂ,’y)GSO(i’)):ae}—%,z}, ﬁe}—%,%}, e 'ye]—go,tp]}, (2.16)

com ¢ = arctanv/2 ~ 54.7°. Uma afirmacio equivalente é: qualquer que seja a ori-
entacdo da camara, existe pelo menos um ponto de fuga na regido representada na
Fig. 2.6.

Figura 2.6: Representagao do plano da imagem. E garantida a existéncia de pelo menos
um ponto de fuga na regiao a sombreado.

Demonstracao:  Por simplicidade, vamos utilizar coordenadas cartesianas para
os pontos de fuga, i.e., V; = [vi1/vi3,via/viz)T = [fhi/ni, fvi/ni|T para i € {x,y,z2},
sendo v; = [vj1,vi2,v;3]7 as coordenadas homogéneas. Como se poders ver recorrendo
a limites, a eventual existéncia de pontos “no infinito”, i.e., para os quais v;3 = 0, nao
implica perda de generalidade. De (2.10)-(2.12) tem-se (para i,j € {z,y,2})

o1 1) o
v, = (n? ser=l (2.17)
_f2 se 1 7é ja
0 que permite obter tanto a distancia euclidiana d; = (V?%)l/ 2 entre os pontos v; e
1~ o o
p = [0,0]T como o angulo 6;; = arccos ‘:11- d‘f formado pelas linhas [pv;] e [pV;], com

1 7.

Considere-se agora o disco D com raio f e centro em p, i.e., D = {(u,v) € R? :
u? + 02 < f?}. Temos que v; € D sse d; < f, o que, por (2.17), é equivalente a
n? > 1/2. Visto que n? + ng + n? = 1, a condi¢do n? > 1/2 implica n? < 1/2 para
qualquer j # i, o que significa que ndo pode existir mais que um ponto de fuga no
interior do circulo D. Para além disso, os trés pontos de fuga estdo todos na fronteira
ou no exterior de D sse n? < 1/2, para i € {x,y,z2}.

Para completar a demonstragao, é ainda necessario o seguinte resultado intermédio:
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Lema 2.5 Quaisquer dois pontos de fuga v; e v, com i # j, verificam cosb;; < 0.
Para além disso, se v, € D, com k # 1 e k # j, entdo cosf;; > f%.

Demonstragao (do lema): A primeira afirmacao é consequéncia imediata de (2.17).

~ 7 . 2 ~
Para demonstrar a segunda afirmacao, obtém-se min cos 6;; = —m em funcao de n;
i@j
e nj, no domifnio definido por n? + n? < 1/2. O minimo ocorre em |n;| = |n;| = 3 com
valor —1/3. |

Uma vez que %arccos(—%) = arctan v/2 ~ 54.7°, a existéncia de um ponto de fuga na

regiao a sombreado da Figura 2.6 é uma simples consequéncia do Lema 2.5. Para se obter
(2.16), considere-se uma orientacao 0 e seja v; um ponto de fuga localizado nessa regiao
a sombreado. A Proposigao 2.3 garante entdo a existéncia de uma orientacio equipro-
jectiva 0’ com pontos de fuga {vy,Vy,V,} satisfazendo: (i) v, = v;, e (ii) d, < d}. De
(2.10) — (2.13) temos, devido a (i), que 3’ € |-w/4,m/4] e 7' € |- arctan V2, arctan v/2],
e devido a (ii), que o’ € |—7/2,7/2], o que conclui a demonstragao. [ |

2.5 Modelo de pequenas rotacoes

Vamos agora assumir que a camara se move e adquire uma sequéncia de imagens
{I1,...,In}. Seja Oy = O(ag, Bk, Vi) & orientagao na k-ésima imagem. A sequéncia de
orientacoes {01, ...,0x} depende apenas da componente rotacional do movimento, i.e.,
¢é independente da translacao da camara. Numa sequéncia de video tipica, a orientagao
da camara varia suave e continuamente. Esta propriedade é formalizada introduzindo o
modelo de pequenas rotagoes, que a seguir se descreve.

Defini¢ao 2.6 (modelo de pequenas rotagoes) Seja Ri(pk,er) € SO(3) a compo-
nente rotacional do movimento da camara entre a (k—1)-ésima e a k-ésima imagem,
onde pi e ey representam o angulo e o eizo de rotacdao, respectivamente. Independen-
temente de ey, diz-se que a camara € consistente com o modelo das pequenas rotacoes
(&) sse existe um “pequeno” angulo fizo & tal que |px| < & para qualquer k.

Nas experiéncias realizadas (ver Secc¢ao 3.5), usou-se o modelo de pequenas rotagoes
1(5°), o que implica que para uma taxa de amostragem de 12.5 Hz o angulo de rotagao
é sempre menor que 62.5° em cada segundo; trata-se de uma hipdtese intuitivamente
razoavel.

A proposicao seguinte expressa como as variagoes dos angulos de compasso, elevagao
e torcao entre imagens consecutivas podem ser limitadas devido ao modelo de pequenas
rotacgoes.

Proposicao 2.7 Se o movimento da camara € consistente com o modelo de pequenas
rotagoes u(§), entdo, em qualquer instante k, aplicam-se as sequintes restri¢oes:

e A wvariacdo do angulo de elevacdo, AB = By, — Br_1, satisfaz

|AG] < €. (2.18)

o A wariacdo do angulo de compasso, Aa = oy — ap_1, satisfaz

_ cos \ABFGOSE) <o
’AO&’ < af(ﬁkvﬁkfl) = arccos (1 cos (B, _1 cos B se |ﬁk—1 + ﬁk’| =T g
3 caso contrdrio.

