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Orientation in Manhattan: Equiprojective Classes
and Sequential Estimation
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Abstract— The problem of inferring 3D orientation of a cam-  brightness pattern remains (approximately) constant from view
era from video sequences has been mostly addressed by firstig view.

computing correspondences of image features. This intermediate Recently, a very different approach has been proposed
step is now seen as the main bottleneck of those approaches. InWhi h av i;j dealing with features in the single-im
this paper, we propose a new 3D orientation estimation method ch avoids dealing eatures € singie-Image case,

for urban (indoor and outdoor) environments, which avoids by using prior knowledge about the structure of the scene.
correspondences between frames. The scene property exploitedSpecifically, in typical indoor and outdoor urban scenes, many
by our method is that many edges are oriented along three edges are aligned with one of the three directions defining an
orthogonal dlrectlons_; this is the recently introduced Manhattan orthogonal coordinate system. Under this so-caltzhhattan
Wogge(%vg)naszﬁ?r}gﬂggﬁs of this paper are: the definition of world (_MW_) assumption, CQUQhIan and Yu.i”e [10], [11] used
equivalence classes of equiprojective orientations; the introduc- Bayesian inference to estimate the rotational component of
tion of a new small rotationmodel, formalizing the fact that the the 3D posei(e., 3D orientation) of the camera, with respect
camera moves sm_oothly; and the decoupling of elevation a_md to this coordinate system, from a single image. The MW
twist %”%',‘l% estimation f,rolm that of the compass anglre]. c\iNebbu”g assumption was also used by [12] for camera calibration and
a probabilistic sequential orientation estimation method, base -

on an MW likelihood model, with the above listed contributions exltﬁrll‘ij]?sdpt;};)([a]ﬁ\]/v? pn:g[;?)s%eger::\llvurtr?;?loedmlfgf2rl;]?)r;it;’ltation

allowing a drastic reduction of the search space for each S ' A )
orientation estimate. We demonstrate the performance of our €stimation from image sequences in MW environments. The

method using real video sequences. novelties in our method are the following:
Index Terms—Camera orientation, sequential estimation, . Wh"e_in [1911 [11]: th_e MW pri_or iS_ used to perform
Manhattan world assumption, camera calibration. 3D orientation estimation from singleimage, we extend

its use forsequencesf images;

o we introduce a newsmall rotation (SR) model that
|. INTRODUCTION expresses the fact that the video camera undergoes a
smooth 3D motion;
by defining the 3D orientation in terms of the equivalence
classes of equiprojective orientations, we reduce the space
in which the solution has to be searched;
we show how the estimate of the elevation and twist
angles can be computed independently of the compass
angle, thus reducing the computational load.

Applications in areas such as digital video, virtual reality,
mobile robotics, and visual aids for blind people, require *
efficient methods to estimate the 3D pose of a video camera
from the images it captures.

The most popular approaches to 3D pose estimation are
feature-based. In the multi-view case, this requires finding
correspondences between features [2], [3], [4]. In the single-_l_he aper is oraanized as follows. In Section 1. we re-
image case, typical methods involve feature grouping [5], [6\ll pap 9 ' ’

[7]. Naturally, in both cases, feature detectiang( corners, ew the geometry of camera orientation. The concept of

edges) is an indispensable first step. However, it is wideRuiProjective orientations and the small rotation (SR) quel
re introduced in Section Il and IV, respectively. Section

accepted that automatic feature matching or grouping are X . L .
serious bottlenecks. Moreover, by basing all inference 3{1descr|bes the sequential estimation method. Experimental

a usually small feature set (relative to the whole imagegisuns a:e shown in Section VI and Section VII concludes
potentially useful information may be prematurely discarde 1€ paper.
In the multi-view case, methods that estimate the 3D struc- II. CAMERA ORIENTATION AND VANISHING POINTS

ture directly from the image intensity valuese., without !et (x,y,7) and (n,h,v) be the Cartesian coordinate

tems of the MW and the camera, respectively. These are
lated through the equatiom,h,v)T = O - (x,y,z)7,
hereO € SO(3) is the orientation matrixi.e., the camera

