

1. Subgraph Analysis

2. Propagation Methods

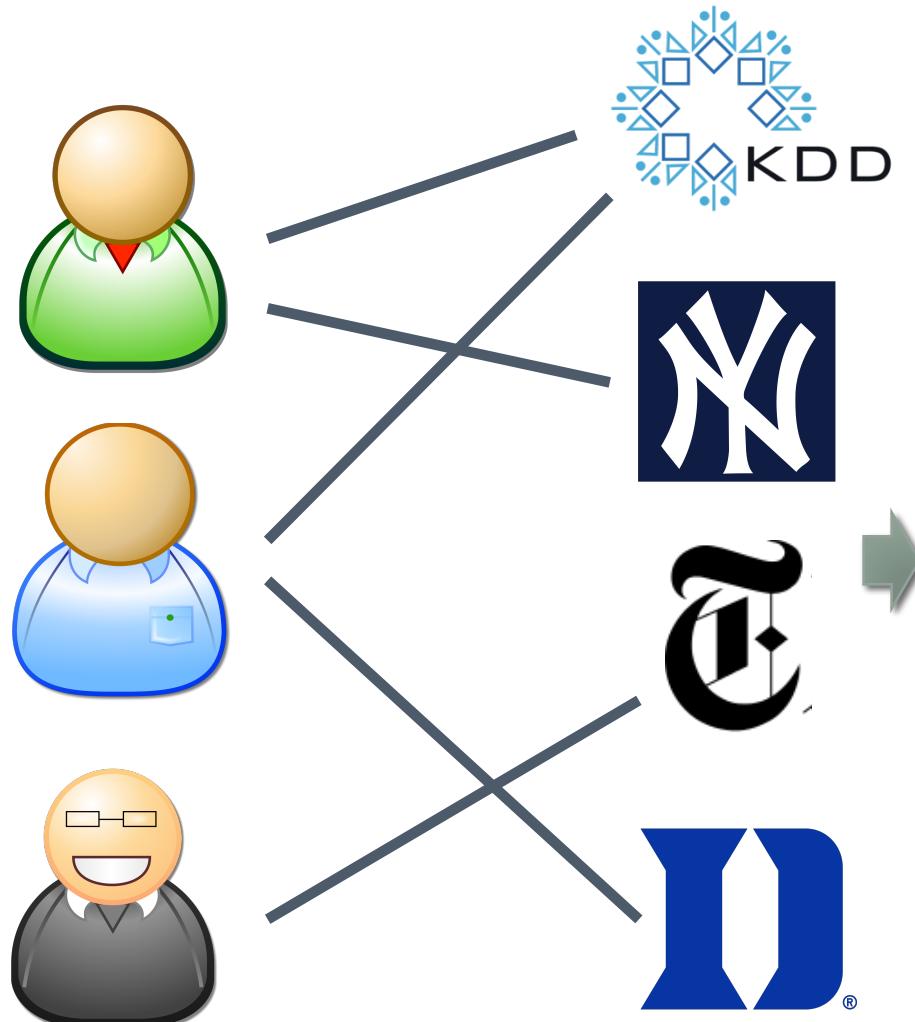
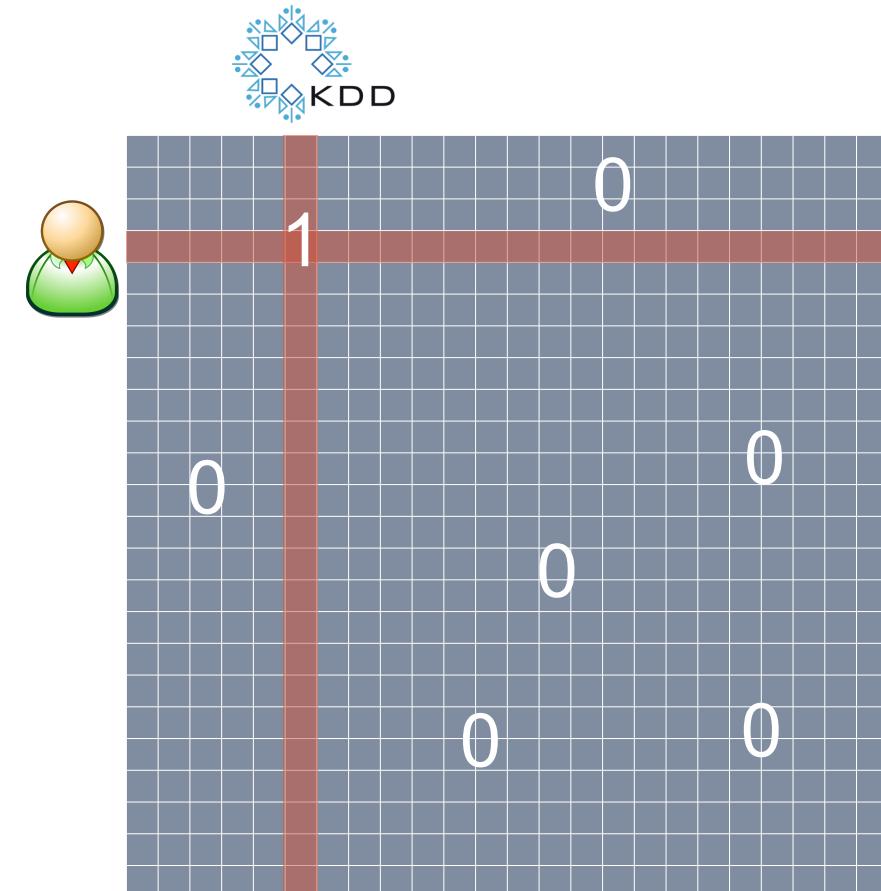
3. Latent Factor Models

