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Abstract—The risk posed by high-profile data breaches has
raised the stakes for adhering to data access policies for many
organizations, but the complexity of both the policies themselves
and the applications that must obey them raises significant
challenges. To mitigate this risk, fine-grained audit of access to
private data has become common practice, but this is a costly,
time-consuming, and error-prone process.

We propose an approach for automating much of the work
required for fine-grained audit of private data access. Starting
from the assumption that the auditor does not have an explicit,
formal description of the correct policy, but is able to decide
whether a given policy fragment is partially correct, our approach
gradually infers a policy from audit log entries. When the auditor
determines that a proposed policy fragment is appropriate, it is
added to the system’s mechanized policy, and future log entries to
which the fragment applies can be dealt with automatically. We
prove that for a general class of attribute-based data policies,
this inference process satisfies a monotonicity property which
implies that eventually, the mechanized policy will comprise the
full set of access rules, and no further manual audit is necessary.
Finally, we evaluate this approach using a case study involving
synthetic electronic medical records and the HIPAA rule, and
show that the inferred mechanized policy quickly converges to
the full, stable rule, significantly reducing the amount of effort
needed to ensure compliance in a practical setting.

I. INTRODUCTION

Modern organizations and systems, such as e-commerce
websites, healthcare systems, banking and financial systems,
and online social-networks, are huge applications that handle
large amounts of user data. The data is normally subject
to different policies based on the user’s preferences and the
confidentiality level of the data. Although the consequences of
data breaches are severe [1]], not all relevant policy checks are
enforced in these systems often causing major data leaks [2].

Various factors affect the correct enforcement of policies in
large systems — (1) constant modification to the policies, (2)
the complexity of the policies, (3) the enormous size of the
codebase, which runs into hundreds of thousands of lines of
code involving multitude of developers, and (4) continuously
evolving codebases resulting in newer policies. These factors
make it difficult for developers to ensure that the policy checks
are implemented correctly in the applications.

Importantly, most organizations do not have an explicit,
mechanized specification of the target policy, either during
development or when the system is deployed. While develop-
ers might add appropriate checks inline with the application
code, it is easy to miss necessary checks [3]]. The decentralized
nature of this type of enforcement makes it difficult to obtain a
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comprehensive statement of the policy enforced by the system,
and thus to identify and fix authorization bugs when they arise.
To address the issue of policy compliance, most orga-
nizations adopt the approach of auditing transactions and
interactions of the users with their systems [4]. The idea
is to log different operations performed on the system, not
limited to the handling of private user data, and then perform
an after-the-fact validation of those transactions. The goal
of the validation process is to identify all violations of the
organizational policy and, in turn, the violators [2].
Furthermore, auditing transactions is required by certain
privacy laws [1} 5, 6] — e.g., the Health Insurance Porta-
bility and Accountability Act (HIPAA) [[1] requires healthcare
organizations to record all activities pertaining to the protected
health information of patients, and to perform a timely audit
of those transactions for ensuring privacy compliance.
Normally, organizations employ a privacy champion or an
auditor to validate the transactions against the laws and the
organizational policy. The top half of Figure [I] shows the
standard auditing procedure followed by organizations [7]. The
auditor understands the organizational policy and laws that
govern the handling of data, and validate the logs generated by
the system against the policy and laws. Apart from being time-
consuming and costly [8], the enormous size of the logs and
the number of transactions makes this job both cumbersome
and error-prone [9].
The main insight that this work is based on is that the
information present in audit logs, when combined with the
decisions made by an auditor, is in many cases sufficient



to reconstruct a correct mechanized policy. If incremental
portions of this policy can be audited with approximately as
much effort as the log entries they are generated from, then
the cost of manual audit can be gradually reduced as more
of the mechanized policy is inferred. To this end, we present
an approach for automating the auditing process by inferring
access policies from log entries, without requiring any prior
policy specification.

The bottom half of Figure |I| presents an overview of our
approach. As the logs normally contain enough information
for the auditor to determine the legitimacy of a transaction,
we leverage this information to generate a partial policy,
which can subsequently be applied to audit future log entries.
As the policy is constructed, the auditor validates each new
policy fragment instead of validating individual log entries
from which they are generated. Entries that cannot be resolved
using the information can be logged for further manual review.
Additionally, the mechanized policy can be used to enforce
runtime policy compliance, replacing inline policy checks
where appropriate.

Our main contribution is a framework for policy inference
and automated auditing using logs. We describe a general
algorithm that infers the policy from logs and checks the log
entries for policy compliance. The policy is represented in
a restricted fragment of authorization logic [10, [11], which
is a logic for access control. The algorithm employs certain
attributes of the log entries to infer abstract formulas from
them, and an oracle to validate the inferred policy. Unlike
machine learning based mining approaches, our approach does
not allow over-permissive policy. The log entries are audited
against the validated formulas, and the violations are reported.
Instead of requiring the policy to be specified against which
the logs are audited, the inference algorithm works with a
possibly empty set of initial formulas.

We prove the following properties of the algorithm — (1)
the generated policy is monotonically increasing, i.e., it is
at least as permissive as the original policy that was input
to the algorithm, and eventually reaches a fixed-point; (2)
every iteration of the algorithm terminates; (3) the algorithm
is sound, i.e., the log used to generate the policy satisfies
the policy; (4) the algorithm generates minimal policy: the
generated policy is the most restrictive policy that the log
satisfies - this property shows that our algorithm does not
generate over-permissive policy.

We implement the algorithm to infer policy and detect
violations in the audit log and evaluate the algorithm to answer
three questions — (1) is auditing policy easier than auditing
logs, i.e., are the number of formulas less than the number of
log entries and how does this ratio vary for different number
of log entries; (2) is the violation detector able to detect
violations of access policy in the log using the formulas that
fail the policy audit; (3) how expressive and permissive are the
formulas as compared to the policy (sans temporal operators).
We evaluate our implementation on sets of realistic simulated
audit logs in a healthcare setting (governed by HIPAA) by
controlling the probability of violation in the logs. We show

that the inference algorithm considerably reduces the effort of
an auditor by significantly reducing the number of entries that
need to be reviewed; the auditor needs to validate around 400
formulas which are only 0.112% of about 350, 000 log entries.
Additionally, we show that our algorithm detects violations
effectively; from 8 incorrect formulas, the violation detector
is able to report around 29,000 unauthorized transactions in
the log. The formulas inferred by our algorithm are expressive
enough to cover most of the HIPAA policy except the clauses
with temporal operators.

To the best of our knowledge, this is the first work that
presents the idea of automated auditing using policy inference.
Existing work either focuses on automated auditing or policy
mining but not both. In the area of automated auditing,
prior works require explicit policy specification against which
the logs are tested for compliance [12H17]. However, policy
specification is itself a complex and tedious task [18} [19], and
requires the developer to understand the policy language to be
able to specify and check the policy that should be enforced
by the system. While policy mining from logs have also been
well-studied [20-31]], prior works employ machine learning
algorithms to generate the policy, which might lead to incorrect
authorizations.

The rest of this paper is organized as follows. In Section [T}
we present a more detailed overview of our system, and the
various components needed to realize our approach. Section
describes the policy logic used by our system, formalizing
its syntax and semantics. In Section [V] we describe our
approach for inferring policies from audit logs, and describe
several properties that establish its correctness and usefulness.
Section describes our prototype implementation of the
approach, and Section [V]] details our case study application of
it to synthetic electronic medical records. We discuss how var-
ious operators are interpreted in our approach, the limitations
of our approach and possible future directions in Section
Section discusses related work, and Section [[X]| concludes
the paper. Proofs of important claims are provided in the
appendix.