_ _ orientation In the following text, we often denote orientation
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Lisboa, Portugal. P. Aguiar is also with the Institute for Systems and Robotitsith three anglese, thecompasgazimuth) angle, correspond-
M. Figueiredo is also with the Institute for Telecommunications. Email aqng to rotation about the axis; 3, the elevationangle above
dressesaftm@mega.ist.utl.pt, aguiar@isr.ist.utl.pt, an h | . h S t; h incinal .
mf@lx.itpt . the xy plane; andy, the twist about the principal axis (see

An early version of this work has appeared in [1]. Fig. 1).

involving feature detection and matching, have been propo
[8], [9]. These approaches lead to complex time—consumi?
algorithms and strongly rely on the assumption that tIW
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Equiprojectivity, as just defined, is reflexive, symmetric, and
transitive; therefore, it is an equivalence relation. The follow-
ing result provides a way to find the complete equivalence

Vo v \Y class of a given orientatiori,e., the set of all orientations
which are equiprojective with it.

Proposition 2: Let O be an orientation andP =
(P, Py, P,)T the corresponding principal point. The equiv-
alence class of0 always has24 elements. EaclO(® =
O(am, Bn,yn), for n = 1,...,24, corresponds to a principal
point P(") related toP throughP (™ = M, P, whereM,, is a

Fig. 1. Parameterization of the camera orientation. Left: compass angle3 X 3 Signed permutation matrix (i.e., entries{a-1,0, 1}, with
and elevation angl@. Right: twist angley represented on the image plane.One nonzero entry per row and per column) witkt M,, = 1.

image plane

(Note: the image plane is placed in front of the optical center.) The anglesQn and 3, are obtainable fromP (™) according
to (1); the twist anglesy,, depend orO(«, 3,~) and P as
follows:

The principal pointP lies on the sphere with center at the v =Mpz=(0,0,1)" (P=P.)
optical center0 (chosen as the origin of the MW reference yET <=Mpz=(0,0,-1)7 (P! =-P.)
frame) and radius equal to the focal lengthlts 3D coordi- _Jyratariiig £ <= Myz = (1,0,0)7 (P =P,)
nates are related with the compass and elevation angles vid' ~ v+ atang?r%g =MLz =(-1,0,00 (PZ("):—P,T)

_ _ o y—atartts £« Miz=(0,1,07 (P"=P)

P=(P,,P,P.,)" = f(cosacosf,sinacosf,sinfF)". v atar% eMIz=(0,-1,07 (P =—P,).

1)
The orientatiorO(«, 3,v) can be determined by finding where  proof: Given an orientatior®, the corresponding image
the vanishing points (VPs) of the MW axes project on thgiane can be seen as the plane that is tangent to the sphere
image plane [2], [3]. In fact, leth, v) be the reference frame (, . ||w|| = f} in P. The intersection of each MW axis
of this plane and let the 2D principal poipt be its origin, x v andz with the image plane defines its respective VP.
e, p = (0,0)”. Assuming a pinhole and radial-distortion-freq{ence, a necessary condition for an orientatidft) to be
camera, the 2D coordinates,, vy, vz, of the VP projections equiprojective withO is that their corresponding principal

are related withO(«, 3,v) via points (respectivelyP(™ and P) have the same coordinates
T up to permutations and/or sign changes, which is equivalent
vx = fR, (— g, —tan ﬁ) ; to the existence of a signed permutation makiy satisfying

T P = M,P. Any permutation matrix satisfiedet M,, =
, (2) =+1; however, not all matrices of this kind yield a solution.
Particularly, ifP andP (") differ by a single permutation or by

vy = fR, (25 —tanp)

v, = [R,(0,cotB), a single sign change, the triangles formed by the VPs at each
case have opposite orientations,, they are “reflected”. Since
whereR,, is thetwist matrix the composition of two reflections is the identity, the number
of permutations plus the number of sign changes defined by
R, = { cos 7y sin 7y } _ (3) avy matrix M,, must beeven this is equivalent to imposing
—si7y cos7y det M,, = 1. Because the number of possible permutations

In the above, Cartesian coordinates are used only for si
plicity; vanishing points at infinity can be handled by usin
homogeneous coordinates.

