
An Augmented Lagrangian Approach to Constrained MAP Inference

An Augmented Lagrangian Aproach to Constrained MAP Inference
Supplementary Material

A. Derivation of quad for Binary Pairwise Factors

In this section, we derive in detail the closed form solution of problem (12) for binary pairwise factors (Sect. 4.1).
Recall that the marginal polytope M(Ga) is given by:

M(Ga) =

(νaN(a),νa)

∣∣∣∣
∑
xi∈Xi

νai (xi) = 1, ∀i ∈ N(a)
νai (xi) =

∑
xa∼xi

νa(xa), ∀i ∈ N(a), xi ∈ Xi
νa(xa) ≥ 0, ∀xa ∈ Xa

 . (13)

If factor a is binary and pairwise (|N(a)| = 2), we may reparameterize our problem by introducing new variables
z1 , νa1 (1), z2 , νa2 (1), and z12 , νa(1, 1). Noting that νa1 = (1 − z1, z1), νa2 = (1 − z2, z2), and νa =
(1− z1 − z2 + z12, z1 − z12, z2 − z12, z12), problem (12) becomes

min
z1,z2,z12

ηt
2

[(1− z1 − η−1t ωa1 (0))2 + (z1 − η−1t ωa1 (1))2 + (1− z2 − η−1t ωa2 (0))2 + (z2 − η−1t ωa2 (1))2]

−φa(00)(1− z1 − z2 + z12)− φa(10)(z1 − z12)− φa(01)(z2 − z12)− φa(11)z12

s.t. z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1, (z1, z2, z12) ∈ [0, 1]3 (14)

or, multiplying the objective by the constant 1/(2ηt):

min
z1,z2,z12

1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12

s.t. z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1, (z1, z2, z12) ∈ [0, 1]3, (15)

where we have substituted

c1 = (η−1t ωa1 (1) + 1− η−1t ωa1 (0) + η−1t φa(00)− η−1t φa(10))/2 (16)

c2 = (η−1t ωa2 (1) + 1− η−1t ωa2 (0) + η−1t φa(00)− η−1t φa(01))/2 (17)

c12 = (η−1t φa(00)− η−1t φa(10)− η−1t φa(00) + η−1t φa(11))/2. (18)

Now, notice that in (15) we can assume c12 ≥ 0 without loss of generality—indeed, if c12 < 0, we recover this
case by redefining c′1 = c1 +c12, c′2 = 1−c2, c′12 = −c12, z′2 = 1−z2, z′12 = z1−z12. Thus, assuming that c12 ≥ 0,
the lower bound constraints z12 ≥ z1 + z2 − 1 and z12 ≥ 0 are always innactive and can be ignored. Hence, (15)
can be simplified to:

min
z1,z2,z12

1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12

s.t. z12 ≤ z1, z12 ≤ z2, z1 ∈ [0, 1], z2 ∈ [0, 1]. (19)

Second, if c12 = 0, the problem becomes separable, and the solution is

z∗1 = [c1]U, z∗2 = [c2]U, z∗12 = min{z∗1 , z∗2}, (20)

where [x]U = min{max{x, 0}, 1} is the projection (clipping) onto the unit interval. We next analyze the case
where c12 > 0. The Lagrangian function of (19) is:

L(z,µ,λ,ν) =
1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12 + µ1(z12 − z1) + µ2(z12 − z2)

−λ1z1 − λ2z2 + ν1(z1 − 1) + ν2(z2 − 1). (21)

An Augmented Lagrangian Approach to Constrained MAP Inference

At optimality, the following KKT conditions need to be satisfied:

∇z1L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ z∗1 = c1 + µ∗1 + λ∗1 − ν∗1 (22)

∇z2L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ z∗2 = c2 + µ∗2 + λ∗2 − ν∗2 (23)

∇z12L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ c12 = µ∗1 + µ∗2 (24)

λ∗1z
∗
1 = 0 (25)

λ∗2z
∗
2 = 0 (26)