II. SYSTEM OVERVIEW

Organizations have a group of users that perform certain
actions on some object or resources in their servers through
different applications. The resources are organized based on
their type; in the context of a database, a column in a table
(or the table itself) can represent the type of the data it stores.
For instance, a profile table may have the columns NAME and
ADDRESS, both of which might be separate types or could be
represented together as PERSONALINFORMATION.

Every user has fixed roles that normally define the user’s
access properties while the various endpoints of an application
define the type of information accessed. A user can have
multiple roles in the system, e.g., a user can be both a nurse
and a researcher in a healthcare system, but every transaction
performed by the user is specific to a role. Applications
normally use credentials or some state, e.g., cookies, to
differentiate various logins by a user. The users and resources,



additionally, have specific attributes that might affect how a
user accesses some resource. These attributes describe certain
property of the user or the resource. Role of a user, for
example, may be one of the attributes that decides access
policies for the user. Attributes are used in attribute-based
access control mechanisms to determine whether a user may
access a resource.

There are associations and relationships between different
users, and between users and resources in the system that
further define access policies. For instance, if Alice is a doctor
of Bob, she may access the diagnosis information of Bob.
Similarly, Eve may be allowed to view the diagnosis of Bob
if Eve is a relative of Bob who has been authorized to view
the diagnosis. Such associations are an important component
when determining access in relationship-based access control
mechanisms. Broadly, the system we consider allows both
attribute- and relationship-based access control policies to be
specified and enforced.

Systems maintain logs of transactions recording activities
of the users at various times, which the organizations can use
for the purpose of auditing. Auditing is useful in determining
violations of organizational (privacy) policies or to detect illicit
activity by any of the users in the system [4]. Audit logs do not
have a standard format or representation across organizations
but normally contain the following information — the action
performed, the user performing the action, data or resource
on which the action was performed, when the action was
performed and the state of the system at the time of access, and
any additional information or attributes depending on the type
of transaction and the system. The log (£) contains a list of
entries for all actions. Depending on the application, the logs
may also include entries for data sent out on the network. In
the system we consider, a log entry () is a tuple of the form:
(A, U, o, einfo @ ) where A is the action, U is the user, o is
the resource, einfo is any additional information, and 7 is the
time at which the transaction happened.

III. PoLicy LoGIC

We represent the policies in a subset of first-order intu-
itionistic logic [[14]. The policies in our system are based on
general attributes of users and resources, and are not specific
to individual users.

A. Policy Syntax

Figure [2] shows the syntax of policies. Terms (t) represent
both users and resources in the system. In fact, the domain
of terms includes all the entities and at least the principals
involved in the system. The type of an entity (term) in the
system is represented as o, e.g., principal represents all
individuals associated with the system who are authorized
access and define the policies. The domain of every type in
the system is fixed and bounded.

Actions (C') correspond to the activities performed by a user
on a resource. State predicates (P) depend on the state of the
system entities, either at the current time or in the specified
time interval. Atoms (a) are state predicates applied to a list

Types o := principal | data
Terms ¢ := Alice | admin | ...
Actions C := read | write | send
State Pred. P := has_attr | has_reln | owner
Atoms a = Pti...t,
Access Pred. r =Cty...t,
Formulas s := (a1 A...Aa,) Dmay r | VZ.s
Policy ¢ := {s1,...,8n}

Fig. 2: Policy Syntax

of terms. Access predicates r apply an action C to a list of
terms stating that the action was performed at time 7'. The
connective A is standard while ¢ D may r indicates that the
access r can only happen if a holds. The quantifier Vz ranges
over all possible terms of a particular type o if = has the type
o. As the domain of every type ¢ is bounded in our system,
Vz ranges only over a finite domain; hence, the number of
formulas in the policy are also bounded and finite. To represent
a vector of variables of different types, we use . A formula
s has a specific form in our framework and is defined for all
terms ¢ in atoms a; and the access predicate r. The policy ¢
is represented in disjunctive normal form over all formulas s;.
The formulas can be reduced to define a minimal policy.

As all properties and predicates are true only during certain
time intervals, we have time-dependent predicates in our logic.
The instantiated predicates are time-dependent as shown in the
rules in Figure

B. Semantics

The semantics of policy enforcement is defined in Figure
The formal relation 3; R; £ F ¢ states that a log L satisfies
the policy ¢ under the typing environment 3 and the set of
relations R (derived from a database). We describe the rules
in the semantics below.

Rules IND and BASE correspond to the inductive and base
case for iterating over a list of log entries in the log. Rule
BASE states that an empty log satisfies any policy ¢ while
rule IND states that if a log entry +y satisfies the policy ¢ and
a log L satisfies ¢, then the larger log -y, £ also satisfies .
The rule ACCESS states that a log entry +y satisfies a policy ¢,
if it satisfies any one of the formulas in ¢. Rule INST states
that if ~ satisfies a formula s instantiated with terms in the
log entry v, it also satisfies the general formula s. The rule
PRED says a log entry satisfies an instantiated formula ~, if
the state predicates at the time of log entry hold. It uses the
judgement 3; R; T F a to imply that at time 7', under the
typing environment 3 and the set of relations R, a holds. The
rules OWN, RELN and ATTR return the respective relations
of ownership, other relationships, and attributes from the set
of relations R (database) associated with the terms in the
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Fig. 3: Policy Enforcement Rules

predicate. We write R F rec to indicate that rec is a valid
record in the set of relations R.

Assuming that the sets of principals, resources, roles, rela-
tions, predicates and other entities in the system are fixed, the
set of formulas (s;) based on different permutations of these
entities is finite. This leads to the system policies having a
partial order, ¢1 < o meaning that o iS a more permissive
policy than ;. The policy {} represents the most restrictive
policy with no formulas while the most permissive policy
would contain all possible formulas (or their reduced versions)
allowing all accesses.

Definition 1. Given two policies 1 and o, we say that o1 <
o for all logs L, typing environments Y and sets of relations
R, if 3;R;LFE @1, then ¥; R; L F o

Lemma 1. Given two policies p1 and s, and a formula s,
if o1 < o, then 1 U {s} < pa U {s}

Lemma 2. Given a policy ¢, for all logs L, typing envi-
ronments Y. and sets of relations R, if X;R; L E ¢, then
Vy e L,3s € 0.5; R; v E {s}

IV. PoLICY INFERENCE

Our main contribution is the inference system that builds a
policy from scratch given a list of log entries while assisting
in the audit of those log entries. Figure 4] describes our policy
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Fig. 4: Policy Inference Framework

Input: R - list of relations
t - list of variables
T - time
Output: P - set of predicates
i - updated list of variables
Function own (R, £, T):
P« {3« ¥
for i < 0 to |R| do
r < RJ[i];
if ownerTuple(r) Ar = (id = t1, owner =
ﬁg, (TI» Tg)) then
ift; €tand Ty <T < T, then
P + P U {owner t; ta};
1 U{ta};
end
end

W N -

RIS B Y]

10 end
End Function

Algorithm 1: Definition of own(R, %, T)

inference framework. The workflow starts with a set of logs
and possibly empty set of formulas input to the policy checker
and generator. For all entries in the log, the policy checker
checks if the entry satisfies an existing formula in the policy or
not. If it satisfies a formula, they are accepted as valid. If not,
it generates new formulas for all such entries, and logs those
entries in a separate review log. An oracle then reviews the set
of generated formulas and decides which of those formulas are
allowed as part of the policy and which of those are possible
violations. The oracle is a function that takes a policy and
returns a valid policy. The review logs are then checked against
the oracle approved policy and the violations are then reported
for further review. The approved policy is fed back to the
system and becomes part of the policy that the policy checker
takes as input.



