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Abstract
Multiple architectural views of a system are often helpful in describing a system's design. While there are
numerous languages for describing the contents of an individual architectural view, to date those
languages have not supported the description of relationships between views. In this report we describe an
extension to Acme for expressing maps between the structural aspects of architecture and for expressing
constraints over those maps.

1. Introduction

A system's software architecture defines its overall structure. In practice, software architectures are usually
described in an informal and idiosyncratic way, using box and line diagrams with associated prose.
Recognizing the need for more precise descriptions of software architecture, various Architecture
Description Languages (ADLs) have been introduced. Examples of ADLs include Acme, Armani, Aesop,
Adage, Meta-H, C2, Rapide, SADL, UniCon and Wright [10, 5, 2, 4, 3, 8, 13, 12, 14, 1]. These ADLs are
able to describe the structure of a software system in terms of components and connectors. Additionally,
most of them support certain kinds of analysis over the topology and properties of the structure, such as
design rule analysis supported by Armani [10] and architectural compatibility analysis and deadlock
detection supported by Wright [1].

In practice, while describing a software architecture precisely is an important step towards making
architecture design more rigorous, it often helps to have multiple views of the same system. For example,
Kruchten proposes a model in which five concurrent views of the same software architecture capture
different set of concerns [1]. The Meta-H notation requires a hardware view that shows the hardware
structure and a software v7ew that shows the software application running on the hardware [2]. Multiple
views could also be the result of system evolution, in which case different versions of the system may be
represented using different views.

In all of these cases, there are important relationships between these views. Those relationships might
show, for example, which part of the software architecture runs on which processor or which part of one
architectural design has the same functionality as that of an alternative design. Knowledge of those
relationships helps designers to better understand the system and to reason about it. In this paper we discuss
the problem of capturing relationships between different system views and present an approach for doing
this.

In general, describing arbitrary relationships – or "maps" – between architectural views is a hard problem,
since each architectural view may have its own semantics. The capability of addressing arbitrary kinds of
maps requires a deep understanding of the properties of individual views, making a generic means of
mapping between views difficult to define. Nonetheless, despite the differences in semantics, most views
describe their structures using common structural notations. Medvidovic and Taylor argue that all
architectural descriptions must explicitly specify their components, connectors, and architectural
configurations[9]. Their survey show that all ADLs provide means for structural specification. The
universal use of structural notations makes it possible to describe maps between structural elements of most
views.

Furthermore, besides the universal usage of structural notations, many ADLs carry semantic constructs
with structural descriptions. For example, Acme and Armani use properties that are attached to structural
constructs to carry non-structural information and semantics; Wright attaches protocols to components and
connectors to describe their behavior; Armani also uses predicates to impose constraints on structural
constructs [10, 5, 6, 1]. A structural map description therefore provides a solid basis for describing more
sophisticated maps that address those semantic constructs. In this paper we present an approach for
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describing structural maps between different views. We also show how structural maps can capture some
relationships between the semantic constructs.

When architecture descriptions are written in ADLs, it is also natural to try to describe maps between
architectures using an ADL. Some ADLs have mechanisms for mapping between specific views. For
example, Meta-H provides its own mechanism for mapping between software and hardware views [2];
SADL allows one to characterize mapping between refinement levels [12]. However, each of these
capabilities is tied to the specific semantics of particular kinds of views and to the semantics of a particular
ADL.

In this paper we propose a different approach. Instead of ADL-specific views, we consider the general
problem of mapping between architectural structures. Specifically, we show how to add an extension of
structural maps (and map types) to Acme, a generic language for characterizing architectural structures.
The goal is to permit the view specifier to identify classes of maps, based on the types of structure and
constructs, and their relationships. Map types impose constraints on their instances. Maps between specific
architectural descriptions are the instances of these classes, and they have to satisfy the constraints imposed
by their types. This work can be viewed as a first step towards supporting multiple views in software
architecture by focusing primarily on flexible relationships between structural elements.

In Section 2 we go over the requirements of a mapping extension. Section 3 gives an overview of Acme
and why we choose Acme as the platform of our extension. We give an overview of the mapping notation
using some couple of simple examples in Section 4. The formal syntax of the mapping extension is given in
Section 5. Section 6 uses more examples to illustrate further aspects of the mapping extension. Section 7
briefly presents our implementation of mapping tools and points out future research directions.

2. Requirements

If we treat the problem of describing architectural views as one in which we extend existing ADLs with
mapping constructs, then there are some natural requirements that we would like such an extension to
satisfy. These are:

• Expressive power. The extension should be able to describe a wide variety of maps. In particular, in
the context of structural maps, our extension should allow maps between arbitrary number and types of
structural elements.

• Map classification support and reusability. The extension should support classification of maps. It
should also allow the user to build a map by extending an existing map description, thus reusing the
existing description.

• Analyzability. There are various kinds of constraints that the specifier might want a map class or
instance to satisfy. The constraints could be on all instances of a map class or on a single map instance.
Our extension should support formal notations for such constraints. It should also support formal
analysis on these constraints.

3. Background of Acme

Acme is a simple, generic ADL. As a second-generation ADL, Acme presents a simple but comprehensive
core set of concepts for defining system structures. In particular, Acme uses seven constructs to specify an
architecture – components, connectors, ports, roles, systems, representations and rep-maps. In contrast to
some first-generation ADLs, Acme treats components as first-class entities and provides all the
architectural modeling features mentioned in Medvidovic and Taylor’s ADL comparison framework [9].
Acme’s powerful structural modeling ability makes it a good base for our structural mapping extension.

Besides providing a common infrastructure for describing architectural structures, Acme also provides a
flexible annotation mechanism supporting association of non-structural information using virtually any
externally-defined languages. Extra-structural information can be annotated in other languages and be
attached to structural constructs as properties. The ability to describe properties makes it possible to specify
any auxiliary information of a structure. A mapping extension built on top of Acme can use this ability to
carry non-structural information or constraints with maps.
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Furthermore, Acme is an interchange language. That is, architectural descriptions written in other ADLs
can be encoded in Acme. Hence our mapping extension to Acme is not ADL-specific. Any ADL can use
our mechanism by translating their descriptions to Acme first.

