
Bootstrapping Information Extraction from

Semi-structured Web Pages⋆

Andrew Carlson1 and Charles Schafer2

1 Machine Learning Department, Carnegie Mellon University,
Pittsburgh PA 15213, USA

2 Google, Inc., 4720 Forbes Avenue, Pittsburgh PA 15213, USA

Abstract. We consider the problem of extracting structured records
from semi-structured web pages with no human supervision required for
each target web site. Previous work on this problem has either required
significant human effort for each target site or used brittle heuristics
to identify semantic data types. Our method only requires annotation
for a few pages from a few sites in the target domain. Thus, after a
tiny investment of human effort, our method allows automatic extraction
from potentially thousands of other sites within the same domain. Our
approach extends previous methods for detecting data fields in semi-
structured web pages by matching those fields to domain schema columns
using robust models of data values and contexts. Annotating 2–5 pages
for 4–6 web sites yields an extraction accuracy of 83.8% on job offer sites
and 91.1% on vacation rental sites. These results significantly outperform
a baseline approach.

1 Introduction

This work addresses the problem of extracting structured records from semi-
structured web pages with no human supervision required for the target web site.
Semi-structured web pages are human-readable renderings of database entries.
Familiar examples of semi-structured web page domains include books for sale,
properties for rent, or job offers. We develop techniques that learn extraction
models applicable to an entire domain of web sites from just 2–5 annotated
pages from each of 4–6 web sites within that domain. The end result is a high-
accuracy system that can be applied to many web sites within a domain without
any human annotation of those sites.

In this work, we extract data from detail pages of web sites. These are pages
which correspond to a single data entity, and which render various attributes of
that entity in a human-readable form. An example detail page is shown in Fig. 1.
While we focus on the setting where a page contains one record in this work, our
methods could be easily adapted to the case where multiple data records exist
on one page through use of existing data record detection algorithms (e.g. [1]).

⋆ Published in the Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, 2008.

Fig. 1. Part of an example detail page from the vacation rental domain. The page is
about a particular house and displays attributes of that house such as its location,
occupancy limit, and number of bathrooms.

Extracting structured records from semi-structured web pages is an impor-
tant problem because a great deal of information on the internet is presented in
this form. Moreover, the resulting structured records are particularly valuable to
downstream learning or querying systems because of their attribute/value struc-
ture and conformance to a fixed domain schema. Solving this problem without
requiring human supervision for each target web site has been an understudied
topic. Most previous work on this problem has required human supervision by
requiring a person to either annotate example web pages from each target web
site [2–4] or map the extracted data fields for each target site to columns in a
domain schema [5–7]. The work that did not require supervision for each target
site was not robust to typical variations on semi-structured web sites, such as
cases where data fields do not have a label and do not match some unique pat-
tern [8]. Our method only requires human supervision for a few web pages from
a few sites in the target domain, allowing minimally supervised extraction from
potentially hundreds or thousands of other sites within the same domain.

Our basic approach is to generalize extraction on a per-domain basis (e.g.,
for vacation rental sites). In taking on a new domain, first a human decides what
the domain schema should be: that is, what schema columns are interesting and
are present on many sites in the domain. Next, we annotate a small number of
pages (2–5) for each of a few (4–6) web sites in the domain. These are provided
as training data to an existing supervised extraction system3, which learns a site-
specific extraction model for each of the 4–6 sites; each model is then applied

3 A supervised information extraction system making use of the partial tree alignment
algorithm from DEPTA [7].

Fig. 2. A high-level view of learning under our system. By annotating 2–5 pages for 5
vacation rental sites, we train an extraction system that can be applied to thousands
of other vacation rentals sites with no additional supervision required.

to all of the detail pages on the corresponding web site, yielding 4–6 machine-
annotated sets of detail pages to be used as training data for our model. Finally,
via the method presented in Sect. 3, we model both page contexts and values
for each column in the domain schema, learning how to perform extraction for
new vacation rental sites4 with no additional human labeling effort. Figure 2
illustrates this learning scheme.

