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1. Subgraph Analysis

2. Propagation Methods
3. Latent Factor Models

a) Background
b) Normal Behavior

c) Abnormal Behavior
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What about the other eigenvectors?
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Singular Value Decomposition
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Singular Value Decomposition
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What does each
eigenvector capture?
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Matrix Factorization
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1. Subgraph Analysis

2. Propagation Methods
3. Latent Factor Models

a) Background
b) Normal Behavior

c) Abnormal Behavior
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Matrix Completion
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predict missing entries
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Matrix Completion

Can't find singular vectors
with missing entries. Instead,

mln z (M;; — ;- V;)°

(l JEM
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Matrlx Completion
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Matrlx Completlon
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Matrlx Completlon
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Adding Latent Factors )
(i,j ) EM

Consider additional factors:

« Dataset mean u

 Row (user) baseline b; ==
* Column (movie) baseline b;

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009
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Adding Latent Factors

What if we know the time of the rating
(time of the edge being created)?

Collaborative Filtering with Temporal Dynamics
Yehuda Koren ‘
KDD 2009
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Adding Latent Factors

Mean
Score
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Collaborative Filtering with Temporal Dynamics

Yehuda Koren
KDD 2009
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Adding Latent Factors

Mean Rating by Movie Age (Netflix)

3.9

ssf D B .. .

Mean
Score
7 S |
32 | | | |
0 500 1000 1500 2000 2500

Movie Age (days)
Collaborative Filtering with Temporal Dynamics

Yehuda Koren
KDD 2009
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Adding Latent Factors

: 7. 2
(i,j)EM

Time factors:

« Column (movie)- time
baseline b; gin(t)

* Row (user)-time
baseline function b;(t)

+Dbj Bin(r) + bi (t)

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009
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Bayesian Modeling

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008
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Baye3|an I\/Iodellng

Sample user factors from
! Normal distribution

-

Bayesian Probabilistic Matrix Factorization

Ruslan Salakhutdinov and Andriy Mnih
ICML 2008
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Bayesian I\/ngjling

W
@ Sample user factors from

l Normal distribution

Bayesian Probabilistic Matrix Factorization

Update mean based on
user factors

Ruslan Salakhutdinov and Andriy Mnih
ICML 2008
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Bayesian I\/ngjling

®

eyt

Similarly sample movie factors

Bayesian Probabilistic Matrix Factorization

Ruslan Salakhutdinov and Andriy Mnih

ICML 2008
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Bayesian Modeling

0.4

0.3

0.2

0.1

A. Beutel, L. Akoglu, C. Faloutsos

*ox * %k K
@ = 2.5319

* ok kk ok ok ok ok ok

p(Mi,j‘U' V) — N(Ml,jlﬁl . 1_7)]',0'2)

Bayesian Probabilistic Matrix Factorization

Ruslan Salakhutdinov and Andriy Mnih

ICML 2008
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Bayesian Modeling

0.97

0.96! | Netflix
'\ Baseline Score

PMF _
— | |Better
Logistic PMF | ¥
09 Bayesian PMF
0 10 20 30 40 50 60
Epochs

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih

ICML 2008
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Bayesian Modeling with Co-Clustering

S-
- ¢

& ¢ O
= - § 4

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
Wwww 2014

Cluster users
with similar factors
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IMAX

OO O®

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
Wwww 2014
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Bayesian Modeling with Co-Clustering

All Groups
0.9 Star Trek
Veggie Tales mmmmm
0.8 Scooby Doo =
Southpark ms
0.7 Simpsons mn i
Family Guy ‘
TR T2
0.5 I
0.4
0.3
0.2
OHIHHIH o 1 . N | N T i

1 2 3 4 5 6 11 12 22 23 24 25 26 27 28 29 30 31 39 40 42 48 49 50

Cluster 28 Cluster 30 Cluster 48
Simpsons Scooby Doo Star Trek

Family Guy Spy Kids Back to the Future
Monty Python Stuart Little Southpark

Curb your Enthusiasm  Dr. Dolittle Lord of the Rings
The Twilight Zone Lion King Harry Potter