The designers of Acme claim that Acme plays the following key roles in the software architecture
community. 1 One role is as a basis for new architecture design and analysis tools, the other is as the
starting point of new domain-specific ADLs[6]. These two roles imply that Acme is a good base for new
architectural description mechanisms and our experience of extending it with the mapping mechanism
supports these claims.

4. Overview of Approach

In this section we give an informal overview of our approach to describing maps between views. A formal
syntax of our notation is given in Section 5. Formal semantics of our notation is given in Appendix B and
C. More examples are given in Section 6.

To illustrate our approach, consider two views of a design of the architecture for a compiler. An abstract
pipe-and-filter architecture is depicted at the top of Figure 12 as Sys1. A more concrete (i.e.,
implementation-oriented) architecture that is a hybrid of pipe-and-filter and shared-memory styles is shown
at the bottom of Figure 1 as Sys2. Complete declarations of Sys1 and Sys2 in Acme can be found in
Appendix A.

1 Garlan et. al. claim in [4] that Acme plays four key roles in the software architecture community. Here we
list only the two that are relevant to the mapping extension.
2 The two architectures shown in Figure 1 are simplified versions of the example used in [7].

Figure1: Two architectures for a compiler
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4.1 Basic Maps

As a refinement of Sys1, Sys2 has much in common with Sys1. For example, intuitively we would expect
the data-processing components in Sys2 to be "similar" to their corresponding components in Sys1. The
similarity could include similar functionality and performance, etc.

Figure 2 shows how we might indicate this intuitive correspondence more formally as a map. 3 In this
declaration "comp_map" is the name of this map. In the brackets ("{}") is the map body, which consists of
pairs of elements that are associated by this map. Each of these pairs is called a maplet. 4

Map comp_map with {
Sys1.analyzer to Sys2.analyzer;
Sys1.parser to Sys2.parser;
Sys1.generator to Sys2.generator;

}

Figure 2. Declaring a map between components of Sys1 and Sys2

4.2 Map between Element Aggregations

Figure 2 declares a map between data-processing components of Sys1 and Sys2, with each maplet
associating two components that directly correspond in each architecture. It is not as straightforward,
however, to declare a map between the two architectures based on the similarity of connectors. Though it is
not hard to find Sys1.Token’s functional correspondence in Sys2, there is no single connector or component
in Sys2 that takes the same responsibility as Sys1.AST does in Sys1. Sys1.AST’s responsibility is to transmit
data and control flow from Sys1.Analyzer to Sys1.Generator. In Sys2, the same responsibility is carried out
collectively by Sys2.write, Sys2.ast, Sys2.read, and Sys2.Ordering.

To address the aggregation of these elements as a whole, we introduce compound elements. A compound
element is an aggregation of other elements, which could be compound elements themselves. There are
three kinds of compound elements: set, sequence and record. A set is an unordered list of elements. A
sequence is an ordered list of elements. A record is a tuple of elements, each of which has a name. In this
case we denote the aggregation of elements in Sys2 as a record. The map declaration is shown in Figure 3.

Map pipe2channel with {
Sys1.ast to [ from = Sys2.write,

through = Sys2.ast,
dest = Sys2.read
control = Sys2.Ordering];

}

Figure 3. An example of a compound element map

4.3 Map with Sub-Structures

Sometimes maps between structures might indicate maps between substructures. For example, in Figure 1,
the "comp_map" map between Sys1.analyzer and Sys2.analyzer might indicate a certain relationship
between the ports Sys1.analyzer.output and Sys2.analyzer.output. To support the declaration of such "sub
relations", hereafter referred to as "nested maps", we allow hierarchical map declarations. An example of a
nested map is shown in Figure 4.

3 In this paper, bold in declarations indicates keywords unless otherwise stated.
4 As we will see later, a maplet could consist of more than just a pair of elements.
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Map comp_map with {
Sys1.analyzer to Sys2.analyzer with {

Map nested-port-map with {
Sys1.analyzer.output to Sys2.analyzer.output;

}
}

}

Figure 4

4.4 Map with Constraints

Though we have illustrated several examples of how to declare maps, in each description we merely state
that there exists some kind of relationship between the declared pairs but do not describe any semantic
relations. One way to elaborate on more detailed aspects of a map is to impose constraints on it. A
constraint is a predicate over the structural and extra-structural attributes of the associated elements. The
extra-structural attributes are often captured by properties. A constraint can either be an invariant or a
heuristic. Both invariants and heuristics are predicates, the difference being that an invariant is a predicate
that must hold all the time, while a heuristic represents a "rule of thumb" that is expected but not required
to hold. Following the terminology of Armani, we call them design rules [10].

Since properties capture the extra-structural information of a structural construct, using constraints in a map
declaration provides a means to address extra-structural aspects of the map. For example, the comp_map
map might declare a constraint that Sys1.analyzer and Sys2.analyzer have equal throughput. This equality
declares a consistency statement that the abstract system Sys1 and its realization in Sys2 have to agree on.
Constraints are declared using the Armani predicate language, which is based on first order predicate logic
(FOPL) [10]. Figure 5 shows how we might declare equal-throughput constraints in map comp_map. (The
word "throughput" could have different meanings for different components. For the analyzer, it could
denote how many characters the analyzer can process per second; for the parser, it could denote the number
of tokens the parser consumes per second; for the generator, it could denote the amount of code generated
per second. For simplicity, in our declaration we denote the throughput of each component as a float and
make it a common property of all data-processing components. See Appendix A for details of the family
and system declarations.)