= 8, we can combine permutations and sign changes in
8 different ways; since half of these correspond to “mirror
images”, the cardinality of the séM,, } is 24 (see illustration
in Fig. 2).
I1l. EQUIPROJECTIVEORIENTATIONS For eachM,,, we are able to know which VP i (O)

Consider the problem of determining the camera orientati cr?rresponds to which VI(D,LI)W(O ) Namel%/, for‘ every,,_j <
correspond ifff* M,,i = +1, i.e,

from the set of three VPs on a single image. Since it is not’ ¥ %} the())/Pvi andv;
known which VP corresponds to which MW axis, the problerif Fi = +P; . Takingj = z, we have:

guga 3-vector is3! = 6, and the number of sign changes is

has multiple solutions. This ambiguity motivates the concept S (n)
Alvepvi] 7 < 2zIM,i=-1 (P,=-P).
Definition 1 (equiprojective orientations)Denote by Finally, from (2)-(3), we obtain (2). ]
V(0) = {vx,vy,v,} the set of VPs determined by an The concept of equiprojectivity is useful in any problem of

orientation O. Two orientationsO and O* are termed orientation estimation, or VP location, since it allows reducing
equiprojectiveiff they have identical sets of VPs, i.e., ifthe search spaces. This was also pointed out in [12], where an
V(0) = V(0*). algorithm was proposed to round a quaternion to a canonical
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consistent with the SR model iff there exists a small fixed
angle¢ such that|pg| < ¢ for any k.

In our experiments, we have used a SR(model, which
implies that for a sampling rate dR.5 Hz the rotation angle
is always less thafi2.5° in each second; this is an intuitively
reasonable assumption.

The following proposition expresses how the variations of
the compass, elevation and twist angles between consecutive
frames are bounded due to the SR model.

X X
y y
Fig. 2. 3D locations of the principal points of equiprojective orientations, on Proposition 5: If the camera motion is consistent with the

the octants of a sphere with radiyis Here, we have two equivalence classesSR€) model, then, at any framk, the following bounds hold:
the white and the black points. Black points correspond to “mirror images « The elevation variationAS = B, — 31,1, satisfies

of white points.
|AB| < €. (5)
o The compass variatiom\a = oy — ay_1, satisfies

value inSO(3)/C, whereC'is the octohedral group of cube
symmetries. We formalize this search space reduction in the  |Aa| < ag(Bk, Br—1) =
following proposition (proved in the Appendix). {acos(l— .?Sf;'ﬂlii’%i) — |Ber B < T—¢ ©

Proposition 3: Every orientationO has an equiprojective 2 <« otherwise.
0* = O(a*, 3*,~*) such that: If Or_1 is in the region defined by4), then, indepen-

. T T . dently of 3, and By_1:
:| ’ /6 €i|_271:| ’ and Y 6}—(,0,(,0], (4)
|Aa| < acog2cosé —1). @)

™ T
4’ 4
where p = atan/2 ~ 54.7°. An equivalent statement is: for

any camera orientatior®, there exists at least one VP inside
the region of the image plane shown in Fig. 3. |AY] < g¢(Br_1), (8)

a*e}—

o The twist variation, Ay = v — v,_1, satisfies

whereg, is an even function that increases in the subdo-
main [0, 5] from g¢(0) = £ to g¢(5) = 7. If Op_1 is in
©=54.7° the region defined b{4), then|s, 1| < 7 and

L. 291 < g¢(5) ©)

Fig. 4 plots g¢ in the subdomairjo, §], for £ = 5°; this
value of¢ leads to|Ay| < 7.08°.

film

75

Fig. 3. Representation of the image plane. It is guaranteed that there exists
at least one vanishing point in the shaded region. .

Maximum gamma variation for &=5°

G:(By_4) = max Ay []]
IV. SMALL ROTATIONS MODEL

Let us now assume that the camera is moving and ac- 5.5
quiring a sequence of framef,...,Iy}. We denote by |
Oy (ak, Bk, v ) the orientation at thé-th frame. The sequence Be_ 4L
of orientations{Oy,...,Onx} depends only on the rotational A 5 20 25 3 3 4 4
component of the motion. In typical video sequences, the
camera orientation evolves in a smooth continuous way. Wg. 4. Maximum variation for the twist angle as function of the initial
formalize this property by introducing treenall rotations(SR) ~ &'évation angle, using a S&() model.
model, next described.