Arrested Development ~ Agent Cody Banks The X-Files

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
Wwww 2014
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Online Rating Models

Typically fit a Gaussian - Minimize RMSE
. Qagaa 50% (298)
QQaa. 14% (83)
éweyy- Qaau § ; 6% (38)
J Qaual | 5% (31)

QU2 g | 25% (152)

0.5

03|

0.2

T T T I
** * Kk ok * ok kk ok k ok ok k

Data Normal CF

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
Wwww 2014
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Online Rating Models

Typically fit a Gaussian - Minimize RMSE
N Qagaa ] 50% (298)
QQaa. | 14% (83)
Geweyy Qaa.ul | 6% (38)
Qauaa | 5% (31)

QU2 g | 25% (152)

0.5

0.3

0.2

il

I I I I
*k * kK )k kk ok ok ok ok k

Data Normal CF CoBaFi

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
Wwww 2014




Q" koD 2015 A. Beutel, L. Akoglu, C. Faloutsos

‘Shape of Netflix reviews

The Rookie
% TheFan

EROOKE  Cadet Kelly
Money Train

Alice Doesn’t Live Here Aqua Teen Hunger Force: Vol. 2

Sea of Love
Boiling Point
# Stars
i More Gaussian
Movies | <

ewall Most Gaussian Most skewed -

The O.C. Season 2

Samurai X: Trust and Betrayal
Aqua Teen Hunger Force: Vol. 2

Sealab 2001: Season 1

Gilmore Girls: Season 3

Felicity: Season 4

More Skewed

>

CoBaFi: Collaborative Bayesian Filtering

Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola

# Stars

TV
Shows

WWWwW 2014
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What Is a tensor?

- Tensors are used for structured data > 2 dimensions

- Think of as a 3D-matrix
For example:

Kanye West rated The Sound of
Music five stars last January.

N
N
NN

o

=
SNBSS .

Date of
rating




Movie
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Xi ik

A. Beutel, L. Akoglu, C. Faloutsos

User

4
Y

2

Kanye West rated The Sound of
Music five stars last January.

AN
SNl
N

N7 N

O
< N

Movie

[~
(-

Date

U@V@W User
Rank

Z Ui,r Vj,r Wk,r
r=1
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Graph Clustering with Tensors

Graph View

Multiple possible views

of the DBLP network:

1. Who-cites-whom

2. Co-authorship Author
3. Using same words in title

Author

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs

Evangelos E. Papalexakis, Leman Akoglu, Dino lenco
FUSION 2013
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Graph Clustering with Tensors

.
s P Graph View

I i
+ ...~ Author

Author

Sparse Tensor Factorization

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino lenco

FUSION 2013
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Graph Clustering with

DBLP-1

DBLP-2

500 1000 1500 2000
nz = 24488

(a) citation

200

400

600

JRTIPI,
600 300
nz=1661

(b) co-auth.

400 1000 1200

500 1000 1500 2000 2500 3000
nz = 5406

(b) co-auth.

Tensors

1000

1200p e o o .
0 200 400 600
nz= 3068

£ 5 400 4
00 1000 1200

(c) co-term

B3 .
1000 1500 2000
nz=15149

(c) co-term

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs

Evangelos E. Papalexakis, Leman Akoglu, Dino lenco

FUSION 2013
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Graph Clustering with Tensors

__Dataset | _Baseline | GraphFuse

DBLP-1 0.12 0.30
DBLP-2 0.08 0.12

Modeling Accuracy

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino lenco

FUSION 2013
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Coupled Matrix + Tensor Decomposition

J

AN 5 N Y v

NN A e v o

NN v I I

o 1 N v A v

NN v I I

NN A e v o -

NN v I I

NN A e v o

NN v I I

NN v I I

) NN A e v o +— Movie

Movie EEEE EEEEEEERECCERRsCes

NN v I I

NN A e v o

NN v I I

NN A e v o

NN v I I

NN A e v o ‘

NN v I I ‘ Date

NN A e v o i

N N O O O B N B

5 User

Explicit Genres




(7))
(@)
(7))
e
oD
o
(4v]
LL
®)
=)
(@))
(@]
A
<
i
D
e
- )
(b)]
(a 0]
<

QY kDD 2015

Coupled Matrix + Tensor Decomposition
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Joint Factorization