Map comp_map with {
Sys1.analyzer to Sys2.analyzer;
Sys1.parser to Sys2.parser;
Sys1.generator to Sys2.generator;
Invariant Sys1.analyzer.throughput == Sys2.analyzer.throughput;
Invariant Sys1.parser.throughput == Sys2.parser.throughput;
Invariant Sys1.generator.throughput == Sys2.generator.throughput;

}

Figure 5. Adding invariants to map declarations

4.5 Map Types

In this section we illustrate how map types are declared and instantiated. Map types play two useful roles in
the mapping extension: (a) they capture the common properties of a class of maps, hence facilitating
classification and reuse of map declarations, and (b) they support a powerful form of analysis, which is type
checking. A map type is interpreted as a predicate. The predicate denoted by a map type is the conjunction
of its structural and extra-structural constraints. The structural constraints address the structural aspects of a
map type, for example the type of elements it associates (referred to as the signature of the map type) and
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the minimal structure (e.g., nested maps) that instances of the map type must have. Extra-structural
constraints address the extra-structural aspects of a map type and are usually declared in the form of design
rules. Figure 6 illustrates how to declare and instantiate a map type.

Map type Comp_mapT : PF.Filter <-> Hybrid.Filter = {
Invariant source.throughput == target.throughput;

}

Map comp_map : Comp_mapT with {
Sys1.analyzer to Sys2.analyzer;
Sys1.parser to Sys2.parser;
Sys1.generator to Sys2.generator;

}

Figure 6. Declaring a map type

Declaring a map instance to be of a map type is the same as asserting that it satisfies the predicate denoted
by the type. In the example shown in Figure 6, comp_map is declared to be an instance of Comp_mapT.
Therefore the following assertions must be true: (a) Sys1.analyzer, Sys1.parser and Sys1.generator must be
instances of component type PF.Filter; Sys2.analyzer, Sys2.parser and Sys2.generator must be instances of
component type Hybrid.Filter, and (b) Sys1.analyzer.throughput == Sys2.analyzer.throughput,
Sys1.parser.throughput == Sys2.parser.throughput, and Sys1.generator.throughput ==
Sys2.generator.throughput. Here (a) is the structural constraint imposed by the map type, and (b) is the
extra-structural constraint.

We need to explain the keywords source and target used in Figure 6. When declaring a map type, a
specifier does not know what elements the instances of this type are going to associate. Placeholders have
to be used to address the associated elements in the type declaration in order to declare design rules over
the associated elements. We use the placeholder source to denote the first element in a maplet, and target
to denote the second element. Therefore, the map instance declared in Figure 6 is effectively the same as
that declared in Figure 5.

Figure 7 shows another example of a map type declaration in which the map type imposes more structural
constraints on its instances, namely, that each maplet of the instance must contain a nested map as declared
in the map type. Therefore the map instance declared in Figure 7 is effectively the same as that declared in
figure 4.

Map type Comp_mapT2 : PF.Filter <-> Hybrid.Filter = {
Map nested-port-map with {

source.output to target.output;
}

}

Map comp_map : Comp_mapT2 with {
Sys1.analyzer to Sys2.analyzer;

}

Figure 7. A map type containing a nested map

One can extend an existing map type by adding constraints to it and/or refining its signature. Figure 8
shows an example of map type extension. More examples can be found in Section 6. In Figure 8,
Comp_mapT3 extends Comp_mapT with a new constraint that the two filters must have the same number
of ports.

Map type Comp_mapT : PF.Filter <-> Hybrid.Filter = {
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Invariant source.throughput == target.throughput;
}
Map type Comp_mapT3 : PF.Filter <-> Hybrid.Filter Extends Comp_mapT with {

Invariant size(source.ports) == size(target.ports);
}

Figure 8. Extending map types

5. Mapping Syntax

In this section we give the formal syntax of the mapping extension to Acme. We will use the following
notational conventions:

• Keywords are specified with bold text. Keywords are case-insensitive.

• Non-Terminals are specified with italics.

• [...] Indicates an optional production.

• (...)* A sequence of zero or more elements.

• (...)+ A sequence of one or more elements.

• | Seperates alternative choices.

Map-Type-Decl ::= Map type TypeId : Signature "=" Map-Type-Body [";"] |
Map type TypeId : Signature Extends TypeId (","TypeId)* with Map-Type-Body [";"]

Map-Type-Body ::= "{"
(

Map-Type-Decl |
DesignRule |
Map_Instance_Decl

)*
"}"

Signature ::= Type "<->" Type
TypeId ::= Identifier
Map-Instance-Decl ::= Map Identifier [":" TypeId ("," TypeId)* [Extended with Map-Type-Body]]

(
( with Map-Body-Decl [";"] ) |
";"

)
Map-Body-Decl ::= "{" (Maplet | DesignRule)* "}"
Maplet ::= Element to Element

(
(with "{" (Map-Instance-Decl | DesignRule)* "}"[";" ] ) |
";"

)

In the above syntax DesignRule is the same as the non-terminal defined in Armani syntax [10]. We do not
elaborate on the above syntax what the definition of element is. An element may be a structural element
such as a component or a connector, or may itself be an aggregation of other elements. The syntax of
element and element type is given below. 5

5 In Acme, aggregation of elements is not addressed. The reason that we do not present the element and
element type syntax together with the core mapping syntax is that we believe the compound element is a
useful construct not only in the mapping domain but also in the wider domain of software architecture
description. We intend to integrate it into the core Acme syntax later.
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Type ::= Primitive-Type | Compound-Type | Identifier
Primitive-Type ::= Component | Connector | Port | Role | System
Compound-Type-Decl ::=Compound Type Identifier "=" Compound-Type ";"
Compound-Type ::= Record-Type | Set-Type | Sequence-Type
Record-Type ::= Record "[" Record-Item ("," Record-Item)* "]"
Record-Item ::= Identifier ":" Type
Set-Type ::= Set "{" Type "}"
Sequence-Type ::= Sequence "<" Type ">"
Element ::= Identifier | Compound-Element
Compound-Element ::= Set | Record | Sequence
Set ::="{" Identifier (","Identifier)* "}"
Record ::= "[" Identifier "=" Identifier (","Identifier "=" Identifier)* "]"
Sequence ::= "<" Identifier (","Identifier)* ">"

Map types can be defined wherever element or family types can be defined in Acme. Map instances can be
declared wherever elements or systems can be declared. Map types and instances have the same scoping
rules as element types and instances, respectively. Specifically, a map type declared in the global scope is
visible to all map instances in that global scope, but not to any map types in the same scope. A map type
declared in another map type is visible to its parent map type (the map type that contains its declaration).
All map types visible to a map type are visible to its children map types. If a map type is visible to another
map type, then it is also visible to the other map type's instances.