The experiments described in Sect. 4 measure an extraction accuracy of
83.8% on a previously unseen domain (job offer sites, which were all completely
held out until evaluation time, providing a fair evaluation of how the system
would perform in practice on other domains) with no direct supervision on the
target sites being labeled. For previously unseen web sites in the vacation rentals
domain (other vacation rental sites were used in algorithm development) we ob-
served an accuracy of 91.1%. These results show a strong improvement over
baseline accuracies of 61.8% for job sites and 65.8% for vacation rental sites,
which were obtained using a logistic regression model. Other performance mea-
sures, also discussed in Sect. 4, indicate that use of our system for aiding human
annotators is extremely promising, allowing a very small amount of effort to
further increase accuracies.

4 Sites amenable to document object model tree alignment (implying that site-internal
templates are used for automatic page generation), and making only trivial use
of Javascript. We have observed that roughly 50% of vacation rental sites can be
expected to meet these criteria.

2 Related Work

There has been much previous work on supervised learning of models for ex-
traction of structured records from semi-structured web sites [2–4]. Such work
requires a user to annotate training pages on a target web site, and then learns
to extract data from the rest of the site. This process is labor-intensive, as it
requires a new, separate labeling for every site.

Other previous work does not require a user to fully label example pages
on the target web site, but does require manual labeling of the output. These
approaches extract data fields by learning a common template for a page or site.
Then, the user typically selects a subset of the output data fields and labels
them according to the domain schema. Examples of such work are IEPAD [5],
OLERA [6], and DEPTA [7]. This can be a labor-intensive process, because
web sites tend to have many irrelevant fields, and thus the user must select
from many more data fields than there are schema columns (web sites in our
evaluation had an average of 20 data fields and 7 schema columns). Our work
extends these methods, providing an automatic labeling of the extracted data
by automatically mapping data fields to schema columns. This paper uses the
partial tree alignment method of DEPTA to detect data fields, but many other
template-finding algorithms, such as the repetitive pattern finding method of
IEPAD, or the string editing distance method of OLERA, could be used in its
place. Thus, this paper fills an important gap by allowing use of any one of a
number of previous methods for detecting data fields on a web site, and providing
minimally supervised selection of relevant fields and mapping to schema columns.

An exception to the requirement of user labeling of detected data fields is
the DeLa system [8], which uses heuristics to automatically label extracted data
fields. The heuristics depend on matches between the name of a schema column
and labels present on a web page, or on data conforming to specific formats (e.g.
dates or prices). There are many common cases where the DeLa system cannot
label data fields. For example, the DeLa heuristic misses a common case where
a data field does not have a label (for example, the job title field on most job
sites is a heading with no prompt or label). Also, the DeLa heuristic would be
confused by sites with multiple fields of the same data type (for example, the
bedrooms, bathrooms, and maximum occupancy fields in vacation rentals). Our
methods are much more robust to the variations typical on semi-structured web
sites, and can handle these cases.

We label extracted data fields by comparing them to data fields on other
annotated sites from the same domain. The only other previous work that we
found that uses this approach to label semi-structured data is that of Golgher
et al. [9]. This work bootstrapped onto new sites using examples of structured
records from other web sites. These example records discarded the page context
in which values appeared on the training web pages, and thus their system could
not generalize across web sites based on context (our results in Table 1 demon-
strate the high value of contextual features for the vacation rentals domain).
Also, their model matched data values only at the token level, discarding useful
textual features such as matches of short subsequences of characters.

Our method is partly inspired by techniques for schema matching in the
database community. Specifically, the authors in [10] match elements in different
database schemas by learning a model of schema columns which combines the
output of several base classifiers using a logistic regression meta-classifier. Our
work applies a similar technique to a different problem. We match data fields on
different web sites to a domain schema, rather than working with database fields.
We also use different types of features, and we take advantage of the availability
of distributions of data values by comparing frequencies of different values.

Freitag used a multi-strategy learning method where regression models were
learned to map confidence scores to probabilities for various information extrac-
tion strategies. The probabilities were then combined in a Bayesian manner to
make final predictions [11]. Our work uses a simpler, more direct method of com-
bining models— we use a regression model for each schema column to combine
confidence scores from our strategies (classifiers for each schema column that
use some feature type to classify data fields). Additionally, our method classifies
site-level data fields rather than individual data values, allowing better decisions
to be made because more information is available at the site level.