µ∗1(z∗12 − z∗1) = 0 (27)

µ∗2(z∗12 − z∗2) = 0 (28)

ν∗1 (z∗1 − 1) = 0 (29)

ν∗2 (z∗2 − 1) = 0 (30)

µ∗,λ∗,ν∗ ≥ 0 (31)

z∗12 ≤ z∗1 , z∗12 ≤ z∗2 , z∗1 ∈ [0, 1], z∗2 ∈ [0, 1] (32)

We are going to consider three cases separately:

1. z∗1 > z∗2

From the primal feasibility conditions (32), this implies z∗1 > 0, z∗2 < 1, and z∗12 < z∗1 . Complementary
slackness (25,30,27) implies in turn λ∗1 = 0, ν∗2 = 0, and µ∗1 = 0. From (24) we have µ∗2 = c12. Since we are
assuming c12 > 0, we then have µ∗2 > 0, and complementary slackness (28) implies z∗12 = z∗2 .

Plugging the above into (22)–(23) we obtain

z∗1 = c1 − ν∗1 ≤ c1, z∗2 = c2 + λ∗2 + c12 ≥ c2 + c12. (33)

Now we have the following:

• Either z∗1 = 1 or z∗1 < 1. In the latter case, ν∗1 = 0 by complementary slackness (29), hence z∗1 = c1.
Since in any case we must have z∗1 ≤ c1, we conclude that z∗1 = min{c1, 1}.

• Either z∗2 = 0 or z∗2 > 0. In the latter case, λ∗2 = 0 by complementary slackness (26), hence z∗2 = c2+c12.
Since in any case we must have z∗2 ≥ λ2, we conclude that z∗2 = max{0, c2 + c12}.

In sum:
z∗1 = min{c1, 1}, z∗12 = z∗2 = max{0, c2 + c12}, (34)

and our assumption z∗1 > z∗2 can only be valid if c1 > c2 + c12.

2. z∗1 < z∗2

By symmetry, we have
z∗2 = min{c2, 1}, z∗12 = z∗1 = max{0, c1 + c12}, (35)

and our assumption z∗1 < z∗2 can only be valid if c2 > c1 + c12.

3. z∗1 = z∗2

In this case, it is easy to verify that we must have z∗12 = z∗1 = z∗2 , and we can rewrite our optimization problem
in terms of one variable only (call it z). The problem becomes that of minimizing 1

2 (z−c1)2+ 1
2 (z−c2)2−c12z,

which equals a constant plus (z − c1+c2+c12
2)2, subject to z ∈ U , [0, 1]. Hence:

z∗12 = z∗1 = z∗2 =

[
c1 + c2 + c12

2

]
U
. (36)

Putting all the pieces together, we have the following solution assuming c12 ≥ 0:

z∗12 = min{z∗1 , z∗2}, (z∗1 , z
∗
2) =

 ([c1]U, [c2 + c12]U) if c1 > c2 + c12
([c1 + c12]U, [c2]U) if c2 > c1 + c12
([(c1 + c2 + c12)/2]U, [(c1 + c2 + c12)/2]U) otherwise.

(37)

An Augmented Lagrangian Approach to Constrained MAP Inference

B. Derivation of quad for Several Hard Constraint Factors

In this section, we consider hard constraint factors with binary variables (Sect. 4.2). These are factors whose
log-potentials are indicator functions, i.e., they can be written as φa : {0, 1}m → R̄ with

φa(xa) =

{
0 if xa ∈ Sa
−∞ otherwise,

(38)

where Sa ⊆ {0, 1}m is the acceptance set. Since any probability distribution over Sa has to assign zero mass to
points not in Sa, this choice of potential will always lead to νa(xa) = 0,∀xa /∈ Sa. Also, because the variables
are binary, we always have νai (0) + νai (1) = 1. In fact, if we introduce the set