In Section 6 we present more examples of map declarations.

6. Additional Map Examples

In this section we give more examples of how our notation are used in describing maps to give the reader a
better understanding of what the mapping extension is capable of. Examples in this section use the
declarations in Appendix A unless otherwise indicated.

6.1. Extending a Map Type

In Section 4 we illustrate how a map type can be extended to impose new constraints. The ability to extend
map types allows a hierarchical structure of map types and reuse of map type declarations. To extend a map
type is to conjoin new predicates with those that are already in the type. Predicates added to a map type
could be either structural or extra-structural. They could constrain the type of elements that instances of this
map type can associate, or substructures that instances must have, or design rules that instances must obey.
In this section we give some examples of some other means to declare a new map type from existing ones.

Example 6.1.1 Combining existing map types

We can obtain a new map type by combining existing map types. The resulting map type has all the
constraints of each super type. In this example we combine the map type Comp_mapT declared in Figure 6
and Comp_mapT2 declared in Figure 7 to produce a new map type Comp_mapT4. Comp_mapT4 has both
the design rule declared in Comp_mapT, and the structural constraint (nested-map) declared in
Comp_mapT2. For convenience we re-declare the original types declared in Figures 6 and 7.

Map type Comp_mapT : PF.Filter <-> Hybrid.Filter = {
Invariant source.throughput == target.throughput;

}

Map type Comp_mapT2 : PF.Filter <-> Hybrid.Filter = {
Map nested-port-map with {

source.output to target.output;
}

}
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Map type Comp_mapT4 : PF.Filter <-> Hybrid.Filter Extends Comp_mapT, Comp_mapT2 with {
}

Figure 9. Constructing a new map type from multiple map types

Comp_mapT4, though it declares no new predicates, is the conjunction of both Comp_mapT and
Comp_mapT2’s predicates. Therefore an instance of Comp_mapT4 must satisfy: (a) it associates instances
of PF.Filter to instances of Hybrid.Filter, (b) the associated components in a maplet have the same
throughput, and (c) the output ports of associated components in a maplet are associated by a nested map
named nested-port-map.

Example 6.1.2 Accommodating new element types

When we extend element types, we may introduce new substructures, properties and new type definitions.
We can extend map types that associate the old element types to address these new features of the new
element types. For example, in Figure 10 we extend the families PF and Hybrid used in previous examples
to add a new property, OS, to component types Filter and Processor.

Family PF2 extends PF with = {
Component Type Filter2 extends Filter with {

Property OS : string;
}

}

Family Hybrid2 extends Hybrid with {
Connector Type Processor2 extends Processor with {

Property OS : string;
}

}

Figure 10. Extending families

Now we declare a map type Comp_mapT_OS that associates PF2.Filter2 and Hybrid2.Filter2. We want
this map type to have all the predicates declared in Comp_mapT, and additionally we want to add a
predicate that associated components should be running on the same OS (i.e., their OS properties are the
same). Instead of declaring Comp_mapT_OS from the ground, we can extend map type Comp_mapT to
accommodate the constraint over the new property OS.

Map Type Comp_mapT_OS : PF2.Filter2 <-> Hybrid2.Filter2 Extends Comp_mapT with {
Invariant source.OS == target.OS;

}
Figure 11. Extending map types to accommodate the extended families

Comp_mapT_OS as described in Figure 11 extends Comp_mapT with a new invariant. Hence
Comp_mapT_OS has both the invarint over filter throughput declared in Comp_mapT, and the new
invariant over OS. Note that Comp_mapT_OS has a different signature to that of Comp_mapT_OS’s.
Changing the signature of a map type when extending it is not always allowed. The signature of an
extended map type is covariant with its super types. This means that if we have the following map type
extension:

Map Type m1: T1<->T2 …

Map Type m2: S1<->S2 Extends m1 …

Then S1 must be a subtype of T1 and S2 must be a subtype of T2. By keeping this rule satisfied we
guarantee that whatever type is visible in the declaration of m1 is also visible in the declaration of m2,
which is essential to the correctness of m2 since m2 inherits all constraints and type declarations that m1
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has. In the example in Figure 11, PF2.Filter2 satisfies PF.Filter and Hybrid2.Filter2 satisfies
Hybrid.Filter. Therefore the rule is not violated when extending Comp_mapT to Comp_mapT_OS.

6.2. Extending a Map Instance
When extending or instantiating a map type, one might want to refine a map instance defined in the original
map type to add more constraints. This can be done by re-declaring the map instance with the new
constraints and unifying the two map instance declarations using the unifyMaps algorithm given in
Appendix D. What the unifyMaps algorithm does is check the compatibility of the old and new map
instance declarations and if they are compatible, conjoin their constraints. The following examples show
how map instances are extended. In this subsection, a capital letter followed by a number, e.g. T1, denotes a
type. A type name followed by a ` denotes a subtype, e.g. T1` denotes a subtype of T1.

Example 6.2.1 Extend a map instance with new maplets

Map Type T1 : F1<->F2 = {
Map Type T2 : F1.C1 <-> F2.C1 = {...}
Map inst : T2 with {

source.C to target.C;
}

}

Map Type T1` : F1<->F2 extends T1 with {
Map inst : T2 with {

source.S to target.S;
}

}
Figure 12. Extend a map instance with a new maplet

T1` extends T1 with a refined instance inst of type T2. T1`.inst has one more maplet than T1.inst. Note that
though T1`.inst did not re-declare the maplet declared in T1.inst. It was regarded as being implicitly re-
declared since a refined map instance has to carry all constraints that the one it refines carries. This is called
the implicit re-declaration rule. Therefore the declaration of T1` above is equivalent to the following
declaration (note the under-line).