3 Methods

In this paper, a domain schema is a set of attributes usually present in a record
for the selected domain, while a schema column is a single attribute within that
schema. A detail page of a web site is a page that corresponds to a single data
record. A data field on a web site is a location within a template for that site (in
this work, a node within a DOM tree template for that site), and a data value is
an instance of that data field on a single detail page from that site. Data values
appear in contexts which in this work are the text preceding a data value.

The central idea of our method is that we can bootstrap from a few training
sites by building a model of data values and contexts for each schema column
in our target domain schema, and then apply that model to many more sites
with no further human effort. As training data, we require a collection of detail
pages from a small number of web sites within the target domain that have been
automatically labeled using a supervised wrapper induction algorithm according
to some domain schema5. At test time, our method takes a collection of detail
pages from a previously unseen target site6 in the same domain. The goal is to
annotate these pages according to the domain schema, identifying where schema
columns are expressed in spans of text on the pages. We do this by first detecting
potential data fields on the pages, and then classifying the data fields using a
model learned from the training data.

5 As mentioned in Sect. 1 acquiring this training data requires annotating 2–5 pages
from 4–6 web sites to train a supervised system for each site, and then extracting
records from the rest of the pages from the training sites.

6 Our work assumes the availability of automatic methods for identifying such pages.
To implement this ability we could use an approach that clusters and classifies pages,
such as [12].

More specifically, we use the following method:

1. On the target site, create a template for the detail pages that identifies
aligned regions across pages that look like potential data values. We consider
these regions to be potential data fields. Our method for identifying these
data fields is described in Sect. 3.1.

2. Based on the machine-annotated training data from a few training sites, label
the detected data fields on the target site with a score that indicates how
likely they are to be instances of each schema column in a domain schema.
This is described in Sect. 3.2 below.

3. Using these scores, either automatically annotate the target site, or else give
recommendations to aid a human annotator (these are alternate uses of our
output). Details of this procedure are given in Sect. 3.3.

Fig. 3. Alignment of document object model trees and subsequent detection of data
fields.

3.1 Detecting Data Fields

We detect data fields across the pages on the target site by using the Partial
Tree Alignment algorithm, which is part of the DEPTA system [7]. The data

field detection is done in an unsupervised manner as follows. First, document
object model (DOM) trees for the detail pages on a site are aligned. Next, the
strings occurring at aligned nodes are enumerated and inserted into a set. Any of
these sets containing more than one element, then, corresponds to a region in the
“template” for detail pages that exhibits variability across pages. Such regions
(aligned DOM tree nodes exhibiting variability) are taken as the candidate data
fields for the site. This process is illustrated in Fig. 3. Data fields that aligned
to fewer than half of the pages on a site were filtered out, because these were
typically not interesting data fields. Such filtered data fields tended to be different
paragraphs of free text which the tree alignment algorithm occasionally decided
to align. In effect, this filtering step ignores free text data fields which do not
occur on all pages of the site and are not interesting data fields.

3.2 Classifying Data Fields

For each data field on the target site, we assign a score representing its corre-
spondence to each schema column in the domain schema. A high score indicates
a high degree of confidence that a data field should be mapped to that schema
column. Informally, we find data fields on the target site that have data values
that are similar to the values observed in the training data for a schema column,
and we also want to find data fields that appear in page contexts that are similar
to contexts from the training data.

To compute the score for a data field f and a schema column c, an obvious
method to try is to extract a set of features for the data field, and use a classifier
to map data fields to schema columns, where we train the classifier with our
training sites. However, we discuss below in the ‘Motivation’ subsection that
this method is impractical given the number of different textual features we must
use (tens of thousands) and the number of training examples we have (roughly
one hundred), so that a single classifier will tend to overfit and give irrelevant
features high weights. Instead, we use a model that computes, for K different
feature types, how similar the feature values observed for that data field are to
the feature values observed in the training data for that schema column. This
yields K different subscores, one for each feature type. We then combine those
scores using a regression model that outputs a final score. The intuition is that
for each schema column, different types of features matter, and that comparing
distributions of observed features is much less noisy than singling out individual
features in our model.