(2.19)

11



Se 0p—1 se encontra na regiao R expressa em (2.16), entdo, independentemente
de By e Br-1:

|Aa| < |ﬂma|§” a¢ (B, Pr—1) = arccos(2cos & — 1). (2.20)
k—11<7T

o A wariacdo do angulo de tor¢do, Ay = v, — Yr—1, satisfaz

|Ay| < ge(Br-1), (2.21)

onde g¢ € uma fungdo par crescente em [0, 5] com g¢(0) = & e ge(5) = w. Se
Or—1 € R, entao |Br_1| < 7§ e

|Ay] < gg(%) : (2.22)

A Fig. 2.7 mostra o grdfico da fungdio ge no subdominio [0, 7], para & = 5°; este
valor de § conduz a |Avy| < 7.08°.

7.5
Varia¢do maxima
7 do 4ngulo de tor¢do para £ =5°
6.5¢

2:(B_ ) = max AV ]

Be_ ([ |

4.5 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Figura 2.7: Variagdo méaxima do angulo de tor¢ao como funcao do angulo de elevagao
inicial, utilizando um modelo de pequenas rotagoes p(5°).

Demonstragao: ~ Considere-se Ry (pg,ex) como a composicao de duas rotagoes:
(ng—1 x ng)

[[ng—1 x ngl[’
seguida de Ry, (pk,,er,) que “torce” a camara em torno do eixo principal, i.e., com

er, = ni. Compondo estas duas rotagoes, e tendo em conta que ey, Leg,, obtém-se

Pk __ Pk Pk c o~ ~ . .
cos G = ?Dos b cos 572 Portan:;o, a cond{u;ao de pequenas rotagoes |pi| < & implica
k k .
tanto cos 5% > cos 5 como cos 5> > €os 3, i.e., |pr,| < € e |pp,| < & Uma vez que

COS pi, = n{nk_l, de (2.3) obtém-se

Ry, (pk1 , ekl), que transforma ny_; em ny tendo como eixo de rotacao e;, =

cos& < cos pg, = cos B cos B_1 cos Aa + sin [ sin 1 < cos AJ, (2.23)
o que basta para provar (2.18). De (2.23), obtém-se ainda
cos Aa > (cos& — sin (B sin Bi_1)/(cos Bk cos Bx—1) ,

o que simplificando conduz a (2.19). Se 0x_1 € R, entao de (2.16) vem |5k + Brt1] <
n/4+7/4+& < m—§. O valor mdximo de A« ocorre para By = fy—1 = 7, conduzindo
assim a (2.20).
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Quanto a A<y, nao é possivel chegar a uma expressao simples para ge¢(fGr—1); no
entanto, visto que p é funcao de By_1, Bk, Aa e Ay, pode estudar-se g¢ fazendo
ap—1 = Yk—1 = 0. Por simetria esférica tem-se que g¢ ¢ uma funcao par; por outro lado,
uma simples inspecgao geométrica mostra que ge¢ (1) aumenta com |f_1|. Escrevendo
R como a composicao de trés rotagoes — uma para o compasso, outra para a elevacao e
a ultima para a torcao —, e recorrendo a féormula para o produto de quaternides, chega-se

a
AB - CvB? +(C? — A?

|Av| = 2 arccos 31 22 , (2.24)

onde A = cos &, B = cos%cos% e C = sin% <cos%sinﬁk —cosﬁksinAﬁ). A

maximizacao numérica de (2.24) com respeito a Aa e [, (para p, = &) aproxima g:. ®

Se a orientagao Ox_1 residir na regiao R definida em (2.16), o espaco de procura para
0 € significativamente reduzido gracas as restrigoes impostas pela Proposigao 2.7. Em
particular, com & = 5°, tem-se nestas condicoes

|Aa| < 7.08°, [AB| < 5° e |Ay| < 7.08°. (2.25)

Mesmo se 01 ¢ R, a Proposigao 2.4 garante a existéncia de uma orientacao equiprojec-
tiva 0),_; € £(0k—1) tal que 0j_; € R. Isto mostra como se pode utilizar conjuntamente
o modelo de pequenas rotacOes e as orientacOes equiprojectivas para reduzir significati-
vamente o espaco de procura.

2.6 Generalizacao para outros mundos estruturados

Muitos dos resultados obtidos nas seccoes anteriores, em que sempre se teve em mente
o modelo de mundo de Manhattan no espago tridimensional, sao na verdade generali-
zaveis a outros modelos de mundos, nao necessariamente tridimensionais, podendo ser
empregues para estimar a orientacao da camara em cenarios de diferente estrutura ou
para aplicar a problemas de dimensao superior, nao necessariamente provenientes da
area de Visao por Computador.

De facto, o mundo de Manhattan pode ser visto como um caso particular de mundo
estruturado, tridimensional, onde a maior parte da informagao relevante estd “alinhada”
segundo trés direcgoes ortogonais, x, y e z. Ora, este raciocinio pode generalizar-se a
uma classe de mundos estruturados, n-dimensionais, onde estao em jogo m direcgoes
nao necessariamente ortogonais, xi,--- ,X;, € R" com m > n. Sendo (aj,---,a,) o
referencial do mundo e (by,---,b,) um outro referencial, designado por referencial da
camara, onde {a; }!=0 e {b; }'= sdo duas bases ortonormadas de R™, os dois referenciais
relacionam-se por

(bla"' 7b71) = (alv"' aan)0¢ (226)

onde 0 é uma matriz de transformacdo de coordenadas a que se pode chamar ori-
entagao e que pertence ao grupo das matrizes ortogonais, O(n); caso a natureza do
problema exija que esta transformag@o preserve a orientacao dos eixos, i.e., seja uma
rota¢do, tem-se 0 € SO(n), onde SO(n) é o sub-grupo de O(n) formado pelas ma-
trizes ortogonais com determinante positivo. Em ambos os casos, utilizando o sis-
tema de coordenadas definido pelo referencial canénico do mundo, i.e., (aj, - ,a,) =
([0,0,---, 1%, --- [[1,0,--- ,0]T), vem O = [by,--- ,by)].