a) Background

b) Normal Behavior

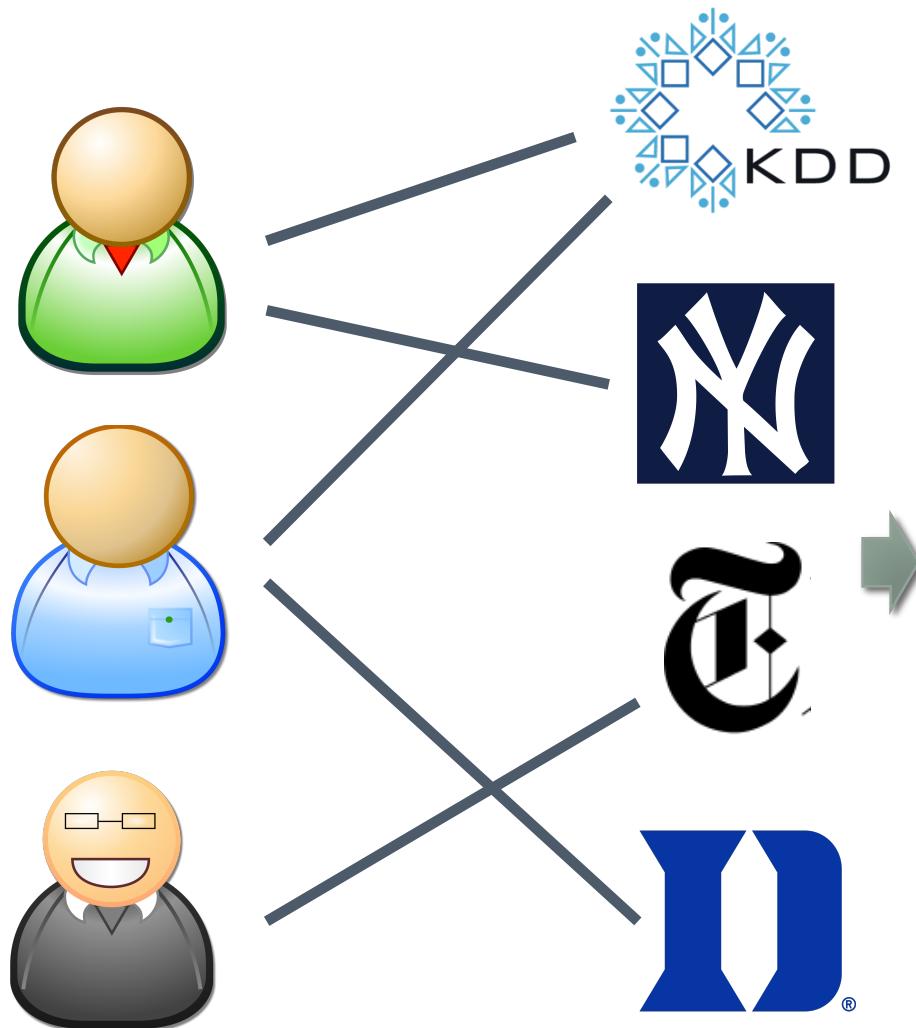
c) Abnormal Behavior

Matrix Modeling



Matrix Modeling

Matrix M



User	Page 0	Page 1	Page 2
User 0	1	0	0
User 1	0	1	0
User 2	0	0	1

Matrix Modeling

Matrix M

HITS

Authoritativeness \vec{v} is first
eigenvector of $M^T M$

$$\vec{v} = c M^T M \vec{v}$$

Hubness \vec{u} is first
eigenvector of $M M^T$

$$\vec{u} = c M M^T \vec{u}$$

		Page	
		User	Page
User	Page	0	1
		1	0
User	Page	1	1
		0	0
User	Page	1	0
		0	1

Matrix Modeling

Matrix M

HITS

Authoritateness \vec{v} is first
eigenvector of $M^T M$

$$\vec{v} = c M^T M \vec{v}$$

Hubness \vec{u} is first
eigenvector of $M M^T$

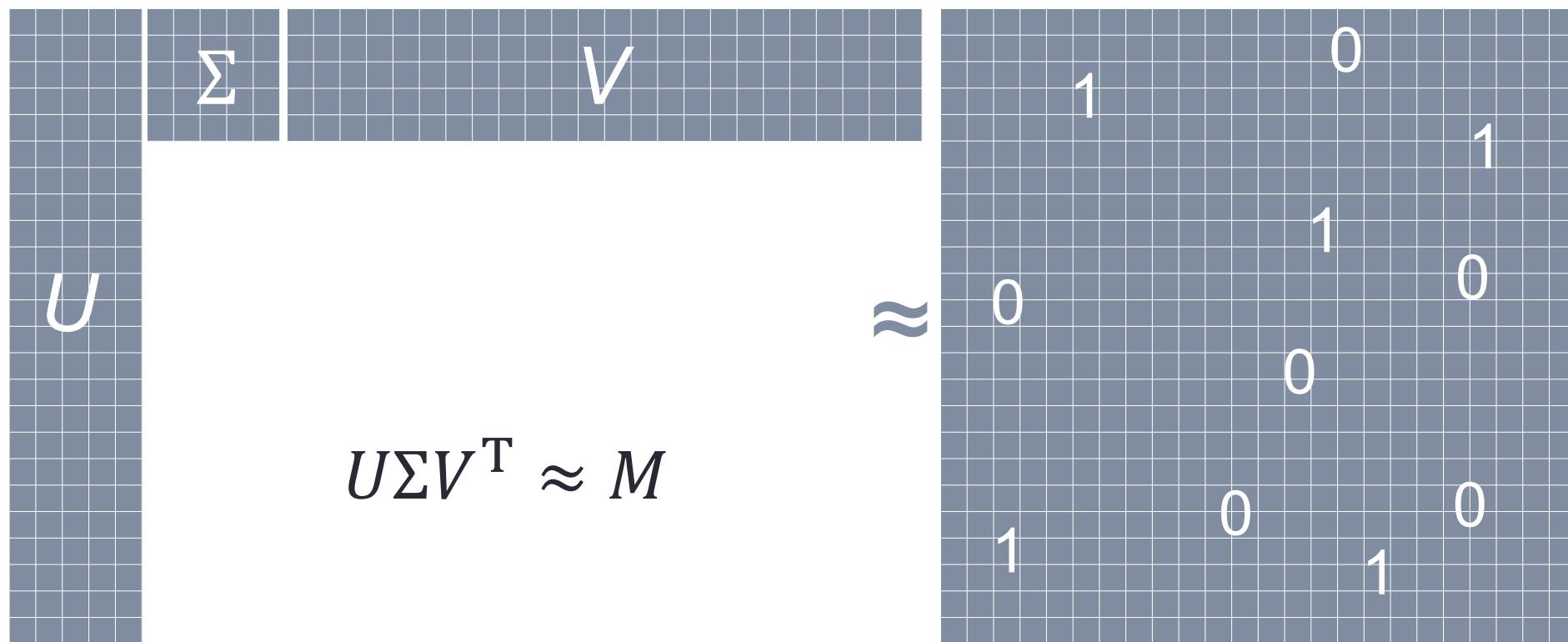
$$\vec{u} = c M M^T \vec{u}$$

		Page	
		User	Page
User	Page	0	1
		1	0
User	Page	1	1
		0	0
User	Page	1	0
		0	1

What about the other eigenvectors?

Matrix Modeling

Singular Value Decomposition

$$U \Sigma V^T \approx M$$


The diagram illustrates the Singular Value Decomposition (SVD) of a matrix M . The matrix M is shown as a grid of squares. To its left is a vertical column of squares labeled U . Above M is a grid labeled Σ , and to the right is a grid labeled V . A wavy symbol between the grids indicates approximation. The grids U , Σ , and V are composed of smaller squares, suggesting they are matrices themselves. The labels U , Σ , and V are in white, while the grids are in a darker shade of blue.