Input: R - list of relations

# - list of variables

T - time
Output: P - set of predicates
Function rel (R, &, T):

1 P« {};
2 for i + 0 to |R| do
3 r < RJ[i];
4 if not ownerTuple(r) and
r = (Zd = tl,p =, (Tl,TQ)) then
5 ift1€fandT1§T§T2then
6 ‘ P + PU{has_attr t; p v};
7 end
8 else if r = (id = (t1,t2), reln = v, (T1,T3)) then
9 if t; €t andty € t and Ty < T < T, then
10 | P+« PU{has_reln t; t3 v};
11 end
12 end
13 end

End Function
Algorithm 2: Definition of rel(R,#,T)

Input: £ - Log

R - Relations

> - typing environment
Output: ¢ - policy
Function infer (£, R, ¥):
o —{h
for i < 0 to |£| do
r(£)QT + L[i];
(P,, ) < own(R, £, T);
P, « rel(R,,T);
P+ P,UP,;
T D(t);
s« (Ap>D may 7(#);

peEP
9 () « s[z/t];
10 © — pU{VZ.s(D)};
11 end
End Function
Algorithm 3: Definition of infer(£, R, ¥)

NN AR W N -

A. Inference Algorithm

The core of our inference algorithm consists of two com-
putable functions — infer and reduce. The function infer
generates a policy based on a list of log entries while the
reduce function takes in two formulas s; and s,, and returns
whether s, is more permissive than si, i.e., {s1} < {s2}. We
describe these functions in more detail below.

1) Inference: Algorithm [3] defines the function infer that
infers a policy from the log entries. It takes as input the log
entries (L) along with the set of relations in the database
R and the typing environment 3. The inductive definition
generates a set of inferred formulas taking into account the

attributes and associations of the users and resources involved
in a transaction. The formulas are generalized to include all
terms that can satisfy the inferred predicates.

The function infer traverses every log entry and generates
a formula for it. If the log is empty, it returns an empty
policy (line . For every log-entry of the form 7(£)QT, infer
(line [2)) generates atomic predicates from the set of relations
R (lines [4] and [3)), using functions own (Algorithm [I)) and rel
(Algorithm [2), taking into account the owner of the resource.
The returned predicates (line [6)) are included as part of the
formula (line , which is generalized for all variables ¥
(line @ such that ¥ has the same type as the set of actual
terms t'.

The function own (Algorithm [I) iterates through the rela-
tions in R and returns the state predicates for ownership of
all terms in # valid at time 7. In particular, it returns the state
predicate owner t t' for all ¢ in ¢ if ¢/ is the owner of ¢ at time
T (line [); if not, it returns an empty predicate set (line [I)).
The meta-function ownerTuple used in the function definition
(line ) checks if the tuple 7 defines the ownership attribute of
a resource with a principal. If not, it returns no predicate for
that relation. This is required to distinguish ownership attribute
with other attributes. The function own, importantly, retrieves
the owner of a resource in ¢ (line 7) to correctly generate all
predicates of the formula.

Using the set of terms t_: the function rel, defined in
Algorithm 2] returns the relationships and attributes for every
combination of the terms in £. The function rel iterates over
the relations in R, and either generates a predicate with terms
or returns an empty set of atoms. If the relation describes
the attribute of a term (other than ownership) in t at time
T, line E] generates a has_attr predicate with the term, and
the corresponding attribute type and value. If the relation
describes the relationship between two terms in t at time T,
line [_1;0] generates a has_reln predicate with the terms, and
the corresponding relationship. If neither conditions hold, rel
returns the empty set.

As the number of formulas generated are dependent on
the attributes of resources and users, using user and resource
attributes with unbounded values may result in complex
formulas. We address this issue by considering only those
attributes that the developer specifies are a part of the policy.
For instance, while zipcode of a user might be a possible policy
attribute, the complete address might not be one.

a) Example: Consider the following instance of an ac-
cepted clause in HIPAA about protected health information
where a surgeon Alice sends her patient Bob’s protected health
information to Charlie, Bob’s physician, for the purpose of
treatment at time 7'. The transaction is logged as:

send Alice Bob_PHI Charlie purpose:treatment @ 7' (T1)



Suppose

R = [(id = Alice, role = doctor, (T, T7}));
(id = Charlie, role = doctor, (T, T3));
(id = Bob, role = patient, (T3, T%));
(id = Bob_PHI, owner = Bob, (T}, T}));
(id = (Alice, Bob), reln = doctor_of, (T5,T%));
(id = (Charlie, Bob), reln = doctor_of, (Ts,T3))]
where, T; < T < T/ for i = 1..6. We have i =

{Alice, Bob_PHI, Charlie}. From own, we have the following
predicate:

P, = owner Bob_PHI Bob PD)
The set # now includes Bob, i.e.,
# = {Alice, Bob_PHI, Charlie, Bob}
From rel (line [6)), we have the following predicates:
P, = has_attr Alice role doctor (P2)
P3 = has_attr Charlie role doctor (P3)
P, = has_attr Bob role patient (P4)

and from rel (line [I0), we have the following predicates:

Ps = has_reln Alice Bob doctor_of (P5)

Ps = has_reln Charlie Bob doctor_of (P6)

The formula s; inferred by infer by using ¥ = {k, k', k", p}
and substituting k for Alice, k' for Charlie, k" for Bob and p
for Bob_PHI is :

Vk, k', k" : principal.Vp : phi.
has_attr k role doctor A has_attr k' role doctor A
owner p k” A has_reln k k” doctor_of A
has_reln k' k" doctor_of A has_attr k” role patient

D may send k p k' (purpose:treatment)
(F1)

Instead of checking the complete HIPAA rule with 84
clauses [18] against the log entry, it is easier to audit the
specific instance generated by infer.

2) Reduction: As formulas generated by infer might be
related such that one is strictly more permissive than the other,
we can reduce them to a simpler formula based on the terms
involved in the formula. Intuitively, this corresponds to the
weakening rule in logic, i.e., if AF C, then AN BFE C.

We define the function reduce for reducing inferred for-
mulas. The function is defined in Algorithm [] It takes as
arguments two formulas s; and s along with the typing en-
vironment Y, and returns a Boolean value to indicate whether
S9 1S more strict than s;.

The function bvar on line [2] initializes & and ' with the
bounded variables in s; and s, while the functions antt and
consq on lines [3] and [ respectively return the antecedents and
consequents of the formulas s; and s,. The function checks

Input: s; - formula

so - formula

3 - typing environment
Output: b - Boolean result
Function reduce (s, s9, )
b « False;
& < bvar(s1); ¥ < bvar(sz);
{a7}iy < antt(s1); {af}i2y < antt(sz);
T3 (@5) <= consq(s1); 7y (Ys) < consq(sz);
ifry =7, N |T5|=|ys|] A E(25) =2(y;) then
if |Z] < |y] A n < m then
Y = T\ ge)s
J o fallm gy
{#1,  comb((F\ #2),7):
{sitizy < {s'[73/y'1}2y:
if 3i € {1..m}.({a§” 7y C ;) then
| b« True;
end
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end

[
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end
End Function

Algorithm 4: Definition of reduce(sy, 2, %)

-
W

(on line [3) if the consequents (access predicates) 7, (Zs) and
ry(ys) of the two formulas are the same under the typing
environment Y, and continues if Z; is equal in length and
type to ys (line [6). The abstract function comb on line [9]
generates various orderings of the variables in ¥ based on
the typing information of the variables in 3 to get a one-to-
one mapping between variables in Z; to variables in ¢. Then,
reduce substitutes the variables in the set of formulas § with
the variables from 7 (line [I0), and if the predicates generated
with substitutions are a superset of the predicates in antecedent
of s; (line [[I)), returns True (line [[2). If none of the above
branch conditions are satisfied, reduce returns False (line .