Proof: Ry (pk,ex) is the composition of two rotations:
Definition 4: Let Ry(px,er) be the rotational component Ry, (px,, ek, ) transforming the principal poinPy_; in Py,
of the camera motion between tfle—1)-th and k-th frames, followed by Ry, (o, , ex,) that twists the camera through the
where p;, and e, denote the angle and the axis of rotationprincipal axis. Composing these two rotations, and taking into

respectively. Independently ef,, we say that the camera isaccount thatey, Ley,, we obtaincos &+ = cos % cos %.
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Therefore, the SR} condition |px|] < ¢ implies both
cos 2 > cosg and cos 22 > cos%, ie, |pr,| < ¢ and

|pk,| < €. Sincecos py, = 2P} Py_1, from (1) we obtain
€OS Pk, = €08 B cos Br—1 cos Aa+sin f sin Br_1 < cos AS.

This suffices to prove (5). Now, rewriting the latest inequality

2005 (ACCEPTED) 4

be implemented in near real time. An alternative scheme was
proposed in [13], in whichO,, is estimated via an iterative
(EM) algorithm initialized withOy,_;.

for cos Aa and simplifying leads to (6). 110, is in the B. Likelihood Function

region defined by (4), thefBy, + Br41| < w/4+ /44 ¢ <
7 —¢&. The maximum value oA« occurs forB, = 3y —1 = 7,
which leads to (7).

For A~, we couldn't find an simple closed-form expressio

for ge(Bkx—1). Instead, sincey, is a function of3;_1, Bk, Aa
and Ay, we can studyge assuming thaty,_1 = y,—1 =

Spherical symmetry implies that is an even function; also,

a simple geometric argument shows that3,_1) increases

with |Bk_1|. Writing Ry as a composition of the three indi-
vidual compass, elevation and twist rotations, and using the

formula for the product of quaternions, yields

AB B2+ (C?—
|Av| = 2 acos B 1 (2 , (20)
where A = cosfr, B = cos Aa g Azﬁ and C =

5 Numerical maxi-
mlzatlon of (10) w.rt.A«a and gy (for pr = &) approximates
Ye- u

sin M (cos A8 gin B — cos B sin A3 ).

If the orientationOj_; lies in the minimal region defined
by (4), the search space fax, is significantly reduced by the

bounds imposed by Proposition 5. In particular, with= 5°,
we havelAa| < 7.08°, |AS] < 5° and|Avy| < 7.08°. If Ok—4

does not lie in this minimal region, there is an equiprojective
orientation that does. This shows how the SR model and the
equiprojective orientations can be used together to reduce the

search space.

V. SEQUENTIAL ORIENTATION ESTIMATION
A. Estimation Criterion

To estimate the sequence of camera orientations
sequence
{I,...,In}, we adopt a probabilistic sequential estimation

{O4,...,0n} from the observed image

framework, making use of the MW and SR assumptions.

The MW assumption states that the images contain many
edges consistent with the y andz axes; hence, the statistics

of the image intensity gradienVI, of each image carry
information about the corresponding camera orientatipn
via a likelihood functionP (V1 |Oy) [10], [11]. In this paper,

we embed this idea in a sequential estimation framework,

using amaximum a posteriorfMAP) criterion:

~

O = arg max {log P(VIg|Og) + log P(Ok|6k,1)} , (11)
k

where the priorP(Ok|(A);€_1) penalizes large changes between

consecutive orientation estimates.

A fully Bayesian sequential estimation approach would
require computationally expensive Monte Carlo methods [14],
[15]. Our results show that the simplified criterion in (11) leads
to good results and, by exploiting the equiprojectivity results
and the SR assumption introduced in the previous section, can

In this subsection, to simplify the notation, we will omit the
time indexk, and derive the likelihood functiof(VI|O) for
a generic image. LeE,, = (Ey, ¢4) denote the element of
the image gradien¥1 at pixel u, where E,, is the gradient
magnitude and,, the gradient direction. As in [10], [11], the
likelihood function is derived as follows:

« Each pixelu has a class labeh, € {1,2, 3,4, 5}. Pixels

in classes 1, 2, 3 belong to edges consistent withxthe

y, z axes, respectively. Pixels in class 4 are on edges not
consistent with those axes. Non-edge pixels are in class
5. These classes have prior probabilitieB(m,)} (we
adopt the values used in [10], [11]).