In the rest of this subsection, we describe the types of features that we use
to represent data fields and schema columns. We then give details about our
method for comparing different distributions of values of these features, describe
the regression model that combines the similarity scores for each feature type,
and give details on how we train the model. We end the subsection with further
discussion of the motivation behind our model.

Feature Types Our method uses four different feature types. A feature type
is a family of features, such as ‘lowercase tokens occurring in data values of a

Fig. 4. Feature type distributions are created for data fields in aligned document object
model trees. This is done for both training and test sites, so that the resulting distri-
butions can be compared. In the figure, counts exceeding 1 are indicated by subscripts.

data field.’ Our method combines different types of features because there can
be different indicators of the correct label for a data field. We might sometimes
have strong clues from the text before a data field (e.g. it might always say
‘Bedrooms:’, indicating that the data field holds the value for bedrooms). We
might also have strong clues from the text inside a data field (e.g. ‘Software
Engineer Level I’ indicating a job title). See Fig. 4 for an illustration of the
feature type distributions for an example data field. We use the following feature
types:

– Precontext character 3-grams: We extract character 3-grams from the non-tag
text preceding a data field in HTML. Web sites often abbreviate or use different
forms of labels, such as “Bedrooms”, “Beds”, “Bedrms”. Character 3-grams can
capture these variations.

– Lowercase value tokens: We tokenize data values by whitespace, and convert
them to lowercase. Many of the schema columns that occur in semi-structured data
have values that come from a limited vocabulary.

– Lowercase value character 3-grams: We extract character 3-grams of the data
values. Many types of data can be abbreviated, or use similar but not identical
words, or use special symbols or codes, all of which can be better captured using
character 3-grams.

– Value token types: We categorize tokens in data values into general types (e.g.
all caps, all digits, title case). These features are helpful for addresses, unique IDs,
or other schema column types with a mix of token types.

Comparing Distributions of Feature Values We compare distributions of
features observed in training data to distributions observed in data fields to be
labeled on the target site. This approach uses all of the data, including relative
frequencies of features, to make its predictions. This is an advantage in cases

such as the vacation rental domain, which includes schema columns bedrooms

and bathrooms which have very similar data values but, typically, different dis-
tributions of these values. Additionally, comparing distributions of features helps
us avoid overfitting when dealing with high-dimensional feature spaces and small
numbers of training examples.

A common method of comparing two distributions is Kullback-Leibler Diver-
gence, or KL-Divergence. For the kth feature type, we have a distribution Pkc

for the schema column c in the training data, and Pkf for the data field f in the
target site. The KL-Divergence from the training data distribution to the data
field distribution for feature type k is:

KLk(c||f) =
∑

i

Pkc(i) log
Pkc(i)

Pkf (i)
(1)

An issue with KL-Divergence is that when Pkc(i) > 0 and Pkf (i) = 0 for
some feature value i, the KL-Divergence is undefined. To counter this, we use
Skew Divergence, a smoothed version of KL-Divergence [13]:

SDk(c||f) = KLk(c||α ∗ f + (1 − α) ∗ c) (2)

Note that α = 1 gives the original KL-divergence. A value close to 1 gives a
slightly smoothed KL-Divergence. We use α = 0.8 in this work.

We alter the Skew Divergence with a simple transformation to create the
Skew Similarity score, which has value 0 for the data field f most dissimilar
from the schema column c, and highest value for the data field which is most
similar to the schema column in the training data.

SSk(c, f) = [max
f

SDk(c||f)] − SDk(c||f) (3)

Our choice of Skew Divergence as the method of comparing distributions is
one of many reasonable choices. We chose to use a smoothed version of the KL-
Divergence. Other measures of the distance between two distributions, such as
the Jensen-Shannon divergence, would also be reasonable.