No plano da imagem (um sub-espago de dimensao n — 1), pode associar-se a cada
um dos pontos de fuga segundo as direccoes X1, - - - , X,, respectivamente os vectores de
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coordenadas homogéneas vi,--- ,v,;, € R™; introduzindo as matrizes n x m definidas
como V=|[vy, -, vyl eX=[xq, - ,Xp], tem-se

V =K0'X, (2.27)

onde K é uma matriz invertivel do tipo da de (2.15). Alids, para um mundo de Manhattan
tridimensional tem-se n = 3 e X igual a matriz identidade 3 x 3, obtendo-se precisamente
(2.15).

O objectivo é estimar a orientacao supondo que se dispoe de um mecanismo capaz
de “sondar” o mundo e obter um conjunto de estimativas para a localizacao dos pontos
de fuga, V = {Vi1, -,V }. Define-se a relagdo de equiprojectividade em fungao das
direccoes x1, - - - , X, da seguinte forma: duas orientacoes 0 e 0’ sdo equiprojectivas sse
os pontos de fuga segundo estas direcgoes tiverem, no seu conjunto, a mesma localizagao,
ou seja, usando (2.27), sse existirem uma matriz de permutagao P e uma matriz diagonal
A tais que

KOTX = KO'TXAP. (2.28)

Como 0,0" € SO(n), deve ter-se 0’ = MO com certo M € SO(n); multiplicando ambos os
termos de (2.28) & esquerda por 0’K~! e & direita por X7 (XX?)~10, obtém-se por fim:

M= XAPXT(XxT)"t A MeSOn), (2.29)

0 que permite caracterizar a classe de equivaléncia das orientacoes equiprojectivas para
qualquer mundo nesta classe de mundos estruturados. Note-se que alargando o dominio
da orientagao para O(n) (i.e., retirando a exigéncia de que 0 seja uma rotagao) obtém-se
exactamente os mesmos resultados substituindo SO(n) por O(n).

Exemplo 2.8 Tome-se como exemplo um mundo tridimensional (n = 3) constituido
por edificios que sdo prismas de base hexagonal, i.e., com direcgoes definidas pelos
vectores normalizados de R?: x1 = [0,0,1]7, xo = [0,1,0]7, x3 = [v/3/2,1/2,0]T e
x4 = [-/3/2,1/2,0]. Fazendo X = [x1,X2,X3,X4] € tendo em conta que a multiplica¢do
por uma matriz de SO(3) preserva a norma, o que implica A = diag(£1,+1,+1) obtém-
-se, utilizando (2.29), o sequinte conjunto de solugoes para M:

+1 0 0 kil L o
Me 0 +£1 0 |, /@@ ksl 0 NSO(3), (2.30)
0 0 =+l 0 0 +1
com |k1| = |ko| = |k3| = |ka| = 1 e kikeksky = —1. Cada classe de equivaléncia

formada pelas orientacdes equiprojectivas tem portanto, para este modelo de mundo,
%(23 +2%) = 12 elementos, o que coincide com a ordem do grupo de simetrias do prisma
hexagonal.

Exemplo 2.9 (mundo de Manhattan n-dimensional) Os mundos de Manhattan
n-dimensionais sao um caso particular desta classe de mundos estruturados, aqueles
para 08 quais se tem como “directrizes” n vectores ortonormados de R", i.e., para os

quais as direccoes X1, -+ ,X, Satisfazem, para quaisquer i, j, XZTXj = 0;;, onde ;5 re-
presenta o delta de Kronecker e portanto a matriz X = [X1,-++ ,Xy] € uma matriz de
permutacdo, fazendo com que (2.29) se reduza a M = AP A M € SO(n), o que equivale
aMe SP*(n).

Assim, as classes de equivaléncia de orientacdes equiprojectivas, num mundo de
Manhattan n-dimensional, sio isomorfas ao grupo SPT(n) das matrizes de permutagao
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com sinal cujo determinante é positivo, tendo por isso %Q"n! elementos (se se alargar o
dominio da orientagdo para O(n), tem-se M € SP(n), onde SP(n) € o grupo das matrizes
de permutacdo com sinal, que contém SPT(n) como subgrupo, e tem 2"n! elementos).

Em R"™ a orientagcdo tem (n— 1)+ (n—2)+...+1=n(n—1)/2 graus de liberdade.
Assumindo que o mecanismo consegue obter cada uma das estimativas dos pontos de fuga
{V1,...,Vn} independentemente, é possivel obter estimativas de cada linha da matriz de
orientacdo ao mesmo tempo que se estima cada um dos pontos de fuga, através de um
procedimento recursivo com n — 1 passos: no primeiro passo, estima-se a localizacdo do
ponto de fuga Vi no espaco n-dimensional — isto permite obter o sub-espaco de dimensao
n — 1 que contém todos os outros pontos de fuga; no sequndo passo localiza-se Vo nesse
sub-espaco obtendo-se um sub-espaco de dimensdo n—2 que contém os restantes; e assim
por diante até ao dltimo passo onde se estima Vp,_1 € Vy, no espaco unidimensional. Em
cada um destes sub-espacos de dimensdao p € possivel obter regioes R, semelhantes a da
Proposicao 2.4 onde se garante a existéncia de um ponto de fuga Vy—_pi1.
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Capitulo 3

Estimacao sequencial da
orientacao

3.1 Critério de estimagao

Para estimar a sequéncia de orientagdes da camara, {01, ...,0x}, a partir da sequéncia
de imagens observadas, {Ii,...,Ix}, propoe-se uma abordagem probabilistica de es-
timacao sequencial, fazendo uso dos modelos de mundo de Manhattan (ver Seccao 2.1)
e de pequenas rotagoes (ver Secgao 2.5).