Za , {(νa1 (1), . . . , νam(1)) | (νaN(a),νa) ∈M(Ga) for some νa s.t. νa(xa) = 0,∀xa /∈ Sa} (39)

we have that the two following optimization problems are equivalent for any function f :

min
(νa

N(a),νa)

∈M(Ga)

f(νaN(a)) + φ>a νa = min
z∈Za

f̃(z), (40)

where f̃(z1, . . . , zm) , f(1 − z1, z1, . . . , 1 − zm, zm). Hence the set Za can be used as a “replacement” of the
marginal polytope M(Ga). By abuse of language, we will sometimes refer to Za (which is also a polytope) as
“the marginal polytope of Ga.” As a particularization of (40), we have that the quadratic problem (12) becomes
that of computing a projection onto Za. Of particular interest is the following result.

Proposition 3 We have Za = conv Sa.

Proof: From the definition of M(Ga) and the fact that we are constraining νa(xa) = 0,∀xa /∈ Sa, it follows:

Za =

z ≥ 0

∣∣∣∣∣ ∃νa ≥ 0 s.t. ∀i ∈ N(a), zi =
∑
xa∈Sa
xi=1

νa(xa) = 1−
∑
xa∈Sa
xi=0

νa(xa)


=

{
z ≥ 0

∣∣∣∣∣ ∃νa ≥ 0,
∑
xa∈Sa

νa(xa) = 1 s.t. z =
∑
xa∈Sa

νa(xa)xa

}
= conv Sa. (41)

Note also that ‖νai − η
−1
t ωai ‖2 = (νai (1)− η−1t ωai (1))2 + (1− νai (1)− η−1t ωai (0))2 equals a constant plus 2(νai (1)−

η−1t (ωai (1) + 1− ωai (0))/2)2. Hence, (12) reduces to computing the following projection:

proja(z0) , argmin
z∈conv Sa

1

2
‖z − z0‖2, where z0i , (ωai (1) + 1− ωai (0))/2, ∀i. (42)

Another important fact has to do with negated inputs. Let factor a′ be constructed from a by negating one of
the inputs (without loss of generality, the first one, x1)—i.e., Sa′ = {xa′ | (1 − x1, x2, . . . , xm) ∈ Sa}. Then, if
we have a procedure for evaluating the operator proja, we can use it for evaluating proja′ through the change of
variable z′1 , 1− z1, which turns the objective function into (1− z′1 − z01)2 = (z′1 − (1− z01))2. Naturally, the
same idea holds when there is more than one negated input. The overall procedure computes z = proja′(z0):

1. For each input i, set z′0i = z0i if it is not negated and z′0i = 1− z0i otherwise.

2. Obtain z′ as the solution of proja(z′0).

3. For each input i, set zi = z′i if it is not negated and zi = 1− z′i otherwise.

Below, we will also use the following

An Augmented Lagrangian Approach to Constrained MAP Inference

Algorithm 3 Projection onto simplex (Duchi et al., 2008)

Input: z0
Sort z0 into y0: y1 ≥ . . . ≥ ym
Find ρ = max

{
j ∈ [m] | y0j − 1

j

(∑j
r=1 y0r − 1

)
> 0
}

Define τ = 1
ρ (
∑ρ
r=1 y0r − 1)

Output: z s.t. zi = max{z0i − τ, 0}.

Lemma 4 Consider a problem of the form

P : min
x∈X

f(x) s.t. g(x) ≤ 0, (43)

where X is nonempty convex subset of Rd and f : X→ R and g : X→ R are convex functions. Suppose that the
problem (43) is feasible and bounded below, and let A be the set of solutions of the relaxed problem minx∈X f(x),
i.e. A = Argminx∈X f(x). Then:

1. if for some x̃ ∈ A we have g(x̃) ≤ 0, then x̃ is also a solution of the original problem P ;

2. otherwise (if for all x̃ ∈ A we have g(x̃) > 0), the inequality constraint is necessarily active in P , i.e.,
problem P is equivalent to minx∈X f(x) s.t. g(x) = 0.