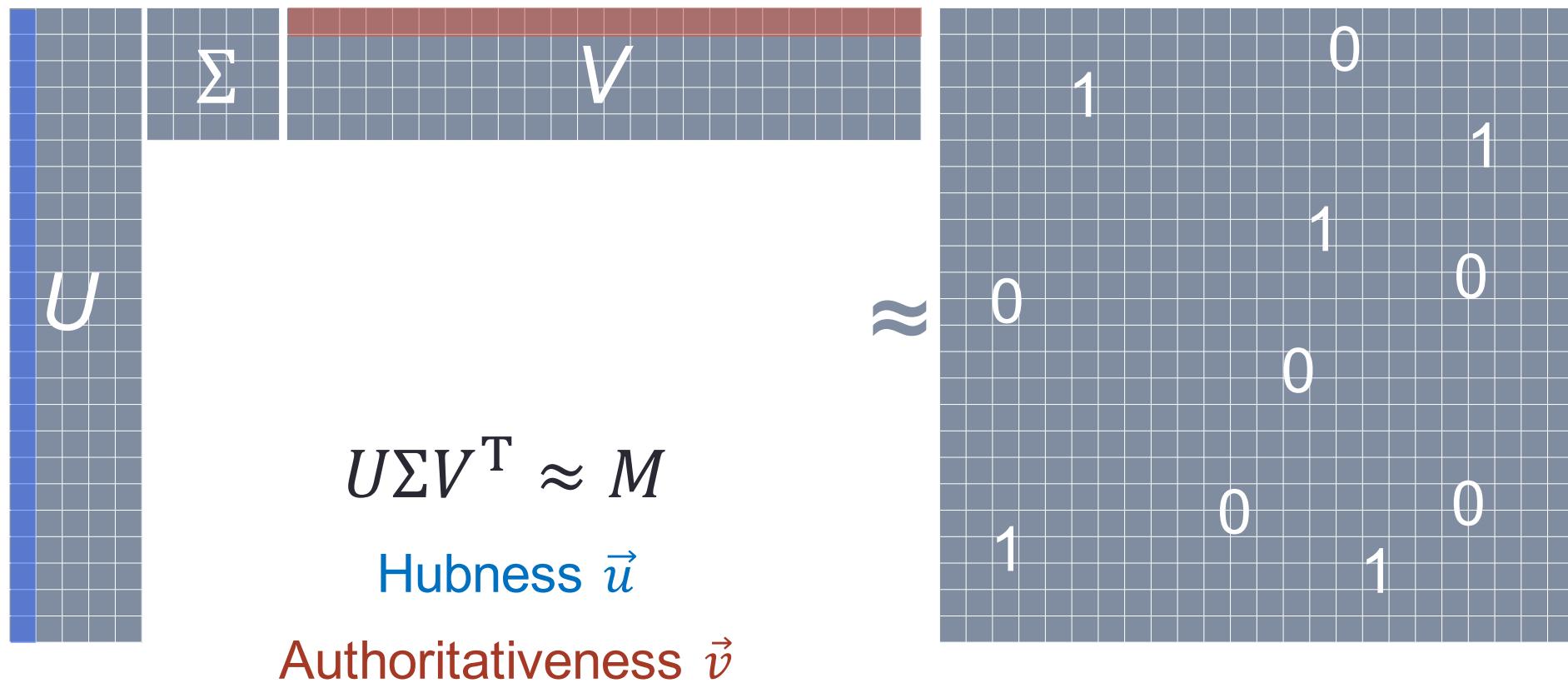
Matrix Modeling

Singular Value Decomposition

$$U \Sigma V^T \approx M$$

Hubness \vec{u}

Authoritativeness \vec{v}



0	1	0	1
1	0	1	0
0	1	0	1