The gradient magnitude and direction are conditionally
independent, given the class label. Naturally, the gradi-
ent magnitude is also conditionally independent of the
camera orientation and of the pixel location. Thus,

P(Ey|my, O,u) = P(Ey|my) P(¢u|mu, O,u), (12)

where

_ Pon (Eu) 5 If mMu # 5
P = { R el @
and Pon(Eyw) and Pof (Ey, ) are the probability mass func-
tions of the quantized gradient magnitudenditionedon
whether pixelu is on or off an edge, respectively. These
probabilities are learned off-line.

Let 6x(O,u), 64(O,u), 6,(0O,u) be the gradient di-
rections that would be ideally observed at locatian
if my = 1,2,3, respectively. The gradient direction
probability function is
ng(¢u 9,((0 u)) = my=1
_ ) Bang(@u—0y(0,1)) <= my=2
P(¢u|mu70>u)— (mg(d)u GZ(O u)) = my=3
U((bu) <~ mu:47 9,
(14)
where
L=<  <te|-1,7]
_ 27 ?
Fang(8) = { cte]-n/2, U/,

and U(-) is the uniform pdf on—Z, Z]. In our experi-
ments, we use = 0.1, andT = 4°.

Finally, the joint likelihood is obtained by marginalizing
(summing) over all possible models at each pixel, and
assuming independence among different pixels:

(VI\O) P({Ey}|0) =
11 ZP(Eu|mu P(¢u|mu, O,u) P(my). (15)
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C. Locating the Estimates

The maximization in (11), with the likelihood function
(15), is a 3-dimensional optimization problem with respect
to «, 3, and~y. We propose an approximate solution which
decouples the problem into two simpler steps: a 2-dimensional
optimization w.r.t.5 and ~, followed by a one-dimensional
search w.r.ta. This approximation is supported on the fact
that the vanishing point, does not depend on the compass
anglea, as is clear from (2).

In the first step, we estimatgand-y, for framek, according

to
(Bedk) = argmax{log P({Eu}, 18,7) +
Byy
log P(3,71Bx1,7k-1) } » (16) ol
where the likelihoodP({E.}, |8,v) is a version of (15) !
which only models direction information of those edges con- iﬁfo
sistent with thez axis. More specifically, instead of (14), we é’o ‘
use here
P(¢u|mu, B,v,u) = -0 '
Puglbu— 0B €ma=3 oo R PCE
U (pu) “=my =1,2,4,5.

Fig. 6. Top: frames 20, 30, 40, and 50 of another video sequence. Bottom:
Notice that the use of a uniform distribution is simply &amera angle estimates.

way of ignoring angle information from all pixels but those

corresponding to the axis (n, = 3), when estimatings;, and

~i; it doesn’t mean that those angles are actually uniformly VI. EXPERIMENTS

distributed. . o __ The algorithm was tested with outdoor MPEG-4 video
P(B,71Bk-1,7k-1) is @ truncated bivariate Gaussian withsequences, acquired with a hand-held camera. Although the

mean [By—1, Jx—1]", defined over the regio € ]G — sequences are of low quality due to radial distortion and sev-

€, Br—1+¢&] andy € [yk—1—9ge(Bru—1), Ye—1+9¢(Br—1)]- This  eral over- and under-exposed frames, our algorithm was able

prior formalizes the SR assumption (see (5) and (8)) as Wgll successfully estimate the camera orientation, as illustrated
as angle variation smoothness. The variance of this Gaussjqirig. 5.

controls the tradeoff between the smoothness of the estimateghe images in Figs. 6 and 7 show frames from two other
sequence of angles and the accuracy of this estimates. In §aguences. Notice that the algorithm is able to estimate the
first frame, the prior is flat over the entire domdifi,7) € correct orientation, despite the many edges not aligned with