a) Example: Consider an extension of the example de-
scribed above where Alice sends Dave’s protected health
information to Charlie for the purpose of treatment at time 7T’
(Alice is Dave’s doctor and Charlie is not Dave’s physician).
The transaction is logged as:

send Alice Dave_PHI Charlie purpose:treatment @ 7" (T2)
Suppose

R = [(id = Alice, role = doctor, (T7,T%));
(id = Charlie, role = doctor, (Tg, T%));
(id = Dave, role = patient, (Ty, Tg));
(id = Dave_PHI, owner = Dave, (T10,T},));
(id = (Alice, Dave), reln = doctor_of, (Ty1,T};))]
where, T; < T’ < T/ for i = 7.11. We have =
{Alice, Dave_PHI, Charlie}. From own, we have the following

predicate:

P; = owner Dave_PHI Dave P7)



The set # now includes Dave, i.e.,
# = {Alice, Dave_PHI, Charlie, Dave}

From rel, we have the following predicates:

Py = has_attr Alice role doctor (P8)
Py = has_attr Charlie role doctor P9)
Py = has_attr Dave role patient (P10)
P;1 = has_reln Alice Bob doctor_of P11)

The formula so inferred by infer by using & = {k, k', k", p}
and substituting k for Alice, k' for Charlie, k" for Dave and
p for Dave_PHI is :

Vk, k', k" : principal.Vp : phi.
has_attr k role doctor A has_attr k' role doctor A
owner p k¥’ A has_reln k k” doctor_of A
has_attr k” role patient

D may send k p k' (purpose:treatment)
(F2)

The function reduce takes in the formula above (s5) and the
one generated before, s1 @]), and reduces it to the formula
above (s9) as it is less strict. The output of reduce is True.
While the reduction may lead to incorrect formulas being
added as part of the inferred policy, it can also remove un-
necessary predicates from the formula. For instance, suppose
Alice is also a director in the healthcare organization at times
T and T’. An additional predicate entailed from the database
could be

P;5 = has_attr Alice role director (P12)

which is added to the formulas s; and s,. However, other
instances of a doctor (who does not have any other role)
sending a patient’s information to another doctor might not
include P;» generating a more precise formula. With reduce
the predicate P;o will be correctly masked in the final inferred
policy. This also emphasizes the need for an iterative process
over enormous logs to generate meaningful formulas with
necessary predicates.

3) Generate: Algorithm [3] lists our policy inference algo-
rithm, Generate. Given a list of log entries (L), an existing
policy (¢p), a typing environment (X) and a set of relations
(R), Generate starts by inferring a formula for every log-entry
in £ using infer. It then reduces the set of formulas using the
function reduce and returns a map M containing the mapping
from the reduced formulas to the set of original formulas. The
abstract function appendMap appends (updates) the key s; in
the map with the value s, and returns the new map. The map
M is useful when a violation is detected by the oracle in the
inferred policy and helps recover the original formulas in case
the reduced version isn’t a valid formula in the policy.

Input: £ - a list of log entries

o - existing policy

3 - typing environment

R - relational database
Output: ¢,, - inferred policy

M - map from formula to set of formulas

Function Generate (L, ¢,, 3, R):
o < infer(L, R, X); opn < 0os M+ [];
foreach s; € ¢, do
foreach s; € ¢, \ {s;} do
if reduce(s;, sj, %) then
Pn o\ 85
M <+ appendMap(M, s;, s;);
else if reduce(s;, s;, %) then
Pn < Pn \ Sis
M < appendMap(M, s;, s;);
break;
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—
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end

—
—

end

—
(5]

end
End Function
Algorithm 5: Policy Inference Algorithm
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B. Properties of Inference Algorithm
Our algorithm satisfies a few important properties:

« Monotonicity: For a fixed set of relations, adding more
entries to a log with an inferred policy ¢ results in a more
or equally permissive policy.

o Termination: Each iteration of the algorithm terminates.

o Soundness: The log from which our algorithm infers a
policy satisfies the inferred policy.

e Minimality: The policy inferred by our algorithm is
the most restrictive policy (that can be inferred by our
algorithm) that the log satisfies.

We discuss each of these properties next and prove them for
our algorithm.

1) Monotonicity: As our inference algorithm only adds
policies to the existing set of policies by gathering more
information over time, it satisfies the property of monotonicity.
We show that the policy inferred by the inference algorithm
(Algorithm [5) becomes more permissive as the algorithm
parses more log entries. To prove this property, we establish
a few important results.

Lemma 3. Given a typing environment %, a set of relations
R, a log L, and formulas s and s, if L satisfies either the
formula s or s', then it satisfies the policy containing both s
and s'.

Lemma 4. Given a typing environment %, a set of relations
R, alog L, and formulas s and s, if L satisfies the formula s,
and reduce(s’, s, %) returns True, then L satisfies the formula

s'.

Lemma 5. Given a typing environment %, a set of relations
R, and two log entries v and ', if our algorithm infers the



policy @1 for v and ps for 7,7/, then o1 < ps.

Theorem 1. Given a typing environment ¥ and a set of
relations R, if our algorithm infers a policy ¢, for the log
L and infers a policy o for the log v, L, then o1 < @2

As a consequence of the monotonicity theorem, we can
show that as new logs are generated the inference will even-
tually reach a fixed-point because the number of formulas in
the system are bounded and finite as mentioned earlier. To
show that the inferred policy eventually reaches a fixed-point
where no more formulas can be added to it, we use Tarski’s
fixed-point theorem [32]. For this, we need to ensure that
our inference algorithm, Generate, that returns a new policy
using the logs is monotonically increasing, which follows from
Theorem [11

2) Termination: The logs might not represent all possible
transactions or requests, and hence, the actual policy enforced
in the system. The inference is iterative and adds formulas as
and how log entries are parsed by the algorithm. Given that the
entities in the system we consider are finite and bounded, our
algorithm is terminating. The proposition that the algorithm
terminates follows trivially from the fact that the number of
log entries input to the algorithm are finite. This can further
be optimized to exclude the existing set of formulas in ¢,,
and check for only the current set of inferred formulas.

3) Soundness: The policy generated by our algorithm from
the log entries should suffice to “accept” those log entries
as valid. We show that the policy inferred by our algorithm
is meaningful by proving that our algorithm is sound. More
specifically, we show in Theorem [2| that the policy generated
by our algorithm accepts all log entries from which it was
generated. In other words, the log L satisfies the policy
generated from L.

Theorem 2. Given a log L, a typing environment 3 and a set
of relations R, if our algorithm generates a policy ¢, then the
log L satisfies .

4) Minimality: A trivial policy that accepts all possible log
entries can prove that the algorithm is sound but is overly-
permissive. An important property that we prove about our
algorithm is that the policy inferred is minimal, i.e., the policy
generated by our algorithm is the most restrictive policy that
can process all log entries from which it was generated.