Como vimos atras, o modelo de mundo de Manhattan assume que os contornos pre-
sentes na imagem I estdo, na sua maioria, “alinhados” com os eixos de Manhattan
x, y e z. Ora, é sabido que o gradiente de intensidade ¢ uma medida da magnitude e
direccao destes contornos, facto que é utilizado em numerosas técnicas de processamento
de imagem. Por conseguinte, pode considerar-se que a estatistica do gradiente de inten-
sidade de cada imagem, VI, transporta informacao sobre a correspondente orientagao
da camara através de uma funcao de verosimilhanca P(VI|0;) (como apontado em
[9, 10]). Neste trabalho, esta consideragao ¢ tida em conta e adaptada a um modelo de
estimacao sequencial, utilizando-se um critério de mazimum a posteriori (MAP) onde a
estimativa da orientagao para cada instante k é dada por

ﬁk = argmax{P(Ok]VIk,ak,l,...,61)}: (3.1)
i
P(Ok‘|6k—17"'761)
- P(VI;|0 - 3.2
- argr%ax{P(VIk]Ok)P(Dk@k_l,...,61)}, (3.3)
k

onde de (3.1) para (3.2) se assume que cada VIj depende apenas da orientagao Oy nesse
mesmo instante, e nao de toda a “historia” anterior. Uma estimagao sequencial comple-
tamente bayesiana requeriria métodos Monte Carlo computacionalmente muito pesados
(veja-se [16], [17]). Como alternativa, considera-se este processo como um modelo de
Markov oculto (HMM!) que percorre estados {0} emitindo sfmbolos {I.}, e em que
cada estado s6 depende do estado anterior, i.e., P(0|0p_1,...,01) = P(0k|0s_1). De
acordo com esta formalizacao, e aplicando logaritmos a (3.3), vem entao:

0, = arg o {1og P(VI4|04) + log P(Ok|ﬁk_1)} (3.4)
k

Do inglés hidden Markov model.
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Analisando (3.4), pode encarar-se a probabilidade a priori P(Ok\ak,l) como uma forma
de penalizar grandes variacoes entre estimagcoes consecutivas da orientacao. Experimen-
talmente verifica-se que este critério simplificado conduz a bons resultados e, explorando
as potencialidades da “equiprojectividade” e do modelo de pequenas rotagoes introduzi-
dos atras, pode ser implementado com vista a funcionar em tempo real. Para a primeira
imagem da sequéncia, k = 1, utiliza-se

0, = argnéax {log P(VI1]01)}, (3.5)
1

que se obtém de (3.4) suprimindo o segundo termo, por se considerar, na auséncia de
estimativas anteriores, que todas as orientacdes sao equiprovaveis.

3.2 Funcao de verosimilhanca

Nesta seccao, para simplificar a notagao, omite-se o indice temporal k e deriva-se a funcao
de verosimilhanga P(VI|0) para uma imagem genérica. O método utilizado para obter
a fungao de verosimilhanca é inspirado em [9, 10]; segue-se uma breve descricao.

3.2.1 Gradiente de intensidade

Em todas as imagens considera-se apenas a informag&o monocromatica, i.e., a quanti-
dade total de luz presente em cada pizel. Existem muitos métodos para obter estimativas
do gradiente de intensidade (ver por exemplo [18, 19, 20, 21, 22] ou uma andlise compara-
tiva de vérios destes métodos em [23]). O que aqui se utiliza, pela sua simplicidade e rapi-
dez computacional, é o método da convolu¢do com mdscaras de Sobel. Dada uma imagem
I, elimina-se o ruido de alta frequéncia convoluindo-a com um filtro gaussiano — i.e., uma
méscara construida com a fungdo gaussiana, G(z,y) = 1/(2mo?) exp[—(2? + y?)/(202)]
— obtendo-se uma imagem suavizada Ig; de seguida, o gradiente VI = (VI,,VI,) é
estimado através das convolugoes VI, = I, x 8, e VI, = I xS, onde

-1 0 1
Se=| -2 0 2| es,=-57
-1 0 1

sao as mascaras de Sobel.
Por razoes de desempenho computacional, sao rejeitados todos os pizels cuja in-
formacao se considera inutil; tais sao:

e Os pizels préximos de contornos mas para os quais existem vizinhos cujo gradiente
é, em modulo, superior. Este critério de rejeicao é também utilizado no algoritmo
de deteccao de contornos de Canny (ver [20]) com o intuito de obter contornos
com a espessura média de 1 pixel. Designa-se na literatura anglo-saxénica por
NON-Marima Supression.

e Os pizels cujo gradiente, em médulo, estd abaixo de um determinado limiar, o que
garante que nao pertencem a contornos; este critério designa-se por limiarizacao.

Nas experiéncias efectuadas, a aplicacao destes critérios de rejeicdo permitiu eliminar
cerca de 80% dos pizels da imagem.
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3.2.2 Classes de pizel

Cada pizel da imagem, u = [u,v, 1}T, que nao tenha sido rejeitado na etapa anterior,
pode ser associado a uma classe my € {1,2,3,4,5}. As classes sao definidas da seguinte
forma: as classes 1, 2 e 3 referem-se a pizels de contornos alinhados com um dos eixos
de Manhattan, x, y e z respectivamente. A classe 4 abrange os pizels que pertencem a
contornos nao alinhados com qualquer daqueles eixos. Finalmente, a classe 5 inclui os
pizels que nao pertencem a contornos. Estas classes distribuem-se com probabilidades a
priori { Py, (my)}, obtidas off-line através de um detector de contornos bindrio e fixando
heuristicamente P,,(1) = P,,(2) = P, (3) = 0,5 x Py, (4). A Figura 3.1 e a Tabela 3.1
ilustram cada uma das classes de pizel.

