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A. Derivation of QUAD for Binary Pairwise Factors

In this section, we derive in detail the closed form solution of problem (12) for binary pairwise factors (Sect. 4.1).
Recall that the marginal polytope M(G,) is given by:

Dgiex, Vi(@i) = 1, Vi € N(a)
M(Ga) = § Wa)sVa) | VE(E) = 2 s, Va(®a), Vi€ N(a),z; €X; . (13)
vo(e) > 0, ve, € X,

If factor a is binary and pairwise (|N(a)| = 2), we may reparameterize our problem by introducing new variables

|
21 2 v8(1), 2 £ v§(1), and 210 2 v,(1,1). Noting that v§ = (1 — z1,21), v$ = (1 — 23,20), and v, =

(1 — 21 — 29 + 212,21 — 212, 22 — 212, 712), problem (12) becomes

. T] — a — a — a — a
min P g O (o W (0) 4 (1 2§ (0) + (22— e (1))
_¢a(00)(1 — 21— 22+ 212) — gZ)a(lO)(zl — 212) - ¢a(01)(22 — 212) — ¢a(11)212
s.t. zi2 <z, z12< 2, z12>2+2—1, (21,2, 212) € 0,1 (14)

or, multiplying the objective by the constant 1/(2n;):

. 1 1
min 521 — 01)2 + (22 — 02)2 — C12212

21,%22,%12 2 2

s.t. 212 <z, z12<z 212>2+2—1, (21,2, 212)€[0,1], (15)
where we have substituted

e = (7 wi(1) +1—n '@ (0) + 0y 0a(00) — 1 e (10))/2 (16)
o = (n7'ws(1)+1—n;'ws(0) +n; '¢a(00) — n; ' $a(01))/2 (17)
ci2 = (07 '¢a(00) — 0 ' $a(10) — 1; ' $a(00) + 1; 'a(11))/2. (18)

Now, notice that in (15) we can assume c15 > 0 without loss of generality—indeed, if ¢;2 < 0, we recover this
case by redefining ¢ = ¢1+c¢12, ¢h = 1—cg, ¢}y = —ci12, 25 = 1— 29, 215 = 21 — 212. Thus, assuming that ¢ > 0,
the lower bound constraints z19 > 21 + 22 — 1 and 212 > 0 are always innactive and can be ignored. Hence, (15)
can be simplified to:

. 1 1
min “(z1 = 1)? 4 S (22 — €2)® — c12212
21,%2,%12 2 2
s.t. 212 < 21, 212 < 29, 21 E [0, 1], Z9 € [O, 1] (19)

Second, if ¢;2 = 0, the problem becomes separable, and the solution is
21 =leilu, 23 =le2u, 20y = min{z], 23}, (20)

where [z]y = min{max{x,0},1} is the projection (clipping) onto the unit interval. We next analyze the case
where ¢12 > 0. The Lagrangian function of (19) is:

1 1
Lz, p, A\ v) = 5(21 — 01)2 + 5(2’2 — 62)2 — c12212 + pa (212 — 21) + pa(z12 — 22)

—A121 — Aozo + ul(zl - 1) + UQ(ZQ — 1). (21)
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At optimality, the following KKT conditions need to be satisfied:
Vo Lz " X0 ) =0 = zf=ci+uj+A —vf
Vo, L(z5p" A v")=0 = zZi=cot+us+I5—1v}
Ve L(z5, " X v*) =0 = cio=p} + 41}

Atz =0
Ayzy =10
p 21z — 21) =
pa(212 — 25) =0
vizr—1) =
vi(z5—1)=0
u A vt >0
2ia <27, <z, 27 €][0,1], z5€][0,1]

We are going to consider three cases separately:
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From the primal feasibility conditions (32), this implies 2z} > 0, z5 < 1, and 27, < z7. Complementary
slackness (25,30,27) implies in turn A} = 0, v5 = 0, and pi = 0. From (24) we have ub = c¢12. Since we are

assuming c12 > 0, we then have pj > 0, and complementary slackness (28) implies 2§, = z3.
Plugging the above into (22)-(23) we obtain

* *
2y =c—v <ci, 25 = Cy + A3 + c12 > ¢2 + c12.