Entities, £

Categories, S¢ Attributes, S 4 Businesses, S Users, Sy Review words, Sy
Model Parameters, o T T T T T
_ . . ’ P |S¢| P EN P |SB| P |Su| P |Sw |
k-dimensional entity vectors Sc Sa Sz Su Sw

l / Av/ / J /N l
— k — — —k — — k — — k
«—— |Sc| SAl — SL/ >< |Sw | Xl |Sw| ——
B B Ry

Partial Observations e il ) ) )
C |SB| A |SB| R |SE| BW |SB| UW |Su|

Predict missing data

Business Categories Business Attributes User/Business Ratings Reviews for Business Reviews by Users

Relations, R

Collective Factorization for Relational Data:

An Evaluation on the Yelp Datasets
Nitish Gupta, Sameer Singh
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Precision

Joint Factorization

PR Curve (Ratings)

A. Beutel, L. Akoglu, C. Faloutsos

0.95 T T T T T I I I I
rR —— | Most valuable:
A+R —e— )
09 | r«uw —— 1 1. Ratings
R+BW —a— i
rec —m— | 2. Review text
A+R+UW —oe— \
085 rC+UW —o— 1 3. Business
A+C+R+UW —a— .
el Categories
0.75 |
0.7 |
0.65
o o1 02 03 04 05 06 07 08 09 1 y9|p'4¢
Recall

Collective Factorization for Relational Data:

An Evaluation on the Yelp Datasets
Nitish Gupta, Sameer Singh
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1. Subgraph Analysis

2. Propagation Methods
3. Latent Factor Models

a) Background
b) Normal Behavior

c) Abnormal Behavior
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Fraud Detection
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Fraud Detection

a g:'
P B
B
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Fraud within a factorization
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Fraud within a factorization

Followees

HEEEEEEEEEEEEEE .
HEEEEEEEEEEIV AN
HEEEEEEEEEELAEEEEEEEEEEE

Followers
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Fraud within a factorization

Followees
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Fraud within a factorization

followee

follower

EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs
B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri,

Sridhar Machiraju, Christos Faloutsos
PAKDD, 2010
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Fraud within a factorization

J
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followee
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follower

EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs
B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri,

Sridhar Machiraju, Christos Faloutsos
PAKDD, 2010
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Fraud within a factorization

F2- -\ F3

Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shigiang Yang.
PAKDD, 2014
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Fraud within a factorization

Inferring Strange Behavior from Connectivity Pattern in Social Networks
Meng Jiang, Peng Cui, Alex Beutel,

Christos Faloutsos, Shigiang Yang.

PAKDD, 2014
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Fraud within a factorization

Inferring Strange Behavior from Connectivity Pattern in Social Networks
Meng Jiang, Peng Cui, Alex Beutel,

Christos Faloutsos, Shigiang Yang.

PAKDD, 2014
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omplementary Fraud Detection
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Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.
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omplementary Fraud Detection

960 fraudsters
safely following
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¢

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,

Christos Faloutsos
ICDM, 2014.
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omplementary Fraud Detection

Followees
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Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,

Christos Faloutsos

ICDM, 2014.




Q' kDD 2015 A. Beutel, L. Akoglu, C. Faloutsos

Complementary Fraud Detection
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Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,

Christos Faloutsos
ICDM, 2014.
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Complementary Fraud Detection

A. Beutel, L. Akoglu, C. Faloutsos
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Christos Faloutsos
ICDM, 2014.

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
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Complementary Fraud Detection
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Type | Attributes | Attributes Labels

EigenSpokes
Get-the-Scoop
fBox

CoBaFi
CDOutliers

A. Beutel, L. Akoglu, C. Faloutsos

Practitioner's Guide

Directed+

Directed+

Directed+
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Undirected v
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Detecting Fraud within Recommendation

Al1al08]-02-15 08
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Detecting Fraud within Recommendation