Figura 3.1: Classes de pizel para uma fotografia da Rua Augusta, na Baixa Pombalina,
em Lisboa.

’ My H Descrigao \ P (my) ‘
1 Pizel de um contorno alinhado com x 0,138
2 Pizel de um contorno alinhado com y 0,138
3 Pixel de um contorno alinhado com z 0,138
4 Pizel de um contorno nao alinhado com x, y ou z 0,276
5 Pizel nao pertencente a qualquer contorno 0,309

Tabela 3.1: Classes de pixel.

3.2.3 Funcoes de probabilidade da magnitude do gradiente

Seja E, = (Eyu,¢u) a representacao polar do gradiente da intensidade da imagem
VI no pirel u, onde E, = Q[(VIZ(u) + Vlz(u))lm] € {1,...,N} é a magnitude
do gradiente quantificada por uma funcdo Q com N niveis de quantificacdo, e ¢y =
arctan(VI,(u)/VI;(u)) é a direccao do gradiente. A magnitude e a direccao do gradi-
ente sao condicionalmente independentes, dada a classe do pixel. Naturalmente, a mag-
nitude do gradiente é também condicionalmente independente da orientagao da camara
e da localizacao do pixel. Logo,

P(Eu’mmo’u) = P(Eu’mu) P(¢u|mmovu)7 (36)

onde
Pon (Ey), se my#5

P(Eafmn) = { 1

off (Fu), se my =5, (3.7)

e Pon(Eu) e Pyg(Ey) sao as fungoes de probabilidade da magnitude do gradiente quan-
tificado, condicionadas ao evento de o pixel u pertencer (on) ou nao (off ) a um contorno,
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respectivamente. Estas probabilidades sao, também elas, obtidas através de um processo
de treino que decorre off-line, em que se utiliza um detector de contornos binario. Os
seus valores (para uma quantificagao logaritmica e N = 20) encontram-se representados
na Figura 3.2.

0.2

0.18
0.3
0.16
0.25 Pon (Eu) 0.14 Poff (Eu)
0.2 0.12
0.1
0.15 0.08
04 0.06
0.05
0.02
0 ﬁmr—ﬂﬂﬂﬂﬂﬂ 0 HHHH HHH
2 4 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Figura 3.2: Histogramas das fungoes Pon e Pyg. No caso de Pon, como seria de esperar,
a probabilidade de se ter valores elevados para a magnitude do gradiente em pizels de
contornos é muito maior do que a probabilidade de se ter valores reduzidos.

3.2.4 Funcgoes de probabilidade da direccao do gradiente

Sejam 6x(0,u), 6y(0,u) e 6,(0,u) as direc¢oes do gradiente idealmente observado no
pixel u se my = 1, 2 e 3, respectivamente. Estas direcgoes obtém-se directamente dos
pontos de fuga, dados em fungao de 0 por (2.14). A funcao de probabilidade da direcgao
do gradiente é

Pang (pu — 0x(0,u)) se my =1
_ } Pang(du—0y(0,u)) semy =2
P(¢u|mu; O; u) - Pang (qu GZ(D )) se mu — 3 (38)
U (¢u) se my € {4,5},
onde U () é a funcao densidade de probabilidade uniforme em | — 7, 5] e Pypg é mode-

lizada como uma funcao “caixa”, i.e.,

[ 1—-e¢)/@27) sete[-T,7]
Pang(t)_{ ¢/(m — 27) sete€]—m/2,—7[U]r,7/2].

Nas experiéncias efectuadas, estes parametros foram afinados para e = 0.1 e 7 = 4° (ver
Figura 3.3).
3.2.5 Funcao de verosimilhanga

Finalmente, a verosimilhanga conjunta é obtida de (3.6) marginalizando (i.e., somando)
sobre todos os possiveis modelos em cada pixel e assumindo independéncia entre pizels
diferentes:

PIVII0) = (B 10) = T[ 3 P(Fabma) Pléalma,0w) Plma). (39

u my=1
Aplicando logaritmos,
5
log P(VI|0) = Zlog{ > P(Eu|my) P(¢ulmu,0, ) P(mu)}. (3.10)
mu=1
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Figura 3.3: Gréfico da funcao Fy,4, a densidade de probabilidade de erro na estimacao
da direccao do contorno a partir da direc¢ao do gradiente. Naturalmente a densidade é
maior para erros pequenos. Por simplicidade e vantagem computacional, ¢ modelizada
como uma “caixa”’, onde 7 controla a precisao da estimativa e € é a probabilidade de se
cometer um erro superior a 7.

3.3 Procedimento de localizacao das estimativas

Como se descreveu atras, a maximizacao expressa em (3.4) permite estimar a orientagao
da camara para cada imagem da sequéncia de video. O segundo termo desta expressao,
log P(Oklak_l), pode ser descrito através de uma funcado definida a priori; o primeiro
termo é a fungao de verosimilhanga descrita em (3.10). Esta maximizagao é um problema
de optimizacao tridimensional em ordem a «, (3 e 7y, que pode ser resolvida por um algo-
ritmo de procura exaustiva nos intervalos de variacao destes angulos, com complexidade
O(N?), onde N descreve a frequéncia de amostragem daqueles intervalos.