Proof: Let f∗ be the optimal value of P . The first statement is obvious: since x̃ is a solution of a relaxed
problem we have f(x̃) ≤ f∗; hence if x̃ is feasible this becomes an equality. For the second statement, assume
that ∃x ∈ X s.t. g(x) < 0 (otherwise, the statement holds trivially). The nonlinear Farkas’ lemma (Bertsekas
et al., 2003, Prop. 3.5.4, p. 204) implies that there exists some λ∗ ≥ 0 s.t. f(x) − f∗ + λ∗g(x) ≥ 0 holds for
all x ∈ X. In particular, this also holds for an optimal x∗ (i.e., such that f∗ = f(x∗)), which implies that
λ∗g(x∗) ≥ 0. However, since λ∗ ≥ 0 and g(x∗) ≤ 0 (since x∗ has to be feasible), we also have λ∗g(x∗) ≤ 0, i.e.,
λ∗g(x∗) = 0. Now suppose that λ∗ = 0. Then we have f(x)− f∗ ≥ 0, ∀x ∈ X, which implies that x∗ ∈ A and
contradicts the assumption that g(x̃) > 0,∀x̃ ∈ A. Hence we must have g(x∗) = 0.

B.1. Derivation of quad for the xor Factor

The xor factor is defined as:

φxor(x1, . . . , xm) =

{
0 if

∑m
i=1 xi = 1

−∞ otherwise,
(44)

where each xi ∈ {0, 1}. When m = 2, exp(φxor(x1, x2)) = x1 ⊕ x2 (the Boolean xor function), hence the name.
When m > 2, it is a “one-hot” generalization of ⊕.3 For this case, we have that conv Sxor = {z ≥ 0 | 1>z = 1}
is the probability simplex. Hence the quadratic problem (12) reduces to that of projecting onto the simplex,
which can be done efficiently by Alg. 3. This algorithm requires a sort operation and its cost is O(m logm).4

B.2. Derivation of quad for the or Factor

The or factor is defined as:

φor(x1, . . . , xm) =

{
0 if

∑m
i=1 xi ≥ 1

−∞ otherwise,
(45)

where each xi ∈ {0, 1}. This factor indicates whether any of its input variables is 1, hence the name. For this
case, we have that conv Sor = {z ∈ [0, 1]m | 1>z ≥ 1} is a “faulty” unit hypercube where one of the vertices
(the origin) is missing. From Lemma 4, we have that the following procedure solves (42) for Sor:

3There is another generalization of ⊕ which returns the parity of x1, . . . , xm; ours should not be confused with that
one.

4In the high-dimensional case, a red-black tree can be used to reduce this cost to O(m) (Duchi et al., 2008). In later
iterations of DD-ADMM, great speed ups can be achieved in practice since this procedure is repeatedly invoked with only
small changes on the coefficients.

An Augmented Lagrangian Approach to Constrained MAP Inference

1. Set z̃ as the projection of z0 onto the unit cube. This can be done by clipping each coordinate to the unit
interval U = [0, 1], i.e., by setting z̃i = [z0i]U = min{1,max{0, z0i}}. If 1>z̃ ≥ 1, then return z̃. Else go to
step 2.

2. Return the projection of z0 onto the simplex (use Alg. 3).

The validity of the second step stems from the fact that, if the relaxed problem in the first step does not return
a feasible point, then the constraint 1>z ≥ 1 has to be active, i.e., we must have 1>z = 1. This, in turn, implies
that z ≤ 1 hence the problem becomes equivalent to the xor case.

B.3. Derivation of quad for the or-with-output Factor

The or-with-output factor is defined as:

φor-out(x1, . . . , xm) =

{
0 if xm =

∨m−1
i=1 xi

−∞ otherwise,
(46)

where each xi ∈ {0, 1}. In other words, this factor indicates (via the “output” variable xm) if any of variables
x1 to xm−1 (the “input” variables) is active. Solving the quadratic problem for this factor is slightly more
complicated than in the previous two cases; however, we next see that it can also be addressed in O(m logm)
with a sort operation. For this case, we have that

conv Sor-out =

{
z ∈ [0, 1]m

∣∣∣∣∣ zm ≤
m−1∑
i=1

zi and zm ≥ zi, i = 1, . . . ,m− 1

}
.