Map type T1` : F1<->F2 extends T1 with {
Map inst : T2 with {

source.C to target.C;
source.S to target.S;

}
}

Figure 13. Equivalent declaration of T1` in Figure 12

Because of the implicit re-declaration rule, one has to be careful when refining a map instance. Sometimes
a seemingly valid refinement can be wrong. To see how that could happen, consider the following
declaration.

Family F1 = {
Component Type C1 = {...}
Component C : C1 = new C1;

}

Family F1` extends F1 with {
Component Type C1 extends C1 with {...}
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Component S : C1` = new C1`;
}

Family F2 = {
Component Type C1 = {...}
Component C : C1 = new C1;

}

Map type T1 : F1<->F2 = {
Map type T2 : F1.C1 <-> F2.C1 = {...}
Map inst : T2 with {

source.C to target.C;
}

}

Map type T1` : F1`<->F2` extends T1 with {
Map type T2` : F1`.C1` <-> F2`.C1

extends T2 with{...}
Map inst : T2` with {

source.S to target.C;
}

}
Figure 14. An incorrect map instance refinement

Though the declaration of T1` might seem to be correct, it is actually wrong. After we apply the implicit re-
declaration rule to it, it becomes (note the under-line)

Map type T1` : F1`<->F2` extends T1 with {
Map type T2` : F1`.C1` <-> F2`.C1

extends T2 with{...}
Map inst : T2` with {

source.C to target.C;
source.S to target.C;

}
}

Figure 15. Equivalent declaration of T1` in Figure 14

The under-lined description contains an error because source.C, which is of type F1.C1, does not satisfy
the signature of map type T2`, whose domain type is F1`.C1`.

Example 6.2.2 Extend a map instance by refining its maplets

In Figure 12, we refine a map instance by adding a maplet. One can also refine a map instance by refining
the existing maplets, as shown in the following example.

Map type T1 : F1<->F2 = {
Map type T2 : F1.C1 <-> F2.C1 = {

Map type T3 : F1.analyzer <-> F2.analyzer = {...}
...

}
Map inst : T2 with {

source.C to target.C with {
Map portmap : T3 with {

source.p1 to target.p1;
}
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}
}

}

Map type T1` : F1<->F2 extends T1 with {
Map inst : T2 with {

source.C to target.C with {
Map portmap : T3 with {

source.p2 to target.p2;
}

}
}

}
Figure 16. Extend a map instance by refining one of its maplets

In Figure 16, T1`.inst refined T1.inst by refining a maplet declared in T1.inst. Specifically, it refined that
maplet by refining another map instance declared in that maplet, i.e., source.p2 to target.p2. One can also
refine a maplet by declaring new map instances in it, or using a combination of the two techniques. By the
implicit re-declaration rule, the above T1` is equal to the following (note the under-line).

Map type T1` : F1<->F2 extends T1 with {
Map inst : T2 with {

source.C to target.C with {
Map portmap : T3 with {

source.p1 to target.p1;
source.p2 to target.p2;

}
}

}
}

Figure 17. Equivalent declaration of T1` in Figure 1 in Figure 16

Example 6.2.3 Extend a map instance by changing its type

One can also refine a map instance by just changing its type. The new type(s) does not have to be a subtype
of the old type(s). The refined map instance will have both constraints of its old type(s) and those of the
new type(s). Figure 18 gives an example.

Map type T1 : F1<->F2 = {
Map type T2 : F1.C1 <-> F2.C1 = {

Map type T3 : F1.analyzer <-> F2.analyzer = {...}
...

}
Map inst : T2 with {

source.C to target.C;
}

}
Map type T1` : F1<->F2 extends T1 with {

Map type T2` : F1.C1 <-> F2.C1 extends T2
with{...}

Map inst : T2`;
}

Figure 18. Extend a map instance by changing its type
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Because of the implicit re-declaration rule, it is equal to (note the under-line)

Map type T1` : F1<->F2 extends T1 with {
Map type T2` : F1.C1 <-> F2.C1 extends T2

with{...}
Map inst : T2` with {

source.C to target.C;
}

}
Figure 19. Equivalent declaration of T1` in Figure 18

7. Implementation and Future Work

We have implemented a parser and checker for the mapping extension based on the Armani parser and
checker. The parser and checker can not only be used as standalone applications, but can also be used as
libraries providing parsing and checking functions to other applications.

Future work will be along the following directions.

- Refining the implementation. The current parser and checker uses a text interface. A GUI that
facilitates building and viewing maps is definitely desirable. Our next step will be integrating the
mapping extension with AcmeStudio, which is a GUI Acme description building and viewing tool.

- Illustrating the use of maps in the real world. Our knowledge of maps in real systems is limited. A
study of the use of maps in real systems will not only verify the usefulness of the mapping extension,
but also enhance our understanding of the mapping problem. Our current research activity along this
dimension is a study of consistency between major system views. A mechanism to check the
consistency between run-time behavior and constraints on function calls imposed by an underlying
software system has been proposed. Consistency problems between other system views have also been
explored.

- Extending the scope of map usage. Our research of maps has so far been concentrated on maps
between different system views. In general, maps could exist within a system and the mapping
mechanism described here can be used for describing either inter- or intra-system maps. In another
work we have shown examples of how to declare bindings and attachments using the mapping
mechanism. Other intra-system relationships that can be described using the mapping mechanism will
be explored in future research.
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Appendix A: Family and System declaration

This appendix gives the family and system declarations used in all mapping examples.