Neste trabalho, propoe-se uma solugao aproximada que separa o problema em dois
passos mais simples: uma optimizacao bidimensional em ordem a ( e 7, seguida por
uma procura unidimensional em ordem a «. A complexidade do algoritmo de procura
exaustiva correspondente a estas duas optimizagoes sucessivas ¢ O(N? + N) = O(N?).
Esta aproximacao advém do facto de o ponto de fuga v, ser independente do dngulo de
compasso «, como é claro de (2.12).

3.3.1 1.° passo: Estimacao de [ e v

Dada a k-ésima imagem Iy, com k > 1, procede-se, como primeiro passo, a estimagao
de B e v, de acordo com

(Br.3) = argmax {log P(VI4]5,7) +log P(61|Bsor T} (3.11)

onde a verosimilhanca log P(VI|3,~v) é uma versao de (3.10) que apenas modeliza a
informacao de direccao dos contornos que sao consistentes com o eixo z. Mais especifi-
camente, em vez de (3.8), utiliza-se aqui

Pa”g (¢U - 0Z(5>’77u)) S€ My = 3

Plulma, §,7,1) = { U (¢u) se my € {1,2,4,5}. (3.12)

Note-se que a utilizacao de uma distribuicao uniforme é apenas uma forma de ignorar a
informacao de direccao do gradiente vinda de todos os pizels excepto daqueles que estao
associados com o eixo z (i.e., com classe m, = 3) durante a estimagao de [ e x; tal
nao significa que aquelas direcgoes sejam de facto uniformemente distribuidas.

O segundo termo de (3.11) faz intervir P(53,v|8k—1,Vk—1), uma fungao densidade
de probabilidade (f.d.p.) em duas varidveis que se modeliza como sendo gaussiana e
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“truncada” na regiao de interesse, i.e.:

R A (313)

c.c.
onde:
o G(#,7) é a f.d.p. gaussiana em duas varidveis com valores médios (pg, py) =

(Bk—1,7k—1) € variancias (O‘%, 03);

o Ig=] Bk_l—g , Bk—l +£] é o intervalo de variagao do angulo de elevagao nas condigoes
do modelo de pequenas rotagoes (), expresso em (2.18);

o I, :]:Y\k—l—gf(ak—l)a Vk—1+8¢ (Bk_l)] é o intervalo de variagao do angulo de tor¢ao
nas mesmas condigdes, expresso em (2.21);

e )\ é determinado de modo a ter-se fI,@xIW P(B,7|Be-1,7k_1)dBdy = 1.

A funcao (3.13) é definida a priori e formaliza o modelo de pequenas rotagoes, bem

como a suavidade na variacdo de S e vx. As variancias 0%3 e 03 afinam o compromisso

entre a suavidade da sequéncia estimada de angulos e a precisao dessas estimativas.

Na primeira imagem da sequéncia, k = 1, define-se a priori P(f3,7) como uniforme
(i.e., constante) no dominio dado por (2.16), Ig x I, = |—45°,45°] x |—54.7°,54.7°], pelo
que em vez de (3.11) usa-se:

(31,’7\1) = argI%%XlogP(VIﬂﬂ,fy). (3.14)

3.3.2 2.° passo: Estimacao de «

Dadas as estimativas Bk e Yk, pode estimar-se o angulo de compasso oy, utilizando

Qp = arg m;ix {log P(VIk‘Oz, Ok, ;y\k) + log P(a\&k,l, Or—1, ﬁk)} , (3.15)
onde a verosimilhanga log P(VI|a, B, k) é dada directamente por (3.10) e a funcao a
priori P(o|ak_1, Br—1,0k) é também uma f.d.p. gaussiana “truncada”:

AG(a), seae€l,
0 c.c.

P(o|@g—1, Br-1, Br) = { , (3.16)

onde:
e G(a) é a f.d.p. gaussiana com valor médio i, = Qy_1 e variancia o2;

o I, :}ak,l—ag(ﬁk, Bk,l), ak,1+a§(§k, kal)] é o intervalo de variacao do dngulo de
compasso nas condigoes do modelo de pequenas rotagoes (&), expresso em (2.19);

e )\ é determinado de modo a ter-se fl(x P(alag-1, kah Ek)da =1.

Também aqui a varidncia o2 afina o compromisso entre a suavidade da sequéncia esti-
mada de angulos e a precisao dessas estimativas.

Para a primeira imagem, k = 1, define-se P(«) como uniforme em todo o dominio
dado por (2.16), I, = |—45°,45°], usando-se portanto em vez de (3.15)

ap = argmaxlogP(VIlla,glﬁl). (3.17)
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3.3.3 Localizacao das estimativas

Com base nas consideracoes estabelecidas acima, o algoritmo de estimacao da orientagao
pode ser formalizado como se segue.

Algoritmo 3.1 Objectivo: Dada uma sequéncia de imagens {I1, ..., In} de um
mundo de Manhattan, estimar a correspondente sequéncia de orientacoes da camara,

{01, ce, ON}
e Para cada tmagem 1 da sequéncia de video:

1. Calcula-se o gradiente V1y;

2. Através de non maxima supression e limiariza¢do, selecciona-se os pixels {u}
que contém informagao relevante, obtendo-se {Ey} = {(Eu, ¢u)};

3. FEstima-se Bk e Yk pelo método de procura exaustiva. Se k = 1, usa-se (3.14)
com o espaco de procura Ig x I, = |—45°,45°] x |=54.7°,54.7°], gracas a
(2.16); se k > 1, usa-se (3.11) e o espago de procura tem em conta as
estimativas anteriores, sendo para um modelo de pequenas rotagoes w(5°):
Ig x Iy =|Br—1—5° Pr—1+5°|x|7k—1 — 7.08°, 7% _1 + 7.08°], conforme (2.25).