Combining Skew Similarity Scores Skew Similarity scores for different fea-
ture types will have different scales, and in some cases might actually be mislead-
ing (for instance, if contextual features are not helpful for some schema column
in a domain, we want to ignore the Skew Similarity score for these features).
Thus, we cannot simply average or sum the scores. Instead, we combine Skew
Similarity scores for the different feature types using a linear regression model.
A data field f on a target site is given a score LRc(f) for a schema column c

using a linear regression model which combines the K different similarity scores
(one for each feature type). The final score is a weighted combination of the
Skew Similarity scores plus a constant:

LRc(f) = β0c +

K∑

k=1

βkcSSk(c, f) (4)

If we view the Skew Similarity scores as different classifiers, each making
predictions based on models over features learned from training data, then this
overall model can be viewed as a stacked classifier model. Stacking, which gen-
erally refers to using the outputs of classifiers as inputs to another classifier, has
been shown to often be an effective way of combining the predictions of multi-
ple classifiers [14]. Our choice of linear regression as the ‘top-level’ classifier was
motivated by the good empirical performance observed across a wide variety
of data sets in previous work on stacking [14], and by ease of implementation.
A number of other choices could be made for the top-level classifier, including
logistic regression if posterior probability estimates were desired.

Training the Model Training the stacked classifier regression model involves
learning the weights β. This is done by holding out each training site, and gen-
erating data points for the linear regression for each data field on the held-
out site with Skew Similarity scores computed relative to the other training
sites. Using such a held-out approach to training the model is important, be-
cause otherwise the training examples will have very biased estimates of the
accuracies of the Skew Similarity scores (they will appear to be much better
than one would expect on held-out data). For every data field f on a train-
ing site and every schema column c in the domain, we generate an example:
(δ(c, f), SS1(c, f), SS2(c, f), . . . , SSK(c, f)) where δ(c, f) = 1 if the data field f

is annotated with schema column c in the training data and 0 otherwise. The
coefficient βkc controls how strong an indicator feature type k is for schema
column c. The coefficients allow our method to learn which feature types are
reliable indicators on a per-domain, per-schema column basis, which is essential
for robust performance across a wide variety of domains and sites.

Motivation for the Model One might question why we did not use a model
for each schema column that learned a classifier over a feature vector that held all
of the features that describe a data field. The key reason is that each annotated
training site yields only as many training examples as there are data fields on
that site. For example, with 5 training sites and an average of 20 data fields
detected per site (typical values in our setting), we would have 100 examples,
most of which would be negative examples. With the various character n-gram
features and token features that we need in order to robustly recognize variations
of data values and contexts, the dimensionality of the feature vectors would reach
tens of thousands of features. It is difficult to train a reliable classifier in such
a setting. Even with appropriate feature selection and regularization methods,
with so few training examples and so many features, overfitting seems inevitable.

We instead chose a stacked model that combines a small number of similar-
ity scores. Our choice was motivated by several reasons. First, a similar model
design that combined a set of base learners with a regression-based classifier has
been shown to be useful for a related problem, matching database schemas [10].
Second, such a model has to learn only k + 1 parameters for each schema col-
umn, where k is the number of base learners to combine. In our setting, where

k = 4, we can expect to obtain sensible estimates of these parameters. Third,
similarity measures like Skew Divergence are effective ways to compare distri-
butions of values and summarize them with a score. Finally, we desired a model
that could be easily extended with additional sources of information, which our
model facilitates. The new information can be simply added to the regression
model.

In our evaluation, we compare these two approaches, using a regularized
logistic regression classifier as a baseline approach that uses all features at once.
Our results suggest that overfitting is a significant issue for the baseline method,
and that our model yields superior performance.

3.3 Labeling the Target Site

After we have computed a score for each possible mapping of a data field on the
target site to a schema column, we must output a labeling of the target site. The
output of our method depends on the application setting. If we are operating in
a fully-automated setting, the system chooses the data field f which maximizes
the score LRc(f) for each schema column c, and annotates all pages on which
those data fields occur with the appropriate labels (a data field does not always
occur on every page). Not all schema columns occur on every target site, so we
choose no data field if the maximum linear regression score is below a threshold
θ for a schema column7.

If we are aiding a human annotator, we recommend the top N data fields on
the target site for each schema column. This dramatically reduces the annotation
effort required, as the annotator only has to look at a handful of data fields.

We consider both scenarios in our evaluation.