Family PF = {
Role Type InputRole = {}
Role Type OutputRole = {}
Port Type InputPort = {}
Port Type OutputPort = {}
Component Type Filter = {

Port input : InputPort;
Port output : OutputPort;
Property throughput : float;

}
Connector Type Pipe = {

Roles {
input : InputRole;
output : OutputRole;

}
}

}

Family Hybrid Extends PF with {
Role Type ReadRole = {}
Role Type WriteRole = {}
Port Type ReadPort = {}
Port Type WritePort = {}
Component Type ParserT
Extends Filter with {

Port write : WritePort;
}
Component Type GeneratorT
Extends Filter with {

Port read : ReadPort;
}
Component Type SharedData = {

Ports {
input : ReadPort;
output : WritePort;

}
}
Connector Type ReadWrite = {

Roles {
read : ReadRole;
write : WriteRole;

}
}

}

System Sys1 : PF = {
Component analyzer : Filter =

new Filter Extended with {
property throughput : float = 500;

}

Component parser : Filter =
new Filter Extended with {
property throughput : float = 200;

}
Component generator : Filter =

new Filter Extended with {
property throughput : float = 100;

}
Connector tokens : Pipe = new Pipe;
Connector ast : Pipe = new Pipe;
Attachments{

analyzer.output to tokens.input;
parser.input to tokens.output;
parser.output to ast.input;
generator.input to ast.output;

}
}

System Sys2 : Hybrid = {
Component analyzer : Filter =

new Filter Extended with {
property throughput : float = 500;

}
Component parser : ParserT =

new ParserT Extended with {
property throughput : float = 200;

}
Component generator : GeneratorT =

new GeneratorT Extended with {
property throughput : float = 100;

}
Component ast : SharedData =

new SharedData;
Connector read : ReadWrite =

new ReadWrite;
Connector write : ReadWrite =

new ReadWrite;
Connector tokens : Pipe = new Pipe;
Connector ordering : Pipe = new Pipe;
Attachments {

analyzer.output to tokens.input;
parser.input to tokens.output;
parser.output to ordering.input;
generator.input to ordering.output;
parser.write to write.read;
ast.input to write.write;
ast.output to read.read;
generator.read to read.write;

}
}
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Appendix B Mapping Semantics

We present the semantics of the mapping extension using denotational semantics equations and canonical
semantics representations similar to those used in [10] to describe Armani semantics. The canonical
semantics representation is a collection of tuples that represent the structure of element. In this section we
extend the element tuple used in [10] to accommodate the mapping constructs. In this section we use the
word "element" in a different way than in other parts of this paper. In this section "element" not only refers
to the structural constructs of Acme, but also to design spaces (collections of structural elements) and
mapping constructs (map instances, maplets and map types).

A basic element is represented as a tuple of the form
e = (n, c, s, p, r, a, i, h, m, mt, t_elt, t_prop, t_map, t_super, t_asserted).

Informally :
n = name of the element.
c = category of the element.
s = set of elements that define e's substructure.
p = set of properties that define the properties of e.
r = set of representations that define e's subarchitectures.
a = set of attachments that define e's topology, empty unless e is a system.
i = set of invariant predicates defined for e.
h = set of heuristics defined for e.
m = set of map instances visible to e.
t_elt = set of element types visible to e.
t_prop = set of property types visible to e.
t_map = set of map types visible to e.

We use t to denote t_elt ∪ t_prop ∪ t_map for short.
t_super = set of names of supertypes of this element type.
t_asserted = set of names of types this element claims to satisfy.

A map instance m extends the basic element with the following additional field
m = (…, l)

Informally :
l = set of maplets declared in m.

A maplet extends the basic element tuple with the following additional properties
ml = (…, sr, t)

Informally:
sr = the name of the source of ml.
t = the name of the target of ml.
source and target form the element pair that a maplet addresses.

A map type mt extends the basic element tuple with the following additional fields
mt = (…, d, ra)

Informally :
d = domain type of mt.
ra = range type of mt.

We use denotational semantics equations to describe the translation of abstract syntax to its canonical
semantics representation. Consider the denotational equation:
M[<Expression>] c = [c | c.x 4]
The above expression is read "The meaning of <Expression>, in the context c is the context c with 4
assigned to the field x of context c. A context is simply an element whose fields can be modified as a result
of the evaluation of the expression.

Statement composition
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Composition of declarations is evaluated from left to right, by the following rule.
M[s1 s2 … sn]e = M[sn]…M[s2]M[s1]e

Map type semantics

M[Map type n : t1<->t2 x] e = if (n ∉ Names(e.s)) and (n ∉ Names(e.p)) and (n ∉ Names(e.t))) then
[e | M[x] [mt | mt.n n, mt.d t1, mt.ra t2, mt.t e.t, 6

mt.m e.m, mt.t_asserted {Map}, mt.t_super {Map}],

e.t_map e.t_map∪ {mt}]
M[={x}]mt = M[x]mt
M[extends t1,…,tn with {x}]mt =

if ((t1∈mt.t_map) and … and (tn∈mt.t_map) and
(mt.d <:t1.d and mt.ra <:t1.ra) and … and (mt.d <:tn.d and mt.ra <:tn.ra)) then

M[x][mt | mt.t_super mt.t_super∪ {t1,…,tn}∪ t1.t_super∪…∪ tn.t_super,

mt.i mt.i∪ t1.i∪…∪ tn.i, mt.h mt.h∪ t1.h∪ …∪ tn.h,

mt.t mt.t∪t1.t∪…∪ tn.t, mt.m mt.m∪ t1.m∪…∪ tn.m7]

M[invariant x;] mt = [mt|mt.i mt.i∪ {x}]

M[heuristics x;] mt = [mt|mt.h mt.h∪ {x}]

Map instance semantics

M[Map n x] e = if ((n ∉ Names(e.s)) and (n ∉ Names(e.p)) and (n ∉ Names(e.t))) then

if ((n∉ Names(e.m)) then
[e| M[x] [m | m.n n, m.t_asserted {Map}, m.t e.t,

m.m e.m] e.m e.m∪ {m} ]
else

[e | m1 lookup(Names(e.m),n),
m unifyMaps(m1, M[x] [ m | m.n n, m.t_asserted {Map},

m.t e.t, m.m e.m], e.m e.m∪ {m}]

M[ : t1, …, tn x] m = if (t1 ∈ Names(m.t_map)) and … and (tn ∈ Names(m.t_map)) then
M[x] [ m | m.t_asserted {t1,..,tn}]

M[ extended with {x}] m = M[x] m

M[invariant x;] m = [m|m.i m.i∪ {x}]

M[heuristics x;] m = [m|m.h m.h∪ {x}]

M[x1 to x2 = {x}] m = if (forall t ∈ m.t_asserted ((satisfiesType(x1,t.d) and (satisfiesType(x2,t.ra))) then

[m|m.l m.l∪{ml|ml.sr x1, ml.t x2,

ml.i U
assertedtmt

itettxsourcexsubstitute
_.