4. Estima-se oy pelo método de procura exaustiva. Se k =1, usa-se (3.17) com
o espaco de procura I, = ]—45°,45°]; se k > 1, usa-se (3.15) e o espago de
procura tem em conta as estimativas anteriores, sendo para o mesmo modelo
w(5°%): I, =]ag_1 — 7.08°, a1 + 7.08°].

5. Obtém-se a classe de equivaléncia 5(6k) das orientacdes equiprojectivas com
0y = 0(Qk, Bk, k), recorrendo a Proposi¢do 2.3. Escolhe-se em 5(6k) uma
orientagdo 0, € R, cuja existéncia € garantida por (2.16). Faz-se 6k = 0.
Como foi dito mo dltimo pardgrafo da Seccao 2.5, isto permite manter pe-
quenos espagos de procura na prorima iteracao dos passos 3 e 4.

o Como passo final, parte-se da sequéncia obtida, {61, e ,ﬁN} a que se associam
classes de equivaléncia {£(01),...,EON)} e selecciona-se em cada E(0y) uma ori-
entagao 0}, tal que a sequéncia {01, ...,00%} satisfaca, em cada instante k, o mo-
delo das pequenas rotacoes. Faz-se entao {61, . ,6]\/} :={0,...,04}.

3.4 Hipodtese nula e classificacao de contornos

Tal como referido em [9, 10], a estimagao da orientacao a partir de uma imagem permite
a postertori:

(i) Verificar a validade do modelo de mundo de Manhattan para a imagem dada,;

(ii) Classificar cada pizel da imagem de acordo com as classes {1,...,5} definidas na
Tabela 3.1.

Em (i), o objectivo é evitar estimativas erradas testando estatisticamente a hipétese do
mundo de Manhattan; este teste permite detectar quando uma imagem se afasta deste
modelo e, nessa eventualidade, abster-se de estimar a orientagao.

Neste trabalho, em que a estimacao é sequencial, esta verificagdo tem ainda a mais-
-valia de permitir detectar perdas de sincronismo no modelo de pequenas rotacoes, i.e.,
situacoes em que devido a estimacgao errada de vérias orientacoes consecutivas, a de-
pendéncia do modelo das estimativas anteriores coloca-o “a deriva”. Uma vez detec-
tadas, estas situagdes podem ser corrigidas forcando a estimacao seguinte a decorrer
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independentemente da estimativa anterior, i.e., como se fosse a primeira imagem de
uma nova sequéncia.

A verificagao da validade do modelo de mundo de Manhattan é feita construindo um
modelo de hipétese nula, o que é feito modificando (3.8) para P(¢y|mu,0,u) = U (¢y)
e calculando

4
Pnull({Eu}) = H [( Z Pm(mU)> + Pon(Eu) + P (5) - Poff(EU) U(du), (3.18)

u muy=1

o que significa deixar de distinguir diferentes tipos de contorno e deixar de assumir
que a estatistica da imagem reflecte qualquer tipo de estrutura tridimensional. A ve-
rosimilhanca do modelo de hipétese nula é comparada com a do modelo de mundo de
Manhattan, que é aproximada por

Panh({Eu}) = P({Eu} [0)P(0). (3.19)

onde 0 é a orientacdo estimada. Se log Pronh ({Eu}) — log Pyp({Eu}) < 0 para um
certo 0 > 0 escolhido como margem de confianga, decide-se que o modelo de mundo de
Manhattan nao é suficientemente verosimil e descarta-se 0.

Em (ii), o objectivo é classificar a posteriori os pizels da imagem com os valores
1,...,5, o que é feito tomando (3.6) e fazendo:

My = arg max P(Ey|my) P(¢u|mu, 0, u). (3.20)

A classificacao dos pizels pode ser levada a cabo com o objectivo de captar a geometria do
mundo de Manhattan: um procedimento possivel é agrupar os pizels classificados como
1, 2 e 3 em linhas com a direccao dos eixos de Manhattan e computar as intersecgoes
destas linhas, permitindo a sua reconstrucao 3D por trocos a menos de escalamentos.
Apesar de este procedimento poder ser efectuado utilizando apenas uma imagem, o
uso de uma sequéncia de video permite refinar a reconstrucao das linhas através, por
exemplo, de restrigoes de proximidade baseadas no modelo de pequenas rotagoes. Pode
ainda estabelecer-se correspondéncias com estas linhas entre as varias imagens, a fim de
estimar a translagao da caAmara e combinar com a orientagao ja estimada para obter a
pose completa (posi¢do e orientagdo) a menos de um escalamento. Por outro lado, os
pizels que forem classificados com m, = 4 pertencem a contornos nao consistentes com
os eixos de Manhattan; estes podem ser utilizados para detectar objectos nao alinhados
com esta estrutura (e.g., pessoas num ambiente urbano), o que tem especial interesse
em aplicacoes envolvendo reconhecimento de padroes.

3.5 Experiéncias e Resultados

A fim de avaliar a qualidade do método proposto, aplicou-se o Algoritmo 3.1 a um
conjunto de sequéncias de video adquiridas na Baixa Pombalina com uma camara vulgar,
em movimento livre e sem nenhum cuidado especial para evitar vibracoes e outros efeitos
indesejaveis. As sequéncias de video utilizadas apresentam uma resolucao baixa (cada
imagem tem 288 x 360 pizels) e uma grande compressao (formato MPEG-4). Apesar
da pouca qualidade das sequéncias, algumas contendo imagens sub- ou sobre-expostas
devido a fortes contrastes luz/sombra, e a distorgao radial que afasta a cAmara do modelo
da “camara escura’, concluiu-se que o Algoritmo 3.1 é capaz de estimar correctamente
a orientacao da camara, de que é exemplo a Figura 3.4.
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Figura 3.4: Estimativas da orientacao da camara para uma sequéncia na Rua da Prata,
em Lisboa. Os cubos sobrepostos nas imagens representam a orientacao estimada para
os eixos de Manhattan. Representa-se a estimativa na primeira imagem da sequéncia
(k = 1) e para imagens seguintes, em intervalos regulares.