It is instructive to write this polytope as the intersection of the three sets [0, 1]m, A1 , {z | zm ≥ zi, i =
1, . . . ,m− 1}, and A2 , {z ∈ [0, 1]m | zm ≤ 1>zm−11 }. We further define A0 , [0, 1]m ∩A1. From Lemma 4, we
have that the following procedure is correct:

1. Set z̃ as the projection of z0 onto the unit cube. If z̃ ∈ A1 ∩ A2, then we are done: just return z̃. Else, if
z̃ ∈ A1 but z̃ /∈ A2, go to step 3. Otherwise, go to step 2.

2. Set z̃ as the projection of z0 onto A0 (we will describe how to do this later). If z̃ ∈ A2, return z̃. Otherwise,
go to step 3.

3. Return the projection of z0 onto the set {z ∈ [0, 1]m | zm = 1>zm−11 }. This corresponds to the quad
problem of a xor factor with the mth input negated (we call such factor xor-with-output because it is
analogous to or-with-factor but with the role of or replaced by that of xor). As explained above, it
can be solved by projecting onto the simplex (use Alg. 3).

Note that the first step above can be ommited; however, it avoids performing step 2 (which requires a sort)
unless it is really necessary. To completely specify the algorithm, we only need to explain how to compute the
projection onto A0 (step 2). Recall that A0 = [0, 1]m∩A1. Fortunatelly, it turns out that the following sequential
projection is correct:

Procedure 5 To project onto A0 = [0, 1]m ∩A1:

2a. Set ˜̃z as the projection of z0 onto A1. Alg. 4 shows how to do this.

2b. Set z̃ as the projection of ˜̃z onto the unit cube (with the usual clipping procedure).

The proof that the composition of these two projections yields the desired projection onto A0 is a bit involved,
so we defer it to Prop. 6.5 We only need to describe how to project onto A1 (step 2a), which is written as the
following problem:

min
z

1

2
‖z − z0‖2 s.t. zm ≥ zi, i = 1, . . . ,m− 1. (47)

5Note that in general, the composition of individual projections is not equivalent to projecting onto the intersection.
In particular, commuting steps 2a and 2b would make our procedure incorrect.

An Augmented Lagrangian Approach to Constrained MAP Inference

Algorithm 4 Projection onto A1

Input: z0
Sort z01, . . . , z0(m−1) into y1 ≥ . . . ≥ ym−1
Find ρ = min

{
j ∈ [m] | 1

j

(
z0m +

∑j−1
r=1 yr

)
> yj

}
Define τ = 1

ρ

(
z0m +

∑ρ−1
r=1 yr

)
Output: z s.t. zm = τ and zi = min{z0i, τ}, i = 1, . . . ,m− 1.

Algorithm 5 Dijkstra’s algorithm for projecting onto
⋂J
j=1 Cj

Input: Point x0 ∈ Rd, convex sets C1, . . . ,CJ
Initialize x(0) = x0, u

(0)
j = 0 for all j = 1, . . . , J

for t = 1, 2, . . . do
for j = 1 to J do

Set s = j + (t− 1)J

Set x̃0 = x(s−1) − u(t−1)
j

Set x(s) = projCj
(x̃0), and u

(t)
j = x(s) − x̃0

end for
end for
Output: x

It can be successively rewritten as:

min
zm

1

2
(zm − z0m)2 +

m−1∑
i=1

min
zi≤zm

1

2
(zi − z0i)2

= min
zm

1

2
(zm − z0m)2 +

m−1∑
i=1

1

2
(min{zm, z0i} − z0i)2

= min
zm

1

2
(zm − z0m)2 +

1

2

∑
i∈I(zm)

(zm − z0i)2. (48)

where I(zm) , {i : z0i ≥ zm}. Assuming that the set I(zm) is given, the previous is a sum-of-squares prob-

lem whose solution is z∗m =
z0m+

∑
i∈I(zm) z0i

1+|I(zm)| . The set I(zm) can be determined by inspection after sorting

z01, . . . , z0(m−1). The procedure is shown in Alg. 4.