).,"arg",2,"",1(
∈

8

ml.h U
assertedtmt

htettxsourcexsubstitute
_.

).,"arg",2,"",1(
∈

}]

6 "mt.t e.t" is a shorthand for "mt.t_elt e.t_elt, mt.t_prop e.t_prop, mt.t_map e.t_map"
7 Here we assume that there is no name conflict between mapping instances declared in these map types. If
there are conflicts, instances in conflict have to be unified using the unifyMap algorithm described in
Appendix D.
8 substitute(x1,y1,x2,y2,s) substitutes x1 for y1 and x2 for y2, in all elements in set s.
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Appendix C Alternative Mapping Semantics (in another notation)

In this section we describe the semantics of the mapping extension using evaluation semantics notation.

The basic notation is like e ⇓ V, which means that declaration e evaluates to value V. A value is a design
space, which is an element as defined in the previous section. In our notation each declaration is evaluated
with respect to an environment. An environment is a pair of a context and a stack. A context is an element
as defined in the previous section. A stack is used to keep track of the evaluation steps. It is defined as
follows.

Stack ::=∅ | Stack, Frame
Frame ::=[State, Element] | [Declaration, State, Element]
State ::=mapT• | mapT• | mapT typeId…typeId | mapEx•

Thus a notation that reads

C ; S ⊢ e ⇓ V

means that under the environment consisting of element C and stack S, declaration e evaluates to V.

In the following derivation rules, V denotes a value; e denotes an element; x and y denote arbitrary
sequences of characters, with the restriction that when used with y, x must contain equal numbers of left
and right parentheses (or brackets, etc.) and they have to be correctly paired; n denotes an Identifier, which
is either a map type or map instance name; t1...tn denotes type names, when the usage will not cause
confusion, they also denote the types themselves; m denotes a map instance; mt denotes a map type; x1 and
x2 denote element names.

1. ─────
V ;∅⊢∅⇓ V

2. e ; S ⊢ DesignRule y ⇓ A
isInvariant(DesignRule)

─────────────────
[e | e.i e.i ∪ {DesignRule}]; S ⊢ y ⇓ A

3. e ; S ⊢ DesignRule y ⇓ A
isHeuristic(DesignRule)

─────────────────
[e | e.h e.h ∪ {DesignRule}]; S ⊢ y ⇓ A

4. e ; S ⊢Map type n : t1 <-> t2 x ⇓ A

n ∉ Names(e.s)

n ∉ Names(e.p)

n ∉ Names(e.t)

────────────────
[mt | mt.n n, mt.d t1, mt.ra t2, mt.t e.t, mt.m e.m, mt.t_super {Map}];

S , [mapT• ; e] ⊢ x ⇓ A

5. mt ; S, [mapT• ; e] ⊢ ={x} y ⇓ A

────────────── 
mt ; S, [y,mapT• ; e] ⊢ x ⇓ A
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6. mt ; S, [y,mapT• ; e] ⊢∅ ⇓ A

────────────── 
[e | e.t_map e.t_map ∪ {mt}] ; S ⊢ y ⇓ A

7. mt ; S, [mapT• ; e] ⊢ Extends t1, …, tn with {x} y ⇓ A

t1 ∈ e.t_map
…

tn ∈ e.t_map
mt.d <: t1.d and mt.ra <: t1.ra
…
mt.d <: tn.d and mt.ra <: tn.ra

──────────────────────── 
[mt | mt.t_super mt.t_super ∪ {t1,…,tn} ∪ t1.t_super ∪ … ∪ tn.t_super,

mt.i mt.i ∪ t1.i ∪…∪ tn.i, , mt.h mt.h ∪ t1.h ∪…∪ tn.h,

mt.t mt.t ∪ t1.t ∪…∪ tn.t] ; S, [y,mapT t1 … tn, e] ⊢ x ⇓ A

8. mt ; S, [y,maptT t1 … tn, e] ⊢∅ ⇓ A

──────────────────────── 
[e | e.t_map e.t_map ∪ unifyMap type(mt, t1, …, tn)] ; S ⊢ y ⇓ A

9. e ; S ⊢Map n x ⇓ A

n ∉ Names(e.s)

n ∉ Names(e.p)

n ∉ Names(e.t)

──────────────────────── 
[m | m.n n, m.t_asserted {Map}, m.t e.t, m.m e.m] ; S, [map• , e] ⊢ x ⇓ A

10. m ; S ⊢ : t1, …, tn x ⇓ A

t1 ∈ Names(m.t_map)
…

tn ∈ Names(m.t_map)

──────────────────────── 
[m | m.t_asserted m.t_asserted ∪ {t1,…,tn}, m.t_real unifyMap types(m.t_real,t1,…,tn),

m.i m.i ∪ t1.i ∪… ∪ tn.i, m.h m.h ∪ t1.h ∪… ∪ tn.h, m.m m.m ∪ t1.m∪… ∪ tn.m] ;

S ⊢ x ⇓ A

11. m ; S ⊢ Extended with {x} y ⇓ A

──────────────────────── 
m.t_real ; S, [y, mapEx• , m] ⊢ x ⇓ A

12. m1 ; S, [y, mapEx• , m2] ⊢∅ ⇓ A

──────────────────────── 
[m2 | m2.t_real m1] ; S ⊢ y ⇓ A
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13. m ; S ⊢ x1 to x2; y ⇓ A
satisfiesType(x1, m.t_real.d)
satisfiesType(x2, m.t_real.ra)