4 Evaluation

The evaluation of our method was designed to measure the accuracy of au-
tomatically labeling new sites, and also to measure how well we could make
recommendations to human annotators. Given a collection of annotated sites for
a domain, we performed our evaluation in a cross-validated fashion, training the
system on all but one of the sites, and testing on the held-out site. We used as
our gold standard the nearly-perfect machine annotations from our supervised
extraction system (hand-checking a large sample of annotations failed to find any
errors in many dozens of pages, implying that they were over 99% accurate). In
the results below, we refer to our method as the ‘Stacked Skews Model.’

4.1 Baseline Method

As discussed in Sect. 3.2, an obvious approach to the problem we consider is to
extract a feature vector describing each schema column from each training site,

7 We used θ = 0.1 in this work, selected based on the development data.

and train a multiclass classifier to classify data fields with which schema column
they match (and to decide which data fields are irrelevant). To evaluate the
performance of our system relative to this baseline, we implemented a regularized
logistic regression classifier as our baseline method. The output of the classifier is
used just as the output of the linear regression model is in our system, with the
highest scoring data field for each schema column being mapped to that schema
column. We hand-tuned the threshold below which the baseline decides that a
schema column is not present on a target web site (we used a value of 0.2, which
optimized the test results for the baseline). In the remainder of this section, we
refer to this baseline method as ‘Logistic Regression.’

4.2 Metrics

The metrics we used to evaluate our system are:

– Accuracy: On each page of the test site, we create an annotation for each schema
column in the domain schema, or assert that the schema column is not present on
the page. We measure the accuracy of these decisions8.

– Recall in Top 3: For a test site, we select the top 3 data fields for each schema
column. On each page of that test site, we check to see if each correct annotation
on that page is in the top 3 ranked data fields for its label.

4.3 Domains

We evaluated our system using two different domains: vacation rentals and job
sites. Vacation rental sites list properties offered for rent, with attributes such
as number of bedrooms, maximum occupancy, and a text description of the
property. Job listing sites describe open job positions, and include attributes
like the company offering the job, the date it was posted, and the location of
the job. Refer to Fig. 6 for the complete list of schema columns for each domain
schema. We developed our methods using other sites in the vacation rentals
domain than the ones we ultimately trained and tested on. The vacation rental
sites used in our evaluation were not seen until the system development was
finished, nor were any sites in the jobs domain.

4.4 Web Sites

We selected web sites for each domain that had most of the schema columns
listed in Fig. 6 present and that were amenable to tree alignment. We were
unable to find publicly available data suitable for our evaluation; while there
was limited annotated data available publicly for job sites, our method needed
at least 5 different sites in a domain annotated with a similar schema. Job sites
had 240 pages and 17 detected data fields on average. Vacation rental sites had
151 pages and 25 detected data fields on average.

8 Some schema columns appear on pages in multiple locations. Any correct location
is acceptable.

 0

 20

 40

 60

 80

 100

ajhrealtor

atlantic

barefoot

bryson

holdenbeach

Average

A
cc

ur
ac

y
(%

)

Vacation Rental Site

 0

 20

 40

 60

 80

 100

ajhrealtor

atlantic

barefoot

bryson

holdenbeach

Average

R
ec

al
l i

n
T

op
 3

 (
%

)

Vacation Rental Site

 0

 20

 40

 60

 80

 100

ajcjobs

cleveland

com
pwork

dice
hotjobs

jobcircle

techcentric

Average

A
cc

ur
ac

y
(%

)

Job Site

Logistic Regression
Stacked Skews Model

 0

 20

 40

 60

 80

 100

ajcjobs

cleveland

com
pwork

dice
hotjobs

jobcircle

techcentric

Average

R
ec

al
l i

n
T

op
 3

 (
%

)

Job Site

Fig. 5. Results for Logistic Regression and Stacked Skews Model when holding out
each site from the training data and testing on it, averaged across schema columns.
The ‘Average’ columns give results averaged across sites and columns. (Top and Bottom
Left) Accuracy and Recall in Top 3, respectively, for each site in the jobs domain. (Top
and Bottom Right) Accuracy and Recall in Top 3 for the vacation rentals domain.