Proposition 6 Procedure 5 is correct.

Proof: The proof is divided into the following parts:

1. We show that Procedure 5 corresponds to the first iteration of Dijkstra’s projection algorithm (Boyle &
Dykstra, 1986) applied to sets A1 and [0, 1]m;

2. We show that Dijkstra’s converges in one iteration if a specific condition is met;

3. We show that with the two sets above that condition is met.

The first part is rather trivial. Dijkstra’s algorithm is shown as Alg. 5; when J = 2, C1 = A1 and C2 = [0, 1]m,

and noting that u
(1)
1 = u

(1)
2 = 0, we have that the first iteration becomes Procedure 5.

We turn to the second part, to show that, when J = 2, the fact that x(3) = x(2) implies that x(s) = x(2), ∀s > 3.
In words, if at the second iteration t of Dijkstra’s, the value of x does not change after computing the first
projection, then it will never change, so the algorithm has converged and x is the desired projection. To see that,

An Augmented Lagrangian Approach to Constrained MAP Inference

consider the moment in Alg. 5 when t = 2 and j = 1. After the projection, we update u
(2)
1 = x(3)− (x(2)−u(1)

1),

which when x(3) = x(2) equals u
(1)
1 , i.e., u1 keeps unchanged. Then, when t = 2 and j = 2, one first computes

x̃0 = x(3) − u(1)
2 = x(3) − (x(2) − x0) = x0, i.e., the projection is the same as the one already computed at

t = 1, j = 2. Hence the result is the same, i.e., x(4) = x(2), and similarly u
(2)
2 = u

(1)
2 . Since neither x, u1 and

u2 changed in the second iteration, and subsequent iterations only depend on these values, we have that x will
never change afterwards.

Finally, we are going to see that, regardless of the choice of z0 in Procedure 5 (x0 in Alg. 5) we will always have
x(3) = x(2). Looking at Alg. 4, we see that after t = 1:

x
(1)
i =

{
τ, if i = m or x0i ≥ τ
x0i, otherwise,

u
(1)
1i =

{
τ − x0i, if i = m or x0i ≥ τ
0, otherwise,

x
(2)
i = [x

(1)
i]U =

{
[τ]U, if i = m or x0i ≥ τ
[x0i]U , otherwise.

(49)

Hence in the beginning of the second iteration (t = 2, j = 1), we have

x̃0i = x
(2)
i − u

(1)
1i =

{
[τ]U − τ + x0i, if i = m or x0i ≥ τ
[x0i]U , otherwise.

(50)

Now two things should be noted about Alg. 4:

• If a constant is added to all entries in z0, the set I(zm) remains the same, and τ and z are affected by the
same constant;

• Let z′0 be such that z′0i = z0i if i = m or z0i ≥ τ , and z′0i ≤ τ otherwise. Let z′ be the projected point when
such z′0 is given as input. Then I(z′m) = I(zm), τ ′ = τ , z′i = zi if i = m or z0i ≥ τ , and z′i = z′0i otherwise.

The two facts above allow to relate the projection of x̃0 (in the second iteration) with that of x0 (in the first
iteration). Using [τ]U − τ as the constant, and noting that, for i 6= m and x0i < τ , we have [x0i]U − [τ]U + τ ≥ τ
if x0i < τ , the two facts imply that:

x
(3)
i =

{
x
(1)
i + [τ]U − τ = [τ]U, if i = m or x0i ≥ τ

[x0i]U , otherwise;
(51)

hence x(3) = x(2), which concludes the proof.