──────────────────────── 
[m | m.l m.l ∪ {ml | ml.sr x1, ml.t x2, ml.i substitute(x1, "source", x2, "target", m.t_real.i),

ml.h substitute(x1, "source", x2, "target", m.t_real.h), ml.t m.t, ml.m m.m}] ; S ⊢ y ⇓ A

14. m ; S ⊢ x1 to x2 = {x} y ⇓ A
satisfiesType(x1, m.t_real.d)
satisfiesType(x2, m.t_real.ra)

──────────────────────── 
[ml | ml | ml.sr x1, ml.t x2, ml.i U

assertedtmt

itettxsourcexsubstitute
_.

).,"arg",2,"",1(
∈

,

ml.h U
assertedtmt

htettxsourcexsubstitute
_.

).,"arg",2,"",1(
∈

, ml.t m.t, ml.m m.m] ;

S, [y, maplet, m] ⊢ x ⇓ A

15. m ; S, [y, map•, e] ⊢∅ ⇓ A

m.n ∉ Names(e.m)

──────────────────────── 
[e | e.m e.m ∪ {m}] ; S ⊢ y ⇓ A

16. m ; S, [y, map•, e] ⊢∅ ⇓ A

m.n ∈ Names(e.m)

──────────────────────── 
[e | e.m {unifyMaps(m,lookup(e.m, n))} ∪ {e.m - {lookup(e.m, n)}] ; S ⊢ y ⇓ A

19. ml ; S, [y, maplet, m] ⊢∅ ⇓ A

──────────────────────── 
[m | m.l m.l ∪ {ml}] ; S ⊢ y ⇓ A
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Appendix D Map Unification

In this appendix we discuss map unification and give the algorithm that is used in Appendix C and D. Map
unification is used to resolve name conflicts between map instances. Unlike declaring a map type with the
same name multiple times, which is deemed as an error, declaring a map instance with the name of an
existing map instance is allowed and is deemed as refining the existing map instance. This feature is very
useful when one wants to add more constraints to an existing map instance, or wants to declare a map type
that extends multiple map types that declare submaps with the same name. When one declares a map
instance with the same name as an existing map instance, the two map instances are unified and further
reference to that name refers to the unified map instance.

Now let us see how two map instances are unified. Let the existing map instance be m1, the new
declaration be m2, and the unified map instance be m. The type of the unified map instance is the same as
that of m2. Since m is a refinement of m1, it must contain all constraints implied by m1.9 Therefore the
type of m2 must accommodate all of m1’s constraints. In other words, all of m1’s constraints must still be
valid under m2’s type declaration. For example, if m1 is declared to be of a type that maps a component to
another component, then m2 cannot be of a type that maps a connector to another connector. The unified
map instance m contains constraints of both m1 and m2. Therefore m1's maplets must satisfy m2's type
declaration. For example, if m1 is declared to be of a type that maps a component to another component,
and has a maplet that maps C1 to C2, and if m2 is declared to be of a type that maps a filter to another filter
(assuming filter is a subtype of component), then C1 and C2 must be filters or m1 and m2 cannot be
unified.

Based on the discussions above, we present the unifyMaps algorithm as follows. It takes two map
instances, m1 and m2, as input and returns the unification of m1 and m2 if m1 and m2 are unifiable, or
throws an error otherwise.

Map unifyMaps(m1,m2){
Map m = new Map(); // the return value
// maps to be unified have to have the same name
if (m1.name != m2.name){

throw error;
}
m.name = m1.name;
// Check the compatibility of types.
if (forall x in m2.t_asserted and y in m1.t_asserted, x.d<:y.d and x.ra<:y.ra){

m.t_asserted = m2.t_asserted;
m.t = m1.t + m2.t;
m.i = m1.i + m2.i;
m.h = m1.h + m2.h;
m.l = mergeMaplets(m1.l, m2.l, m2.t_asserted);

} else {
throw error;

}
return m;

}

// This function merges two sets of maplets
// s1 and s2 are two sets of maplets to be merged.
// t is a set of types whose signatures have to be satisfied by maplets in s1.
set{Maplet} mergeMaplets(s1,s2,t){

s = new set of Maplet;
forall x in s1{

9 The word “constraint” here means both design rules and maplets that are declared in m1.
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// Find the maplet in s2 that has the same source and target pair.
y = s2.lookupMaplet(x.sr, x.t);
// Unify the corresponding maplets and add the unified maplet to s.
if (y != NULL) {

// Unify maplets with the same source/target pair and add the unified maplet to the result
s += unifyMaplet(x,y);

} else {
// If no corresponding maplet of x is found in s2, x will be added to s directly. We
// have to check if x satisfies the signatures of types in t.
if (forall t_asst in t (satisfiesType(x.sr,d) and satisfiesType(x.t,ra))){

s += x;
} else {

throw error;
}

}
}
// Add maplets in s2 that do not have corresponding maplet in s1 to s.
Forall y in s2{

if (s1.lookupMaplet(y.sr,y.t) ==
NULL){

s += y;
}

}
return s;

}

// Unify two maplets. This includes combining their design rules and unifying their submaps.
Maplet unifyMaplets(ml1, ml2){

Maplet ml = new Maplet();
forall x in ml1.m{

if (ml2.lookup(x.name) == NULL){
// If a submap of ml1 is not declared in ml2, directly add it to the result
ml.m += x;

} else {
// If both ml1 and ml2 declared a submap of the samename, unify the submap
ml.m += (unifyMaps(x, ml2.lookup(x.name));

}
}
forall y in ml2.m{

if (ml1.lookup(y.name) == NULL){
ml.m += y;

}
}
ml.i = ml1.i + ml2.i;
ml.h = ml1.h + ml2.h;
return ml;

}