Now we have the following:

(33)

e Either 2§ = 1 or 27 < 1. In the latter case, vy = 0 by complementary slackness (29), hence 27 = c;.
1 1 1 1

Since in any case we must have zj < ¢;, we conclude that 2§ = min{c;, 1}.

e Either z; = 0 or z5 > 0. In the latter case, A5 = 0 by complementary slackness (26), hence 25 = co+c12.

Since in any case we must have z3 > Ao, we conclude that z5 = max{0, co + ¢12}.

In sum:
z] = min{cy, 1}, 2]y = 25 = max{0, ¢y + c12},

and our assumption zj > z3 can only be valid if ¢; > ¢ca + c12.

* *
2. |21 < 2

By symmetry, we have
z5 =min{cg, 1}, 27y = 27 = max{0, c; + c12},

and our assumption zj < z3 can only be valid if ca > ¢1 + ¢12.

* %
3. | 2] = 25

In this case, it is easy to verify that we must have 2§, = 2] = 23, and we can rewrite our optimization problem

1

in terms of one variable only (call it z). The problem becomes that of minimizing %(z—cl)Z—&— 5 (2—c2)%—c122,

which equals a constant plus (z — %)2, subject to z € U £ [0, 1]. Hence:

c1+c2+ci2

* — * *

2o =21 =25 = [2 )
U

Putting all the pieces together, we have the following solution assuming c¢12 > 0:

([e1]w, [c2 + ci2]v) if ¢; > co+ o
Zi‘2 = min{zik’ 25}7 (ZT7 Z;) = ([Cl + 012]U7 [CQ]U) lf C2 > C1 =+ C12
([(er + e2 + c12) /2]y, [(c1 4 ca + c12)/2]y) otherwise.

(36)

(37)
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B. Derivation of QUAD for Several Hard Constraint Factors

In this section, we consider hard constraint factors with binary variables (Sect. 4.2). These are factors whose
log-potentials are indicator functions, i.e., they can be written as ¢, : {0,1}"™ — R with

¢a(wa) =

{ 0 if xz, € 8, (38)

—oo otherwise,

where 8, C {0,1}"™ is the acceptance set. Since any probability distribution over 8, has to assign zero mass to
points not in §,, this choice of potential will always lead to v,(x,) = 0,Vx, ¢ S,. Also, because the variables
are binary, we always have v{(0) + v#(1) = 1. In fact, if we introduce the set

Za 2 (W), ..., v (1)) | (VN (a): Va) € M(Sa) for some v, s.b. va(Ta) = 0,VX, ¢ Sa} (39)

we have that the two following optimization problems are equivalent for any function f:

. a T .7
v + ¢,V = z), 40
(u;ﬂ?}ua)ﬂ N(a)) T Pa Va min f(2) (40)
€EM(Sa)
where f(zl, cosZm) = f(1 = 21,21,...,1 — 2, 2,). Hence the set Z, can be used as a “replacement” of the

marginal polytope M(G,). By abuse of language, we will sometimes refer to Z, (which is also a polytope) as
“the marginal polytope of G,.” As a particularization of (40), we have that the quadratic problem (12) becomes
that of computing a projection onto Z,. Of particular interest is the following result.

Proposition 3 We have Z, = conv §,.

Proof: From the definition of M(G,) and the fact that we are constraining v,(x,) = 0,Vx, ¢ S,, it follows:

Za = z>0| 3w, >0st.Vie N(a),z = Z Vo(xe) =1— Z Vo (24)
wagsla maESOa

= {z >0 | v, >0, Z Va(xg) =18t 2z = Z ua(:ca):ca} = conv §,. (41)

T, E8q TaESq
|
Note also that [[v¢ — 1, 'w?||? = (v2(1) —n; 'w?(1))? 4 (1 — v#(1) —n; 'w?(0))? equals a constant plus 2(v¢ (1) —

7

n7 (W (1) + 1 — w?(0))/2)%. Hence, (12) reduces to computing the following projection:

1
proj,(zo) = argmin §Hz — 20|, where zg; = (wi(1) + 1 — wf(0))/2, Vi. (42)

z€conv 8,

Another important fact has to do with negated inputs. Let factor a’ be constructed from a by negating one of
the inputs (without loss of generality, the first one, z1)—i.e., 84 = {xo | (1 — z1,22,...,2m) € 84}. Then, if
we have a procedure for evaluating the operator proj,, we can use it for evaluating proj,, through the change of
variable 2 £ 1 — z;, which turns the objective function into (1 — 2} — z01)? = (2} — (1 — 201))2. Naturally, the
same idea holds when there is more than one negated input. The overall procedure computes z = proj,(zg):

1. For each input i, set z; = 2o, if it is not negated and z{; = 1 — zp; otherwise.
2. Obtain 2’ as the solution of proj,(z().

3. For each input i, set z; = 2] if it is not negated and z; = 1 — 2] otherwise.

Below, we will also use the following
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Algorithm 3 Projection onto simplex (Duchi et al., 2008)

Input: zg

Sort zg into yo: y1 > ... > Ym

Find p = max {j € (] | yo; — + (S0, v0r — 1) >0}
1

Define 7 = £ O yor — 1)

Output: z s.t. z; = max{zy; — 7,0}.

Lemma 4 Consider a problem of the form

P: min f(x) st g(x) <0, (43)
xzeX
where X is nonempty convex subset of R and f: X — R and g : X — R are convex functions. Suppose that the
problem (43) is feasible and bounded below, and let A be the set of solutions of the relaxed problem mingex f(x),
i.e. A= Argmingcy f(x). Then:

1. if for some & € A we have g(&) <0, then & is also a solution of the original problem P;

2. otherwise (if for all & € A we have g(&) > 0), the inequality constraint is necessarily active in P, i.e.,
problem P is equivalent to mingex f(x) s.t. g(x) = 0.

Proof: Let f* be the optimal value of P. The first statement is obvious: since & is a solution of a relaxed
problem we have f(&) < f*; hence if & is feasible this becomes an equality. For the second statement, assume
that 3z € X s.t. g(x) < 0 (otherwise, the statement holds trivially). The nonlinear Farkas’ lemma (Bertsekas
et al., 2003, Prop. 3.5.4, p. 204) implies that there exists some A\* > 0 s.t. f(x) — f* + A*g(x) > 0 holds for
all x € X. In particular, this also holds for an optimal x* (i.e., such that f* = f(«*)), which implies that
A*g(z*) > 0. However, since \* > 0 and g(x*) < 0 (since «* has to be feasible), we also have \*g(x*) <0, i.e.,
A*g(x*) = 0. Now suppose that A* = 0. Then we have f(x) — f* > 0, Vo € X, which implies that * € A and
contradicts the assumption that g() > 0,VZ € A. Hence we must have g(x*) = 0. u

B.1. Derivation of QuAD for the XOrR Factor
The XOR factor is defined as:

—oo otherwise, (44)

¢XOR(‘T17 cee 7xm) = {
where each x; € {0,1}. When m = 2, exp(¢xor(®1,22)) = 1 @ z2 (the Boolean XOR function), hence the name.
When m > 2, it is a “one-hot” generalization of @.® For this case, we have that conv8yor = {z >0 172 =1}
is the probability simplex. Hence the quadratic problem (12) reduces to that of projecting onto the simplex,
which can be done efficiently by Alg. 3. This algorithm requires a sort operation and its cost is O(mlogm).*

B.2. Derivation of QuAD for the or Factor

The OR factor is defined as:

—oo otherwise,

(ZSOR(xlu"'uxm) = { (45)
where each x; € {0,1}. This factor indicates whether any of its input variables is 1, hence the name. For this
case, we have that conv8oy = {2z € [0,1]™ | 1Tz > 1} is a “faulty” unit hypercube where one of the vertices
(the origin) is missing. From Lemma 4, we have that the following procedure solves (42) for Sox:

3There is another generalization of @ which returns the parity of i, ..., Zm; ours should not be confused with that
one.