As imagens das Figuras 3.5 e 3.6 provém de duas outras sequéncias. Note-se que
em ambos 0s casos a orientacdo é correctamente estimada, mesmo na presenca de
muitos contornos nao alinhados com os eixos de Manhattan (por exemplo, as pessoas
na Figura 3.6). Os graficos em cada uma destas figuras representam as estimativas dos
angulos que parametrizam a orientagao (i.e., os angulos de compasso, elevagao e tor¢ao)
para as duas sequéncias. Observando o gréafico, pode ver-se que as estimativas para a
sequéncia da Figura 3.6 sao um pouco mais ruidosas que as da Figura 3.5, o que se deve
a qualidade inferior das imagens. A suavidade destas estimativas é controlada pelas
variancias postas em jogo nas f.d.p. (3.13) e (3.16), e que sao escolhidas a priori; nas
experiéncias realizadas, essas variancias sao iguais para os trés angulos e para ambas as
sequéncias. Naturalmente, existe um compromisso entre esta suavidade e a capacidade
de captar com precisao rotagdes mais bruscas da camara.
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Indice da imagem
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Figura 3.5: Esquerda: imagens 20, 30, 40 e 50 de outra sequéncia de video, no Teatro
D. Maria II, em Lisboa. Direita: grafico temporal com as estimativas dos angulos de
compasso, elevacao e torcao que parametrizam a orientagao da camara.
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Figura 3.6: Esquerda: imagens 110, 130, 150 e 170 de uma terceira sequéncia de video,
no Elevador de Santa Justa, em Lisboa. Direita: grafico temporal com as estimativas
dos angulos de compasso, elevacao e tor¢ao que parametrizam a orientagao da camara.

A Figura 3.7 ilustra ainda dois exemplos de classificagdo de contornos, segundo o
método descrito na Seccao 3.4; um para uma imagem interior e outro para uma imagem
exterior. Pode ver-se que a classificacdo é mais ruidosa no caso da imagem exterior, o
que é representativo das restantes experiéncias efectuadas.

O tempo de processamento tipico para cada imagem das sequéncias é menor que
1 segundo, tendo os testes sido efectuados num PC com processador Pentium IV a
3.0 GHz e a implementagao do algoritmo no programa MATLAB, sem utilizar c6digo
pré-compilado. Neste momento, o algoritmo esté a ser implementado em C/C++ com
o objectivo de ser utilizado em tempo real.

Figura 3.7: Exemplos de classificacao de contornos para uma imagem interior e outra
exterior. Representa-se respectivamente a vermelho, verde e azul pizels de contornos
alinhados com os eixos de Manhattan x, y e z. Esquerda: Sala de aula. Direita: Praga
da Figueira, Baixa Pombalina, Lisboa.
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Capitulo 4

Conclusao

Neste trabalho, propoe-se uma abordagem probabilistica para estimar a orientagao da
camara a partir de sequéncias de video em cendrios urbanos. A abordagem utilizada
tira partido da existéncia de “regularidades” nos contornos da imagem, o que é expresso
através do modelo de mundo de Manhattan. O método proposto evita os passos in-
termédios tradicionalmente empregues, como a detecgao e correspondéncia automatica
de padroes (cantos ou linhas de contorno), que por serem pouco robustos e computa-
cionalmente pesados limitam o seu uso em aplicagoes praticas.

Os resultados experimentais demonstram que este método é capaz de lidar correc-
tamente com sequéncias de video de baixa qualidade e baixa resolucao, ainda que o
ambiente em causa se afaste razoavelmente do modelo de mundo de Manhattan, devido
a presencga de muitos contornos “espurios”. O algoritmo que aqui se introduz reduz a
complexidade do problema e possibilita obter tempos de processamento que viabilizam
0 seu uso num sistema que funcione em tempo real.

As consideragoes tedricas introduzidas neste trabalho mostram como se pode tirar
partido das classes de equivaléncia de orientagoes equiprojectivas para reduzir o dominio
de procura da solucao. Generaliza-se este conceito para uma classe genérica de mundos
estruturados, n-dimensionais, de que o modelo de mundo de Manhattan tridimensional é
um caso particular. Mostra-se como o mesmo conceito pode ser util ao desenvolvimento
de algoritmos de estimagao em que existe conhecimento a priori da estrutura dos dados,
independentemente da dimensao do espago e do ambito do problema, nao se exigindo
que este esteja relacionado com Visao por Computador.

Desenvolvimentos futuros incluem:

e optimizagao do algoritmo com vista a implementacao pratica de um sistema pro-
tétipo de estimacg@o da orientagdo 3D em tempo real (trabalho corrente);

e desenvolvimento de métodos para estimar adicionalmente a posi¢ao 3D da camara
(dada a sua orientagao) no sentido de obter uma calibracao completa e permitir
reconstruir a trajectoria e efectuar uma reconstrugao 3D do mundo;

e investigacao do problema de detectar automaticamente a “estrutura” do mundo,
nos casos em que nao existe conhecimento prévio desta estrutura;

e avaliacao da possibilidade de estender o método a problemas provindos de outras
areas, nomeadamente em Aprendizagem, Regressdo e Classificacdo Automaética,
com possiveis aplicacoes em Inteligéncia Artificial, Bioinformética e Processamento
de Lingua Natural.
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