 0

 20

 40

 60

 80

 100

Address

Bathroom
s

Bedroom
s

Description

Prop. Type

Sleeps

Title
Average

A
cc

ur
ac

y
(%

)

Vacation Rental Schema Column

 0

 20

 40

 60

 80

 100

Address

Bathroom
s

Bedroom
s

Description

Prop. Type

Sleeps

Title
Average

R
ec

al
l i

n
T

op
 3

 (
%

)

Vacation Rental Schema Column

 0

 20

 40

 60

 80

 100

Com
pany

Date
ID Job Type

Location

Title
Average

A
cc

ur
ac

y
(%

)

Job Schema Column
Logistic Regression

Stacked Skews Model

 0

 20

 40

 60

 80

 100

Com
pany

Date
ID Job Type

Location

Title
Average

R
ec

al
l i

n
T

op
 3

 (
%

)

Job Schema Column

Fig. 6. Results for Logistic Regression and Stacked Skews Model by schema column,
averaged across using each held-out web site as a test set. The ‘Average’ columns give
results averaged across sites and schema columns. (Top and Bottom Left) Accuracy
and Recall in Top 3, respectively, for each schema column in the jobs domain. (Top
and Bottom Right) Accuracy and Recall in Top 3 for the vacation rentals domain.

Table 1. Results from feature type ablation experiments with the Stacked Skews
Model. The top 4 rows give results for leaving out one feature type, and the rows
below those give results with just one feature type.

Jobs Vacation Rentals

Features Accuracy Top 3 Accuracy Top 3

Excl. Context n-grams 85.3 95.1 54.4 86.5
Excl. Value n-grams 75.1 89.7 91.1 99.9
Excl. Value Token Types 83.8 95.1 91.1 99.8
Excl. Value Tokens 73.7 89.7 85.4 99.9

Only Context n-grams 41.8 61.1 77.0 89.9
Only Value n-grams 68.0 97.8 62.8 99.8
Only Value Token Types 30.2 48.2 31.3 46.5
Only Value Tokens 71.4 81.6 54.3 89.9

All 83.8 95.1 91.1 99.9

4.5 Results

Results by Site Figure 5 shows results for each site, averaged across the dif-
ferent schema columns in the domain, for both the Logistic Regression baseline
and our Stacked Skews Model. Averaged across all sites and schema columns (in-
dicated by the ’All’ column in the figure), our method achieved an accuracy of
91.1% for vacation rental sites, and 83.8% for job sites, significantly higher than
the baseline accuracies of 65.8% and 61.8%. The results are reasonably consis-
tent across different sites. Additionally, the correct data fields for vacation rental
sites were present in the top 3 recommendations 99.9% of the time, and 95.1%
for job sites. The baseline classifications of data fields had the correct answers
in the top 3 only 80.3% and 86.5% of the time. As an additional comparison,
random assignment of data fields to schema columns would have an expected
accuracy of 5.9% for job sites, and 4.0% for vacation rentals, and an expected
top 3 performance of 17.6% for job sites, and 12.0% for vacation rentals.

Results by Schema Column Figure 6 gives results for each schema column
for our methods, averaged across web sites. We see that our method is generally
accurate for a wide range of data types, and nearly always exceeds the baseline
results. Our method is particularly better suited to schema columns which tend
to have free text (for example, the description and title schema columns for
vacation rentals, and the company and ID schema columns for jobs). We believe
that this is due to the logistic regression’s tendency to overfit when many different
features can perfectly classify the training data. The baseline method fares much
better for schema columns with more limited vocabularies.

Referring to the Stacked Skews Model results for individual schema columns,
most of the schema columns have high accuracy. The cases where performance
suffered were the job type schema column, which has high variation in both
contexts and values (some sites even use special codes as values for this schema

column), bathrooms, which had trouble when there was also a ‘Half Bathrooms’
item on a site, and property type, where one site incorrectly labeled a data field
as property type because it was preceded by the text ‘Property Type’ on the site,
but it was a different sense of property type from the intended meaning from
our domain schema9.