1	0	1	0

Matrix Modeling

Singular Value Decomposition

$$U \Sigma V^T \approx M$$

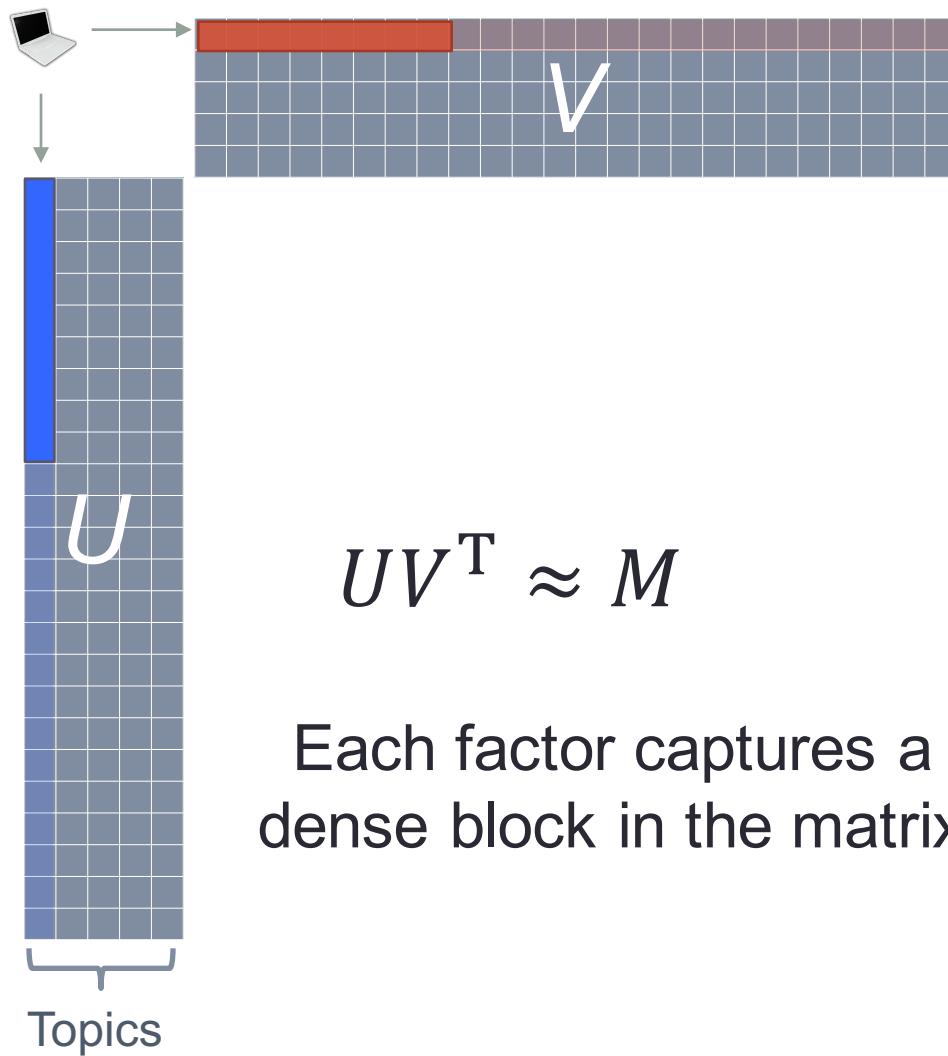
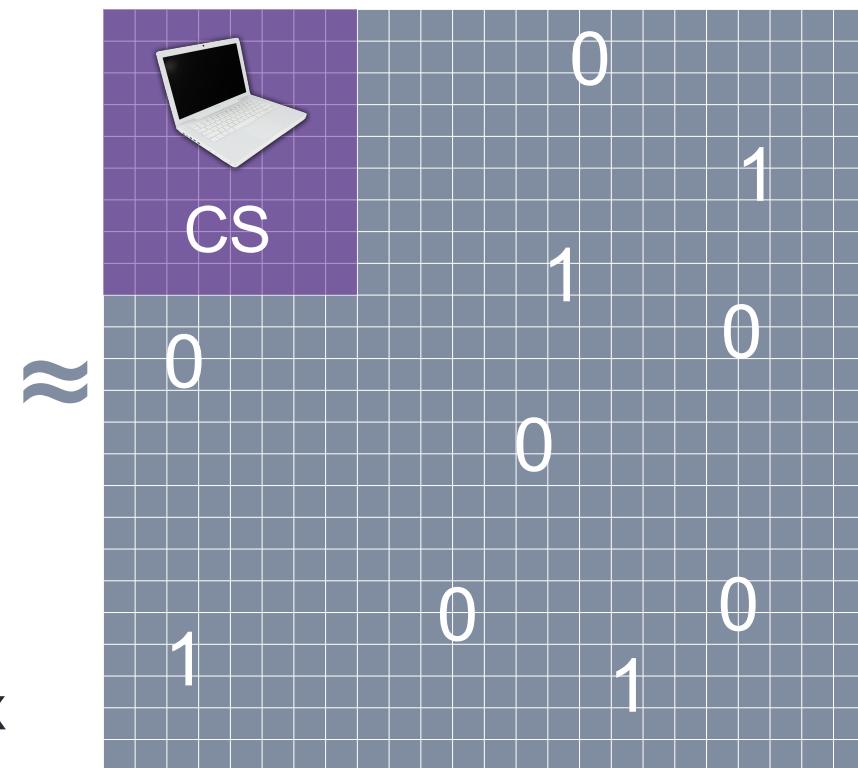
Hubness \vec{u}

Authoritativeness \vec{v}

Σ contains normalization for \vec{u} and \vec{v}

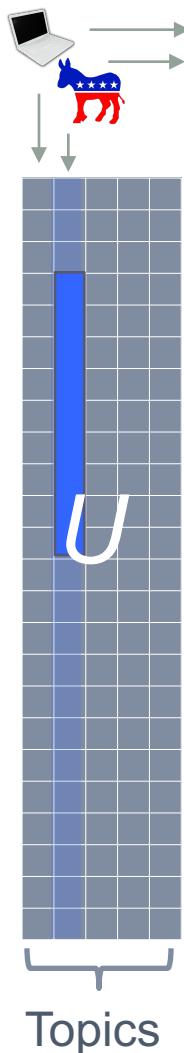
Matrix Factorization

What does each eigenvector capture?