Lemma 6. Given a log L, typing environment Y and
a set of relations R, and any policy ¢, if Vv €
L.Generate([7],{}, X, R) = ({s},[]) and Z; R;y E ¢/, then
s’ € ¢'.(s = ¢’ Vreduce(s', s,X) = True

Proof. Let v = r(t)QT. From Theorem [2, we have ¥; R;~y F
{s} such that s contains all ownerships, attributes and rela-
tionships related to . From Lemma ds € o' 3Ry E {s'}.
From PRED, we know that s’ contains ownerships, attributes
and relationships related to t. As R remains the same, s’
may contain all or a subset of state predicates present in s.
Thus, either s = s’ or reduce, we have that reduce(s’, s, %) =
True O

Input: ¢ - policy
M - map of formulas to list of formulas

Output: ¢, - approved policy
Function oracle (¢, M):
Pa < {1 om < {}
foreach s € ¢ do
if isValid(s) then

‘ Pa {S} U @a;
else

‘ s < M(s) U ps;
end
end
foreach s € ¢, do
if isValid(s) then

‘ Pa + {8} U va;
end
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end
End Function

Algorithm 6: Definition of oracle(y, M)

-
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Theorem 3. Given a log L, typing environment Y and a
set of relations R, if Generate(L,{}, X, R) = (¢, M), then
Vo BRLE Y = o< ¢

Proof. From assumption, we have Vy'. ¥; R; L F ¢'. From
Theorem 2} we have ¥; R; L E ¢. To show:

VYIS RELY R L Ee = Y RLE .

As YR L E ¢, from Lemma Vy € L',3ds €
©.3'; R';~ F {s}. From Lemma [6| we have a corresponding
s in ¢’. Hence, the conclusion holds. O

C. Oracle and Violation Detector

An important application of our framework is automated
auditing of logs and detecting violations. Our inference al-
gorithm generates a set of formulas that are audited by an
oracle. The entries corresponding to the formulas that are
accepted by the oracle are allowed while the violations as per
the approved policy are marked for further review. We describe
the functionality of the oracle and how the framework detects
violations in more detail below.

1) Oracle: Algorithm [6] defines the functionality of the
oracle. The function takes in the generated policy ¢ along
with the map M and returns the approved policy ,. For an
empty set of formulas, the oracle returns an empty set. If a
formula s is a valid formula in the policy, the oracle returns
it as part of the approved policy (line f). The oracle uses
an abstract function isValid (related to the type of oracle),
to determine whether or not s is an acceptable formula in
the policy (line [3). If the oracle detects an invalid formula
s’ according to the policy, it does not return as part of the
validated policy. However, as the reduce function attempts
to minimize the number of formulas that the oracle should
audit, it might mask a violation by producing a relaxed policy
that contained the invalid formula s’ instead of the more strict
formula(s). To account for this reduction, the oracle uses the
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map M generated by Generate to obtain the set of formulas
that s’ maps to (line @ and validates them instead (line El)

a) Example: We show the functionality of oracle in
deciding the approved policy using the example scenario
described before. Suppose that s; (FI) is a valid formula
in the policy but s isn’t because a doctor requires
authorization by the patient to send the patient’s PHI to another
doctor. The inputs to the oracle are the policy and the map:
({s2},[(s2 — {s1})]). As s is not a valid formula in the
policy, isValid(sy) returns False. Then, the map is looked up
to retrieve the set of formulas that sy maps to, which is {s1 }.
The updated set of formulas that the oracle has to check is
now ({s1},[(s2 — {s1})]). As s; is an acceptable formula
in the policy, the oracle adds it to the validated policy and
returns {s1} as the validated policy.

2) Violation Detection: Once the oracle has validated the
policy, the logs are run against the validated policy to detect
any violations. The validation of logs against the policy is done
using the rules described in Figure [3] For every log entry v =
(A, U, o0, einfoQT), the enforcement checks if ~ satisfies the
approved policy ¢,. If X; R; (A, U, o, einfoQT) E ¢,, then
the access is an authorized access; if not, the entry is marked
for further review.

a) Example: We illustrate how violations are detected for
the above example. The enforcement starts by checking the
policy for transaction [TT] as shown in Figure [5} The enforce-
ment starts by using the INST rule by replacing 7 in s; with
terms t. It then applies the PRED rule to check the predicates
in s; with the substitution. Using rules ATTR, OWN and
RELN, the relevant records are found in the database R, which
completes the validation of transaction (TT). The derivation
uses P; that correspond to the predicates to [P6] defined
above in the example for s;. Figure [0] attempts to validate
transaction (T2)). It proceeds in a similar fashion as transaction
using the predicates[P7)to [PT1] but does not find a relevant
entry for establishing has_reln Charlie Dave doctor_of in R
thereby reporting the transaction as a violation (¢).

D. Discussion

The policy generated is essentially an access control policy
that defines who is allowed access to what type of data and
when. In particular, the policy is attribute- and relationship-
based and uses environmental state on the side. While the
roles do not have a hierarchical structure in our represen-
tation, the organization might have this structure in place.
This makes reasoning about the policy simpler as we do not
have to consider the role-hierarchy when making decisions.
The hierarchical order and delegations are captured through
relationships between the different users in the system, which
have a specific timeframe similar to granting and revoking
access in a role-based access control system.

V. IMPLEMENTATION

We have implemented the algorithms and functions de-
scribed above in Python. We describe their implementation
and related optimizations next.

The function infer loops on the number of log entries and
generates policies. It takes in R and X as arguments. In the im-
plementation, the log is represented as a table in the database
R. The relationships and associations in R are implemented
as separate tables with time-related information. The resources
and principals are stored separately with attribute information,
and the environment X contains mapping from the resources
and principals to either the table name or table-column name
pair. We separately store the list of attributes to consider for
different types of resources and principals, and ensure that
they have a finite domain. Instead of visiting every record in
the database related to relationships and associations, we do a
standard lookup using a SQL query to return the results.

Our implementation assumes that only one resource is
accessed every transaction and can involve at most three
principals (one being the owner of the resource). Thus, the
formulas generated deal with at most three principals, their
(fixed) attributes, and the relationships between them. As all
of this is pre-determined, the policy has a fixed structure and is
represented as a table in our implementation. The rows of the



table are the formulas that form the policy. Fields that cannot
be populated for any of the formulas are set to NULL.

Once the formulas are generated by the algorithm, the oracle
needs to decide on the validity of the formulas as part of the
policy. The oracle is an important component in our model as it
decides the legitimacy of the policy inferred by our algorithm.
The oracle could be any function depending on the log under
consideration, the application, and other heuristics. In our
implementation, we manually check the formulas to determine
the correct policy. While we employ a human oracle, different
types of oracles can be considered to determine validity.

For instance, the simplest oracle function is the identity
function that returns all policies inferred by the algorithm. This
oracle is useful when working with pre-audited logs and can be
used when initially bootstrapping the system with policies. The
organization can use the logs that have been audited earlier to
generate meaningful policies that can be enforced and checked
against when inferring newer policies. Existing works employ
machine-learning algorithms to generate policies from logs
and access-requests [21H31]. A more complex oracle may
employ a similar machine-learning algorithm to determine the
correctness and validity of the inferred policy based on some
threshold. Determining this threshold is, however, tricky, and
might result in false-positives or over-permissive formulas.

VI. EVALUATION

Our evaluation of the algorithm aims to answer three im-
portant questions — (1) is auditing policy easier than auditing
logs, i.e., are the number of formulas lesser than the number of
log entries and how does this ratio vary for different number
of log entries; (2) is the violation detector able to detect
violations of access policy in the log using the formulas that
fail the policy audit; (3) how permissive and expressive are the
formulas generated by our algorithm as compared to the actual
policy. We evaluate our implementation for these questions by
using it to generate policies and detect violations in the case
of healthcare systems, which we discuss next.

A. System Setup

The information that is sensitive in a healthcare setting is the
protected health information (PHI) of a patient that includes
psychotherapy notes amongst other information. The HIPAA
privacy rule [1] places restriction on how this information
can be accessed and/or disclosed to a third-party by a user
(in this case, a covered entity). Thus, the audit logs in such
systems might contain additional information about a receiver
to whom the disclosure is made. The HIPAA privacy rule
defines various clauses in which it is appropriate for a covered
entity to access a patient’s PHI, which are formalized as
purposes in prior work [18]. These may, however, be very
subjective in nature and require consideration on a case-by-
case basis. Our enforcement includes purpose as part of the
policy and records it as a separate column as is consistent with
policy representation in hippocratic databases [33l], which are
a class of databases that assist in reasoning about the privacy of

healthcare information they manage. We start with an initially
empty set of formulas.