Identifying Missing Schema Columns Most of the schema columns in each
domain were present on our evaluation sites. In the case where a column was
not present on a site, the accuracy metric required us to correctly identify that
column as missing, or else it was considered an incorrect answer. Identification
of such missing columns was described in Sect. 3.3. We evaluated the accuracy
of our model for these cases, to see if they were a significant source of error
in our evaluation. For each domain, there were 5 cases where a schema column
was missing from a site. The Stacked Skews Model identified missing schema
columns for vacation rentals with an accuracy of 80.0%, and a lower accuracy of
49.3% for job sites. This is because most job listing sites had some unstructured
text describing the job, in addition to well-formatted sections which typically
held our extraction targets. Often when a schema column was not present in the
semi-structured text of a site, one of the data fields corresponding to the free
text was chosen.

Feature Type Ablation Study To assess the contributions and relative im-
portance of each of the feature types, we ran ablation experiments where we used
subsets of the four feature types. We considered combinations where we held out
each feature type, and also where we used each feature type alone. Table 1 gives
results for these experiments. We see that context features are very informative
for the vacation rentals domain, but not informative for the jobs domain (in fact,
excluding them improves average accuracy). The value token type features do
not appear to be useful for either domain. In general, we see that using multi-
ple feature types in combination allows the system to achieve higher accuracies
than any single feature type, indicating that the different feature types provide
complementary information, and that our stacking method effectively combines
these sources of information.

5 Conclusions

This work addressed the problem of extracting structured records from semi-
structured web pages. The system we described demonstrated a way to learn
high-quality automated extraction systems for large numbers of semi-structured
web sites, by exploiting a tiny, fixed amount of human effort per domain of
interest. Starting from manual annotation of 2–5 pages each on 4–6 sites in
a domain, we bootstrapped a system that achieves high accuracies even on a

9 Our domain schema included a notion of property type as a house, townhouse,
condominium, etc. The site’s notion of property type was beachfront vs. not.

domain, jobs, that was not considered during development of our model. This
performance is encouraging for use either as a standalone extraction system
for certain applications, or as an aid to human annotators. The performance
significantly exceeds the performance of a competitive baseline method.

Acknowledgments Most of this work was done during an internship at Google
in Pittsburgh. The authors wish to acknowledge Kamal Nigam, William Cohen,
Gideon Mann, and the anonymous reviewers for their helpful comments, William
Morris and Dominic Widdows for assistance with annotating data, and Haakan
Younes for his reimplementation of the Partial Tree Alignment algorithm.

References

1. Liu, B., Grossman, R.L., Zhai, Y.: Mining data records in web pages. In: KDD.
(2003) 601–606

2. Soderland, S.: Learning information extraction rules for semi-structured and free
text. Machine Learning 34(1-3) (1999) 233–272

3. Kushmerick, N., Weld, D.S., Doorenbos, R.B.: Wrapper induction for information
extraction. In: IJCAI. (1997) 729–737

4. Muslea, I., Minton, S., Knoblock, C.: A hierarchical approach to wrapper induction.
In: AGENTS. (1999) 190–197

5. Chang, C.H., Lui, S.C.: IEPAD: information extraction based on pattern discovery.
In: WWW. (2001) 681–688

6. Chang, C.H., Kuo, S.C.: OLERA: Semisupervised web-data extraction with visual
support. IEEE Intelligent Systems 19(6) (2004) 56–64

7. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW.
(2005) 76–85

8. Wang, J., Lochovsky, F.H.: Data extraction and label assignment for web
databases. In: WWW. (2003) 187–196

9. Golgher, P.B., da Silva, A.S., Laender, A.H.F., Ribeiro-Neto, B.A.: Bootstrapping
for example-based data extraction. In: CIKM. (2001) 371–378

10. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema match-
ing. In: ICDE. (2005) 57–68

11. Freitag, D.: Multistrategy learning for information extraction. In: ICML. (1998)
161–169

12. Crescenzi, V., Mecca, G., Merialdo, P.: Wrapping-oriented classification of web
pages. In: SAC. (2002) 1108–1112

13. Lee, L.: Measures of distributional similarity. In: ACL. (1999) 25–32
14. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial

Intelligence Research 10 (1999) 271–289