Matrix Factorization

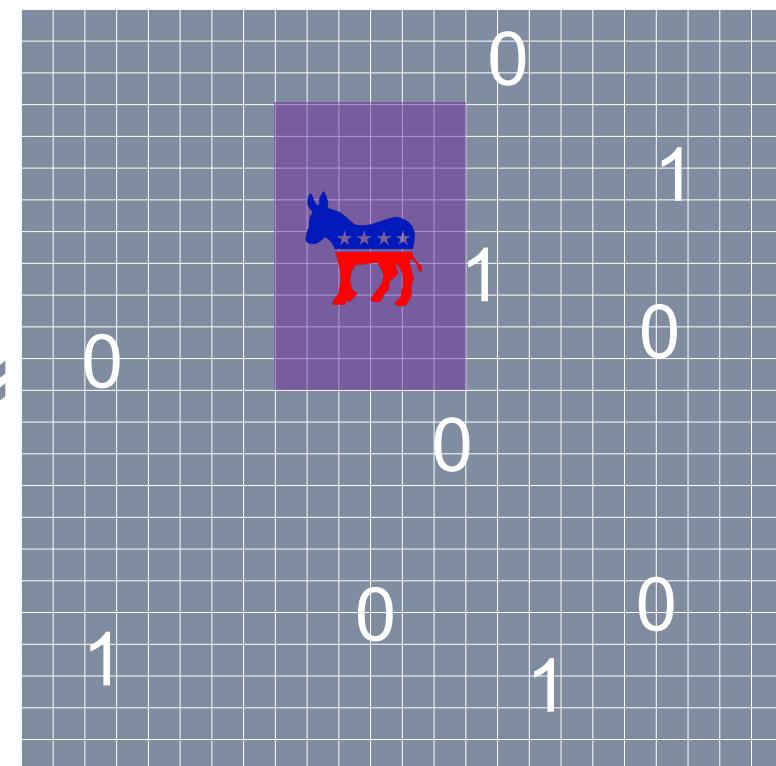
What does each eigenvector capture?