]=45%,457] x | -54.7°, 54.7°], according to (4). the MW axes €.g, people in Fig. 7). The plots in the same
Given f5;, and7,, we then estimate the compass angle figures represent the estimates of the orientation angles, for
using these two sequences. Note that the estimates on the plot of
~ ~ Fig. 7 are slightly noisier than those in Fig. 6, due to the lower
@k = argimax {bg P({Bu} o, Br, k) + image quality. The smoothness of these estimates is controlled

log P(al&kqﬁkqﬁk)}, (18) by _the prior variances referred in Subsection V-C; here, these
variances are the same for both sequences and the three angles.

where the priorP(al&k,lﬁk,h 3k) is a truncated Gaus- Of course, there is a tradeoff between smoothness and ability
sian with meand,_,, defined over the intervala,_, — (O accurately follow fast camera rotations.
ag(@kﬁkq)@kq + ag(ﬁkﬁkq)] (see (6)). For the first Typical processing time for ea<:di288x360)-p|xels_ frame
frame, the prior is flat ovef—45°, 45°]. The maximizations is bel_ow one secqnd, on a 3.0 GHz Pentium 1V, using a MAT-
in (16) and (18) are carried out by exhaustive search. LAB |mplgmentat|on. The o'nly effort made to speed up the

If a given estimat@k(ak,ﬁkﬁk) is located outside of the computatlon was Fhe exclusion of non-rele\_/ant pixels by non-
minimal region defined in (4), we replace it by an equiprdl@Xima suppression followed by t_hresholdlng_ of the gradl_ent
jective orientation inside that region. As explained in the lagpagnitude. We are currently working on a C implementation
paragraph of subsection IV, this allows(3;, 3;_1) to be less 0 achieve frame-rate.
than7.1°, hence keeping a small search space. As a final step,
at each frame, we select an orientation from the equivalence VII. CONCLUSION
class ofOy, such that the resulting sequence satisfies the SRWe have proposed a probabilistic approach to estimating
model. camera orientation from video sequences of urban scenes.
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il
o b B

Fig. 5. Orientation estimates (superimposed cubes represent the estimated MW axes) for the first and several other frames of a video sequence.
80

which gives us both the Euclidean distante= (v} v;)'/?
between pointsv; and p = (0,0)”, and the angle;; =

T
Vi Vj

acos; - formed by the two line$pv;] and[p v;], with ¢ # j.

Consider now the disl> with radius f centered ap, i.e,
D = {(u,v) € R? : u? +v* < f?}. We havev; € D iff
d; < f, which, by (19), is equivalent t&2 > f2/2. Since
P2 + P2 4+ P2 = f2, the conditionP> > f2/2 implies that

Pj2 < fg/2 for anyj # i, which means that there cannot exist
more than one VP in the interior of digR. Furthermore, the
three VPs are all in the exterior or at the boundarylofff

P2 < f2/2,fori € {z,y,z2}.

To complete our proof, we need the following intermediate
result:

Proposition 6: Any two VPsv; and v;, with i # j, verify
cosf;; < 0. Furthermore, ifvy, € D, with k£ # ¢ and k # j,
thencos 6;; > f%.

< ™R

2 Proof: The first statement comes directly from (19).
20 M/ To prove the second statement, we obtaiincos6;; =
0 . e, —mmda; Wt the principal point coordinate®; and P;,
over the domain defined b¥? + P? < f2/2. The minimum
0 50 100 150 200 250 J
Frame number occurs for|P;| = |P;| = £ with value —1/3. [
Fig. 7. Top: frames 110, 130, 150, and 170 of a third video sequence.Sjnce %acoifé) = atar/2 ~ 54.7°, the shaded area in
Bottom: camera angle estimates. Figure 3is a simple consequence of Proposition 6. To show
(4), consider an orientatio® and letv; be a VP in this
shaded area. Proposition 2 then guarantees the existence of
The method avoids standard intermediate steps such as featuresquiprojective orientatiol®*, satisfying: (i) v = v,
detection and correspondence, or edge detection and linkiagd (i) d, < d,. From (2) — (3) we have, due to (i), that
Experimental results show that the method is able to handie € |-n/2,7/2] and+* € |—ataw/2, atan/2|, and due to
low-quality video sequences, even with many spurious edgé$, that o* € |—7/2, 7/2].
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