“In the high-dimensional case, a red-black tree can be used to reduce this cost to O(m) (Duchi et al., 2008). In later
iterations of DD-ADMM, great speed ups can be achieved in practice since this procedure is repeatedly invoked with only
small changes on the coefficients.
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1. Set z as the projection of zy onto the unit cube. This can be done by clipping each coordinate to the unit
interval U = [0, 1], i.e., by setting Z; = [20;Ju = min{1, max{0, zp;}}. If 172 > 1, then return 2. Else go to
step 2.

2. Return the projection of zy onto the simplex (use Alg. 3).

The validity of the second step stems from the fact that, if the relaxed problem in the first step does not return
a feasible point, then the constraint 17z > 1 has to be active, i.e., we must have 1Tz = 1. This, in turn, implies
that z < 1 hence the problem becomes equivalent to the XOR case.

B.3. Derivation of QuAD for the OR-wITH-OUTPUT Factor
The OR-WITH-OUTPUT factor is defined as:

Gor-ovr(T1y vy Tin) =

{ 0 if 2., = \/;’;11 x; (46)
—oo otherwise,

where each x; € {0,1}. In other words, this factor indicates (via the “output” variable x,,) if any of variables
21 to0 Ty—1 (the “input” variables) is active. Solving the quadratic problem for this factor is slightly more
complicated than in the previous two cases; however, we next see that it can also be addressed in O(mlogm)
with a sort operation. For this case, we have that

conv 8or-our = {z e o, 1™

m—1
Zm < Z’Zl andzm>zi,i:1,...,m—1}.
i=1

It is instructive to write this polytope as the intersection of the three sets [0,1]™, A; = {z | 2 > 2,0 =
1,...,m—1}, and Ay £ {z €[0,1]™ | 2,,, < 1727}, We further define Ag £ [0,1)]™ NA;. From Lemma 4, we

have that the following procedure is correct:

1. Set z as the projection of zy onto the unit cube. If Z € A; N Ay, then we are done: just return z. Else, if
z € Ay but 2 ¢ Ajy, go to step 3. Otherwise, go to step 2.

2. Set z as the projection of zg onto A (we will describe how to do this later). If Z € Ag, return 2. Otherwise,
go to step 3.

3. Return the projection of zg onto the set {z € [0,1]™ | z,, = 172" '}. This corresponds to the QUAD
problem of a XOR factor with the mth input negated (we call such factor XOR-WITH-OUTPUT because it is
analogous to OR-WITH-FACTOR but with the role of OR replaced by that of XOR). As explained above, it
can be solved by projecting onto the simplex (use Alg. 3).

Note that the first step above can be ommited; however, it avoids performing step 2 (which requires a sort)
unless it is really necessary. To completely specify the algorithm, we only need to explain how to compute the
projection onto A (step 2). Recall that Ay = [0, 1] NA;. Fortunatelly, it turns out that the following sequential
projection is correct:

Procedure 5 To project onto Ag = [0,1]™ N A;:

2a. Set z as the projection of zo onto Ai. Alg. 4 shows how to do this.
2b. Set % as the projection of z onto the unit cube (with the usual clipping procedure).
The proof that the composition of these two projections yields the desired projection onto Ag is a bit involved,

so we defer it to Prop. 6.° We only need to describe how to project onto A; (step 2a), which is written as the
following problem:

1
min§\|z—z0||2 st. zZm >z, i=1,...,m—1L (47)
z

®Note that in general, the composition of individual projections is not equivalent to projecting onto the intersection.
In particular, commuting steps 2a and 2b would make our procedure incorrect.
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Algorithm 4 Projection onto A4
Input: zg
Sort zg1,. .., 20(m—1) iMoo Y1 > ... > Y1

Find p = min {J’ €m]| s (ZOm +30) y) > yj}
Define 7 = =+ (zOm +>0 yr>
Output: z s.t. Zm =7 and z; = min{zg;, 7}, i =1,...,m— L.