E - IMAX

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
Wwww 2014
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Clustering Fraudsters

bt e )

Nalve
Spammers

L

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
WWWw 2014
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Clustered Fraudsters

Clustered naive
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CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,

Christos Faloutsos Alex Smola
Wwww 2014
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Outliers in Joint Factorization

Enforce U]_ =~ Uz and Ull U2, Vl' Vz >0

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han /
ECML/PKDD 2013 ¢
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Outliers in Joint Factorization

Interesting design of X; and X,; see paper for details

\/ \/
V4 V4

Enforce U]_ =~ Uz and Ull U2, Vl' Vz >0

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han
ECML/PKDD 2013
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Outliers in Joint Factorization

Rows of V, represent common

patterns in i (cluster centroids)

Enforce U]_ =~ Uz and Ull U2, Vl' Vz >0

Community Distribution Outlier Detection in Heterogeneous Information Networks

Manish Gupta, Jing Gao, and Jiawei Han
ECML/PKDD 2013
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Outliers in Joint Factorization

Rows of V, represent common
patterns in X, (cluster centroids)

An anomaly is a row of X, “ ’

that is not similar to
any row in V;

| [ [ | | S

| [ | | [

|1 | R R
L LA

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han

ECML/PKDD 2013
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Get-the-Scoop
fBox
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CDOutliers
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Practitioner's Guide

Directed+
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Bipartite+ v
Undirected v
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Recap

- SVD captures communities of interest

- Bayesian methods can:
- Handle missing values

- Give factorization models (-> patterns, &
anomalies)

- Group-outliers: spotted by CoBaFi,
Get-the-Scoop, etc.
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CONCLUSION

75
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Undirected
Directed
Bipartite

X

Node Attributes

X

Edge Attributes

X

Unsupervised
Semi-Supervised
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Open Problems / Opportunities

"PL Complex data: How should we integrate
data from multiple data sources?

Undirected
Directed
Bipartite

X

Node Attributes ¢

X

Edge Attributes ¢

Unsupervised
Semi-Supervised

A
B )

A
[ g N\ [ g
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Open Problems / Opportunities

"PZ. Adversarial analysis: Can we offer
provable guarantees on detecting fraud and
spam?
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Open Problems / Opportunities

"P?;. Early detection: Can we detect
fraudsters before they cause significant

damage?
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Summary

Local Subgraph Analysis: Patterns and Features
e.g. using ego-nets

POSTNET
/"
7 http:/instapundit.com/

http:llwng.slzemore.co.ykl // archives/025235.php
- 2005/08/i-feel-some-movies » ‘J’

-coming-on.html &

——1.1094x + (-0.21414) =y
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e 10’ 10’ ”

IN|



Q' kpD 2015 A. Beutel, L. Akoglu, C. Faloutsos

Summary

Propagation Methods
“Guilt-by-association”
“Importance-by-association” = PageRank
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Summary

Latent Factor Models
Find multiple communities, patterns and
anomalies.
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Take Away

User Modeling and Fraud Detection
are two sides of the same coin.
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ODDx3 workshop TODAY 9:30-5:45

Afternoon Schedule:

- Keynote by Vipin Kumar

- Panel 'What is an Anomaly?' by Tiberio Caetano, Vipin
Kumar, Tina Eliassi-Rad, Ted Senator, Jimeng Sun

- Research talks
http://outlier-analytics.org/odd15kdd/

5 Workshop

&,

b

& 4

(ion, Detection, and Description-
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Thanks again to

NSF Grant No. 11S-1408924, 11S-1408287,
CAREER 1452425, DGE-1252522, ...
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Questions?

Q

Stony Brook
University

(Carnegie
Mellon

University

References and resources available at

cs.cmu.edu/~abeutel/kdd2015 _

userbehavior
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Pattern: Ego-net Power Law Density

Semi-supervised Classification

nnnnnnnn

Given a graph and
labels for some nodes,
can we learn the labels

for the other nodes?

Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010

17
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What does each
eigenvector capture?

Matrix Factorization

uvT =M

Each factor captures a

dense block in the matrix