We test our algorithm on synthetic logs generated by a
simulation that considers disclosure scenarios governed by
HIPAA. We modify the implementation by Garg et al. [14]]
written in C to simulate the log generation process; the
original implementation generated predicates that were used
by their audit algorithm directly. The simulation generates data
disclosing log entries for different purposes like treatment,
billing, health-operations, law-enforcement and marketing. It
additionally generates attributes like roles, and relationships
for users and resources. The simulated database is an instance
of hippocratic database. The simulator uses a probabilistic
event scheduler for generating data disclosure for each purpose
after a probabilistic gap. It also generates violations with a
probability input to the simulator by omitting generation of
certain necessary conditions for a log entry to be valid. The
log is a table in the database containing disclosure transactions
similar to the example from Section When generating the
attributes and relationships, it adds them to a separate table to
verify that the relationships and attributes have a finite domain
of values.

The reduce function reduces the number of formulas that
the oracle has to initially review by mapping the less strict
formulas to the more strict formulas, and only adding the
mapped formulas if the less strict formulas are invalidated by
the oracle. In our implementation less strict formulas are those
which do not have a value specified for some of the fields, e.g.,
while one formula has a relationship specified, the less strict
formula may not have a relationship. Thus, if infer infers the
policy {s1, 2,83} such that s = (a; Aag) D may r, so =
(a1 AagAas) D may r and s3 = (a1 Aag Aayg) D may 7, then
the policy is reduced to {s; } with a mapping: [s1 — {s2, s3}]-

B. Performance Evaluation

We perform two experiments — one without any violations,
and the other having violating instances of HIPAA with a
probability of 0.1. All experiments were performed on a 3.1
GHz Dual-Core Intel Core i5 CPU running macOS Catalina
with an 8GB RAM. The database we work with is SQLite
version 3.31.

In the first experiment, to address the first question, we
evaluate the time taken by our algorithm to infer policy for
different number of log entries that are increased additively,
i.e., the logs contains all entries from previous experiment
apart from the new ones that are added by the log generator.
An important result of this experiment is to show the saturation
of formulas generated over time as new log entries are added
to the log. Table [I] summarizes the results. The first column
contains the number of log entries input to the algorithm. The
second column lists the number of formulas inferred for the
given log and the third column shows the ratio of the number
of formulas to the number of log entries in percentage. The
fourth column reports the time taken to perform the inference
in seconds while the fifth column shows the average time taken
to process one log entry in milliseconds. Figure [/| shows the
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graph for the number of formulas inferred and time taken for
inference for different number of log entries. Note that the
logs did not contain any violations.

The number of inferred formulas quickly stabilize once
50,000 log entries are processed. The majority of time-taken
for inferring formulas is spent when newer formulas are
inferred that do not match any of the earlier formulas. We
create indexes on the policy table for faster lookup once
all the policies are inferred. Thus, for every 50,000 entries
past 100, 000 entries, the inference takes on an average 62.5
seconds. The formulas contain a representative set of clauses
used on a more frequent basis. It is also informative to see the
ratio of formulas required to be audited to the actual number
of log entries. For 12,500 log entries, the oracle has to audit
only 287 formulas, which is only 2.29% of the number of log
entries. The percentage goes down significantly to 0.112% for
350, 000 entries supporting the use of inference for auditing.
We apply reduce to the formulas generated by the algorithm
and find that the number of formulas goes down by 143
for 350,000 log entries, thus further reducing the number of
formulas that the oracle has to approve.

To answer the second question in our evaluation, in the
second experiment we measure the effectiveness of violation
detection by the algorithm and compare the number of vio-
lating log entries with the number of formulas generated by
the algorithm that are not part of the policy. We simulated the
generation of logs to model policy violations with a probability
of 0.1. The simulator generated 300,000 log entries. Most
violations included missing authorizations to access a patient’s
personal health information. The number of formulas inferred
by our algorithm is 206. While the reduce function further
reduced the number of formulas by 33, we audited all 206
formulas to ensure no violations were missed. Of that, 8
formulas were incorrect as per the HIPAA regulations, and
2 were part of the reduced formulas. For instance, one of
the formulas allowed a patient’s protected health information

to be released for marketing purposes without the consent of
or authorization from the patient. Similarly, another formula
allowed the release of PHI for treatment purposes to another
covered entity without the consent of the patient violating
§164.508(a)(2) of the HIPAA rule. In total, the 8 incorrect
formulas corresponded to 28,796 log entries. To summarize
the second experiment, auditing 206 formulas helped uncover
around 29k violating log entries.

C. Qualitative Evaluation

To address the third question, and understand the permis-
siveness and expressiveness of our algorithm, we compare the
formulas inferred by our algorithm with the actual HIPAA
policy expressed in first-order logic [[18]]. The inferred formu-
las are specific to the log entries, and hence, might be more
restrictive than the actual HIPAA policy. For instance, one of
the formulas inferred in our experiments is:

Vk, k' k" : principal.Vp : phi.

has_attr k role c-entity A has_attr k' role c-entity A

owner p k” A has_reln k k" hospital_of A

has_reln k' k" health_care_provider_of A

has_attr k" role patient

D may send k p k' (purpose:payment)

The actual HIPAA policy (§164.506(c)(3)) does not require &’
to be both a covered-entity and the health-care-provider of k",
which makes the formula inferred by our algorithm stricter.

Suppose if for another log-entry, the formula inferred by
our algorithm is,

Vk, k' k" : principal.Vp : phi.

has_attr k role c-entity A has_attr k' role c-entity A

owner p k” A has_reln k k' hospital_of A

has_attr k" role patient

D may send k p k' (purpose:payment)

then the earlier entry is moved to the map by reduce, and the
less strict formula is presented to the oracle. Thus, as more
log entries are parsed by our algorithm, the policy converges
towards the actual policy enforced in the system.

Our algorithm infers policy clauses with disjunction opera-
tor as separate formulas that are stricter than or equivalent to
the actual policy. For instance, our implementation infers the
following three individual formulas,

Vk, k' k" : principal.Vp : phi.

has_attr k role c-entity A has_attr k' role c-entity A

owner p k” A has_reln k k" hospital_of A

has_attr k" role patient

D may send k p k' (purpose:payment)
ey
...D may send k p k' (purpose:treatment) 2)

... D may send k p k¥’ (purpose:healthcare-operations)
3)



# log entries | # formulas inferred | % entries | time taken (sec) | average time per entry (ms)
12500 287 2.296 105 8.75
25000 352 1.408 227 9.08
50000 391 0.782 441 8.82
100000 391 0.391 602 6.02
150000 391 0.261 670 4.46
200000 391 0.195 731 3.65
250000 391 0.156 780 3.12
300000 391 0.130 851 2.84
350000 391 0.112 914 2.61

TABLE I: Experimental evaluation of inference algorithm to generate policy for different number of log entries

while they are represented as a single clause with disjunctions
in the formalized HIPAA policy (§164.506(c)(1)) [18]. Note
that the individual formulas are inferred only when the relevant
log entries are parsed by the algorithm.