Algorithm 5 Dijkstra’s algorithm for projecting onto ﬂ C;

7=1

Input: Point g € R?, convex sets Cy,...,Cy
Initialize (9 = x, (0 =0foralj=1,...,J
fort=1,2,...do
for j =1 to J do
Set s=j+(t—1)J
Set &g = x5~V — uEt_l)
(t)

Set (%) = proje, (Zo), and u;
end for
end for
Output:

= m(s) _ i’O

It can be successively rewritten as:

2

min = (2 — Zom) min —(2z; — 20;)

+NJ
1M

Fm 2i<zZm
1 m—1 1
= Hzlm ~(2m — 20m)* + z; E(min{zm,zm—} — 204)°
i—
1 1
= min g (zm = 2om)” + 5 — 20i)°. (48)
Zm 2 2 oo

where J(z,) £ {i : 20; > zn}. Assuming that the set J(z,,) is given, the previous is a sum-of-squares prob-

Zomt2 i3 (zy) 200
T+[3(zm)]

2015+ -+ 20(m—1)- The procedure is shown in Alg. 4.

lem whose solution is z), = The set J(z,,) can be determined by inspection after sorting

Proposition 6 Procedure 5 is correct.

Proof: The proof is divided into the following parts:

1. We show that Procedure 5 corresponds to the first iteration of Dijkstra’s projection algorithm (Boyle &
Dykstra, 1986) applied to sets A; and [0, 1]™;

2. We show that Dijkstra’s converges in one iteration if a specific condition is met;

3. We show that with the two sets above that condition is met.

The first part is rather trivial. Dijkstra’s algorithm is shown as Alg. 5; when J =2, ¢; = A; and Cp = [0,1]™

@ _ @

and noting that u; ' = uy ’ = 0, we have that the first iteration becomes Procedure 5.

We turn to the second part, to show that, when J = 2, the fact that (®) = 2(?) implies that ) = (), Vs > 3.
In words, if at the second iteration ¢ of Dijkstra’s, the value of & does not change after computing the first
projection, then it will never change, so the algorithm has converged and « is the desired projection. To see that,
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consider the moment in Alg. 5 when ¢t = 2 and j = 1. After the projection, we update ugz) =0 — (a:(Q) — u(ll)),

which when &) = £ equals ugl), i.e., u1 keeps unchanged. Then, when ¢ = 2 and j = 2, one first computes

g = x® — uél) =z — (£® — x4) = x0, i.e., the projection is the same as the one already computed at
t =1, j = 2. Hence the result is the same, i.e., ® = x(?) and similarly uéz) = ugl). Since neither x, u; and
us changed in the second iteration, and subsequent iterations only depend on these values, we have that & will

never change afterwards.

Finally, we are going to see that, regardless of the choice of zy in Procedure 5 (zo in Alg. 5) we will always have
) = @ Looking at Alg. 4, we see that after ¢t = 1:

CON B ifi=morxzy>T ORI B 112 ifi=morxzy>T
t 71 zg;, otherwise, i = 0, otherwise,
(2) (1) [T]u, ifi=morxzg >71
=z, Ju= { [%oi] therwi ' (49)
0ily, otherwise.

Hence in the beginning of the second iteration (¢t =2, j = 1), we have

— . 1f 7 — >
@ _ 1) _ { [Tlu =T+ xoi, fi=morzy>7 (50)

0i i Li [zoily » otherwise.

Now two things should be noted about Alg. 4:

e If a constant is added to all entries in zg, the set J(z,,) remains the same, and 7 and z are affected by the
same constant;

e Let z{ be such that z{;, = zo; if i = m or zp; > 7, and z; < 7 otherwise. Let 2’ be the projected point when
such z{ is given as input. Then J(z),) = I(zm,), 7' =7, 2 = z; if i = m or zp; > 7, and 2z, = z{; otherwise.

The two facts above allow to relate the projection of &g (in the second iteration) with that of @y (in the first
iteration). Using [r]y — 7 as the constant, and noting that, for i # m and x¢; < 7, we have [zg;]y — [Tlu+7 > T
if xg; < 7, the two facts imply that:
L3 xgl) +[rly—7=[rly, fi=morzy>71 (51)
! [Zoily otherwise;

hence £®) = 2(?) | which concludes the proof. ]