VII. DISCUSSION

A. Negations and existential formulas

While our policy logic is a fragment of first-order logic
without existential quantifiers and negations, it is sufficiently
powerful to express access formulas. As access is allowed only
if one of the inferred formulas holds; all other formulas are
implicitly assumed to not hold at the time of access indicating
possible violations. The domains of various types are bounded;
thus, negations of atomic predicates are well-defined sets of
satisfying atomic predicates. Our algorithm does not infer
negations in formulas as those predicates should “not” be true
for the formula to hold as the logs do not contain information
about what should not be true at the time of access. Instead, it
starts by assuming that all entries in the audit logs are correct;
hence, inferring positive formulas that must hold for the entry
to be generated.

For instance, consider an organization that has three
user roles - doctor, patient and nurse. Then, the
predicate —has_attr(k,role,doctor) is equivalent to
has_attr(k,role, patient) V has_attr(k,role,nurse). If a
formula requires —has_attr(k,role,doctor) and an access
was granted to k, then either has_attr(k, role, patient) was
true or has_attr(k,role,nurse) was true. Based on the
log entry (the role of k), either one of these formulas is
inferred by our algorithm. Once both are added to the policy
through different formulas (in disjunctive normal form), they
represent the equivalent predicate —has_attr(k, role, doctor).
The inferred policy might not be the actual policy but an
equivalent policy given the current domains of the types.

For existential operators, the algorithm generates formulas
with specific values as it is difficult to anticipate whether it is
an or what the existential formula is that a log-entry satisfies;
this is more restrictive than the original clause which requires
“some” value. The algorithm generates more possible values
used in practice as more log entries are parsed. For instance,
DeYoung et al. [18] formalize the clause §164.506(c)(4) of

HIPAA as:
role(pl, centity) A role(p2, centity) A (t € phi)A
(31 : rel. inrelationship(pl,r1,q) A pertainsto(t,r1))A
(32 : rel. inrelationship(p2,12, q) A pertainsto(t,r2))A
((u € healthcare_fraud_abuse_detection)V

(u € healthcare_fraud_abuse_compliance))

Our inference instantiates r1 and 72 as hospital-of when
inferring this formula.

B. Temporal formulas

Disclosures like “... the covered entity must act on a request
for access no later than 30 days after receipt of the request
...~ cannot be inferred by our algorithm. Such clauses pertain
to timely disclosure of data, and not the actual access of
data. While the current algorithm does not generate temporal
formulas and formulas like “... can access only three times ...”,
it can be extended to do so using the timing information (and
frequency of access) in the log and database entries, which
is an interesting future direction and out of the scope of the
current work. The logs have to be treated by an additional
processing step to record the frequency of access and the
time between accesses. The algorithm would then take into
consideration the frequency and time of access of data, along
with other accesses to formulate the respective policy.

VIII. RELATED WORK

We discuss three classes of research that are closely related
to our work: auditing logs based on policy specifications,
mining access control policies, and mining properties from
logs. While a lot of work has focussed on these three classes
separately, we are not aware of any work that infers access
policies from logs for auditing them.

A. Auditing Logs

Auditing logs based on policy specifications has been a
topic of active research over the last decade [12H17]]. Instead
of employing a runtime monitor to check the policies, some
of these techniques have focussed on monitoring the logs
generated to check for policy violation while others model and
enforce the accountability requirements in systems [34} [35]].
All of these systems including ours assume correct logging
practices; however, some prior work also discusses and for-
malizes correct logging [36]. We discuss the works on auditing
logs in more detail next.



Cederquist et al. [12] present a system for auditing by
discharging formal obligations through construction of formal
proofs. The process checks that an obligation is satisfied
somewhere in the proof-tree, the leaves of which are estab-
lished using the logs. Our work does not require a formal
representation of the policy, and hence a specification to work
with for auditing.

Garg et al. [14] work with incomplete logs by reducing the
policy to validate based on available logs. As more entries are
made available, their system reduces the policy further until
either the policy has a definitive truth value or contains only
subjective clauses. The policies in their work are specified in
an expressive first-order logic. A similar work by Basin et
al. [15] targets compliance checking in incomplete logs by
specifying policies in a first-order logic, which is a variant
of the logic used by their previous work [19] for runtime
monitoring of policies. They have a stronger approach that
is suitable for online monitoring. Our enforcement algorithm
is formalized in a similar first-order logic but does not include
subjective clauses while our approach is not dependent on
policy specification.

APPLE [13]] is a logical framework that uses logs to deter-
mine violations of policies in a system. The system ensures
that only those users who can be held accountable in the
system can access resources. Their focus is to detect violations
and hold users accountable for accessing resources that have
policies associated with them. In contrast, our work targets
systems where formal policy specifications are unavailable,
and assists in auditing the logs by inferring policies.

The Aura programming model [[16], on the other hand, uses
a set of rules that constitute a policy, and defines a kernel
containing the log and the resource with an interface that
interacts on behalf of the resource. The interface takes as input
an authorization proof that validates the access. The kernel
returns a corresponding proof to indicate that the operation
was performed. The logs serve as evidence of access, which
is similar to what we base our analysis on. However, they
do not infer the policy, and instead base the compliance on
recorded proofs.

Fabbri and LeFevre [37] study the problem of generating
explanations for individual records in the log. Their work
generates explanations for every entry based on some template
to justify the log-entry. Our approach parses logs in a similar
fashion but generates concrete policies that can be applied
at runtime. More recently, Chowdhury et al. [38]] proposed
a hybrid approach to perform both online monitoring to
identify violations and an offline auditing approach for cases
it cannot validate. Our approach is similar to theirs in that
we can perform runtime access control based on the earlier
inferred policies while for the transactions that do not have a
corresponding policy, we log them for further examination.

B. Mining access control policies

Mining policies has been a well-studied problem [20H31];
almost all approaches for mining policies are based on using
learning algorithms and generalizing/correcting the results to

obtain the policy enforced by the system. We do not base our
inference on a machine learning technique to avoid pitfalls of
incorrect authorizations. Instead, we use rules from authoriza-
tion logic to decide the access permission of different users in
the system. Some other works have focussed on role-mining
and role-engineering [39-42]], which aims to mine user-roles
(and hierarchies) for designing and enforcing role-based access
control in systems. We discuss some of the approaches to
policy mining next.

Agarwal et al. [43] proposed the Apriori algorithm for
mining association rules between various items in a database.
Most of the subsequent works on policy mining have used
variations of this algorithm to mine meaningful policies from
the transactions. Bauer et al. [21] proposed a methodology
to apply this algorithm to mine attribute-based access control
policies from access logs of a lab to determine the access
patterns of different users. The patterns helped them detect
any misconfigurations in the enforced policy, similar to how
we use an oracle to detect violations of policies.

More recently, Cotrini et al. [29] presented Rhapsody that
uses association rule mining to mine logs for discovering
attribute-based access policies. The mined policies have a
minimal over-privilege, and is designed to work with sparse
logs, i.e., if not all kinds of transactions are present in the
logs. In contrast, we do not generalize for transactions that are
not represented in the logs and wait until such a transaction
actually appears to disallow any unpredicted authorizations.

Sanders and Yue [31]] present a rule mining algorithm using
privilege error minimization [44] to generate least privilege
policies. Their focus was to measure the under-privilege and
over-privilege of policies and to minimize them in large and
complex systems.

Xu and Stoller [22-25] proposed different approaches to
mine role-based and attribute-based access control policies.
They proposed various algorithms to efficiently mine these
policies while minimizing the size of the policies mined.
While their initial work [24]] on mining attribute-based policies
used the role matrix, their subsequent work [25] mined such
policies from logs, similar to what a part of our system does.
They, however, use machine learning techniques, and weighted
structural complexity [40] as a measure for the size of policies
they generate. Bui et al. [27, 130] have used modifications
of these algorithms to mine relationship-based access control
policies. But their approaches use access-control lists and
attribute data to determine these policies. Our approach, on
the other hand, infers both relationship-based and attribute-
based access policies using logs and attribute data.

While our approach and the previously proposed approaches
focus on generating authorization policies that allow access,
Iyer and Masoumzadeh [28] present an algorithm for mining
both positive and negative policies, i.e., policies that disallow
access. They also use weighted structural complexity to mea-
sure the complexity of the policies and show that their mining
algorithm has a better performance than Xu and Stoller’s
algorithm [24].



C. Mining properties from logs

A lot of other prior work focusses on inferring properties
from logs but differ on what properties their system infers
from the input logs. We discuss briefly the approaches that
mine properties other than access policies from logs here.
Most of these approaches analyze traces generated by the
system either to understand the behavior of the program
by mining specifications for existing systems or to visualize
how the user interacts with the system, and to determine
the faults and issues with the system. Ammons et al. [45]]
present one of the earliest approaches to mining program
specifications from execution traces using machine learning
algorithms. IPM2 [46] performed interaction-pattern mining
to discover the usage behavior of users. A similar work
uses usage scenarios to mine API specifications from source
code [47]. Mining temporal invariants and properties [48H50]]
have also been a subject of active research over the past few
years. Other mining approaches have targeted parametric spec-
ifications [51]], scenario-based specifications [52-H54] object
usage [55] and software behaviors [56].

IX. CONCLUSION

We have presented a novel methodology to automate audit-
ing of logs by policy inference. Our algorithm infers formulas
from log entries, which are then validated by an oracle that
can be used to automatically audit logs. We prove that our
algorithm is sound, terminates, and generates a minimal policy.
We implement our algorithm and evaluate our implementation
for a simulated set of healthcare audit logs. We show that
our inference algorithm generates significantly lesser formulas
than log entries making them easier to audit, and can effec-
tively identify violations in logs.
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APPENDIX

A. Lemmas and Proofs

Lemma 1. For all policies p1 and @2, and a formula s, if
¢1 < 2, then o1 U {s} < 2 U {s}

Proof. As ¢1 < @9, we have

WH)VE, R, L. R LEp; = ;R LE po.

Suppose that VX', R’ L".Y'; R'; L' E ¢ U {s}.

T.S.

XS RGLE o U{s)

Proof follows by induction on the length of the log £’ and
then applying ACCESS along with (1). O

Lemma 2. Given a policy ¢, for all logs L, typing envi-
ronments . and sets of relations R, if X;R; L F ¢, then
Vy e L,3s € 0.5 R; v E {s}

Proof. Proof follows by induction on the length of the log L.
Base case : £ = [v]

From IND, ¥; R; v E ¢. From ACCESS, we have &; R; v E {s}
such that s € ¢. Hence, the conclusion holds.

Ind. case: £' =+, L
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IH: If Z; R; LF p, then Vy € £,3s € 0.3 R; vy E {s}
From IND, ¥; R;v E ¢ and X; R; L E ¢. From IH, we have
Vy e L,3s € .5, Ry E {s}
T.S. Vy € [¥],3s € ¢.3; R; v E {s}
From IND, X; R;+' F . From ACCESS, we have X; R;y/ E
{s} such that s € . Hence, the conclusion holds.

O

Lemma 3. Given a X, R, L, and formulas s and s', if
SRy LE {s}, then X;R; LE {s,5'}

Proof. By induction on length of log L.

« Base case: |£]| = 1. From ACCESS, and ; R; £ F {s},
we have X; R; L E {s,5'}.
e Ind. case: IH: If &; R; L F {s}, then X; R; L F {s,s'}
T.S. If X; R; v, L E {s}, then X; R; v, L E {s,s'}
From IND, ¥; R; vy F {s} and 3; R; L E {s}.
From ACCESS, we know that if X; R;y E {s}, then
S RyyE {s,8'}
From IH, if 3; R; L E {s}, then &; R; L E {s, '}
Thus, from IND, the conclusion holds.
O

Lemma 4. Given a X, R, L, and formulas s and s', if
YR, L E {s} and reduce(s’,s,X) = True, then ; R; L F
{s}
Proof. By induction on length of log L.
e Basecase: |£| = 1. Letr(£)QT = L, s = ( A ai(#)) D
i=1

may 7 and s’ = (A a;-(y}')) D may r.
=1

From Algorithm 4] we know that r(Z) = »/(¢) and
Vie{l,...,m}.a}(g;") € {a;(#)}}, such that m < n.
From PRED and ¥; R;rQT F {s}, we know X; R; T +
(a3 (6} As Vi € {1, m}.al(s) € {a;(a)}s,
from PRED, we have X; R;rQT E {s'}. Hence, the
conclusion holds.

e Ind. case: IH: If ¥; R; £ F {s} and reduce(s’,s,%) =
True, then X; R; L F {s'}
TS. If &; R;~y, L E {s} and reduce(s’, s, ¥) = True, then
Y Ryv, LE{s,s'}
From IND, ¥; R; v E {s} and X; R; L E {s}.
From similar reasoning as in base case, we know that if
¥, Ry E {s}, then 3; R; vy F {s'}
From IH, if 3; R; L E {s}, then X; R; L E {s'}
Thus, from IND, the conclusion holds.

O

Lemma 5. Given a X, R, v and +/, Generate(v, po, X, R) =
(¢1, M) and Generate((v,7'), w0, %, R) = (w2, M'), then
w1 < 2

Proof. From Algorithm 3] let ¢, = {s}. Then for 7,7/, ¢,, =
{s,8'}. Two cases arise:

« Suppose 1 = {s} and @3 = {s,5'}.
Assume VX' R, L', ¥, R'; L' E {s}

To show that ¥'; R'; L' F {s,s’}. From Lemma [3| the
conclusion holds.

e Let o1 = {s} and w2 = {s'} and M’ = [(s' — {s})].
Assume VX' R, L/, ¥'; R'; L' E {s}. From Lemma (4]
we have X'; R'; L' £ {s'}. Hence, the conclusion holds.

O

Theorem 1. Given a ¥, R, L, Generate(L, o, X, R) =
(p1, M) and Generate((y, L), p0, %, R) = (p2, M’), then

©1 < p2

Proof. Follows by induction on the length of log L.

o Base case: |£]| = 1. By Lemma |5] the conclusion holds.

¢ Ind. case:
IH:  Generate(L, po, %, R) = (p1,M) and
Generate((7, £), o, 2, R) = (p2, M), then ¢1 < ps.
T.S.: Generate(y', L, 90,5, R) = (¢}, M;) and
Generate((v',7v, L), 00,2, R) = (¢5,M]), then
©] < . From Lemma [5] Lemma [1| and the IH, the
conclusion holds.

O

Theorem 2. Given a log L, a typing environment ¥ and a
set of relations R, if Generate(L,{}, X, R) = (¢, M), then
SR LE @

Proof. The proof is by induction on the length of log L.

We omit M for clarity from the definition of Generate. For the
base case when the log is empty, Generate([],{}, X, R) = {}
and X; R; - E {}.

For the inductive case from the inductive hypothesis, we have
Generate(L, {},X, R) = ¢, then X; R; L E .

To show that if Generate((vy,L),{},X,R) = o,
Y5 R; (v, L) E . From Algorithm [3| ¢,, = {s} U ¢,.
Applying IND, we need to show that 3; R; v E {s}.
Let v = r@T where r includes all actions. From Algorithm
and OWN, Va € (owner(R,t,T)).%; R;T F a. Similarly, for
Algorithm [2] and RELN, ATTR.

Thus, ¥; R; T+ {a;(t;)}-, and s = A a;(t;) D may r(f).

=1
From Algorithm [3| and PRED, 3; R;~y E {s} and the conclu-
sion holds. O

then
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