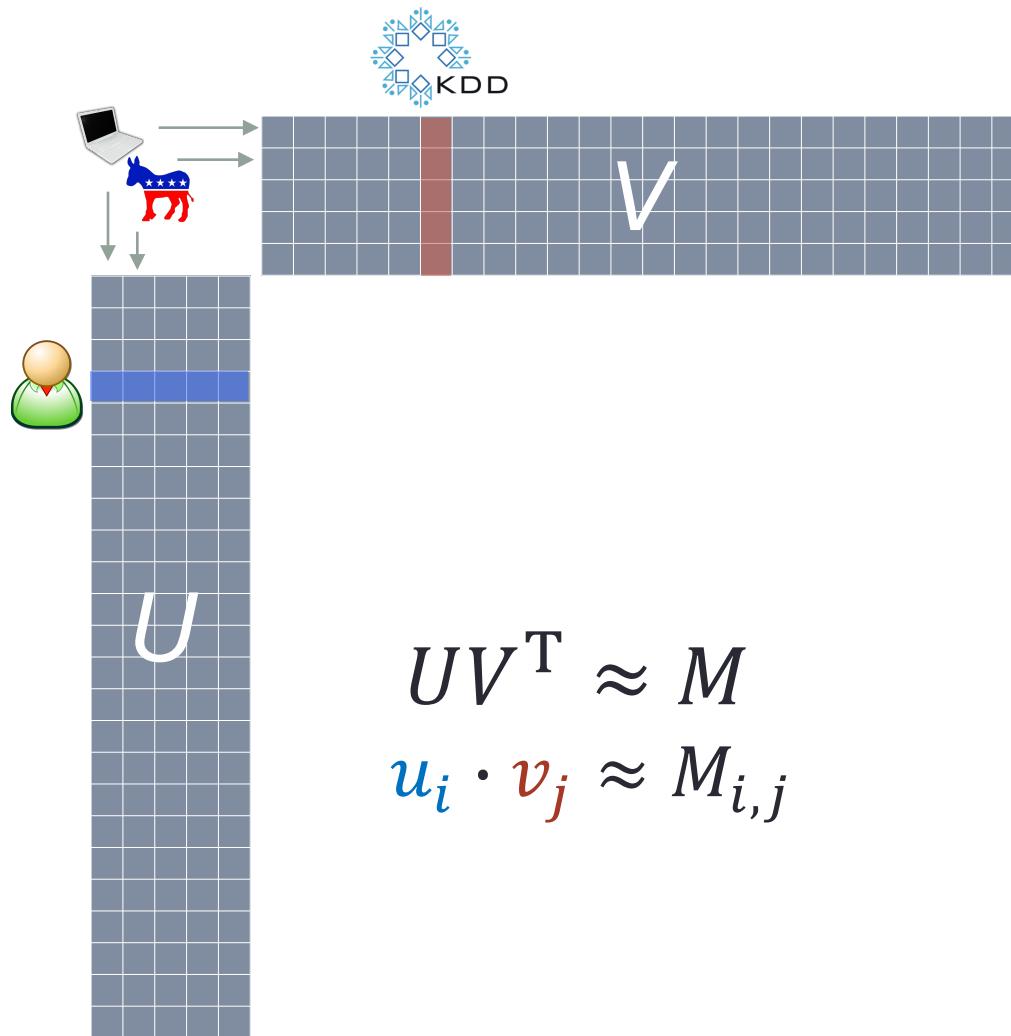
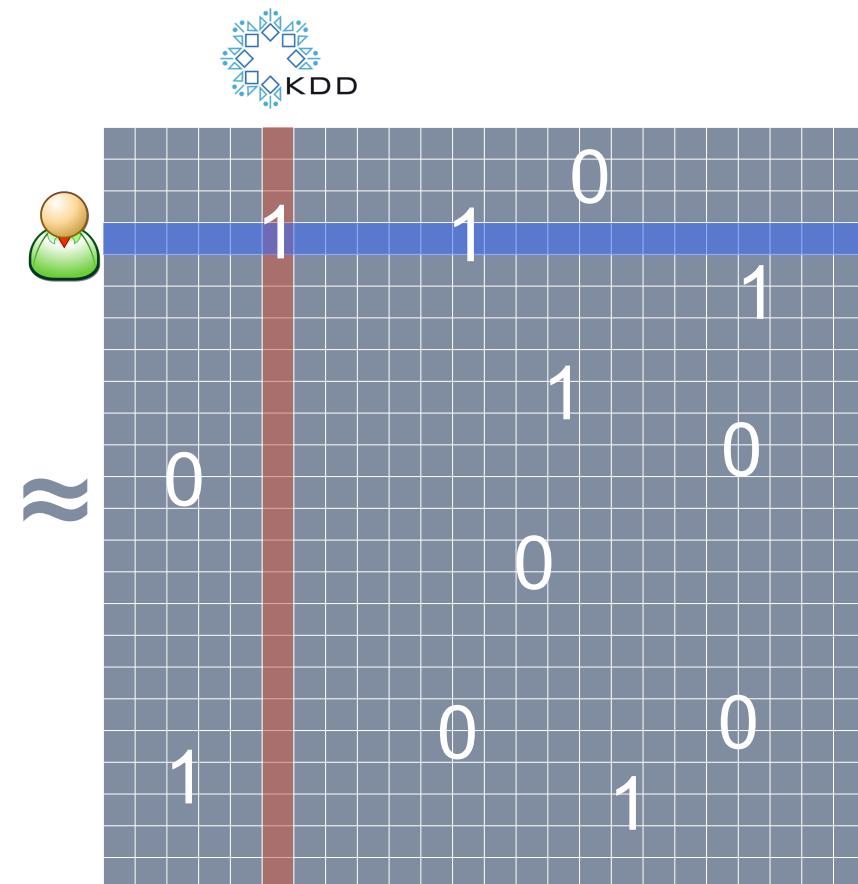
$$UV^T \approx M$$

Each factor captures a dense block in the matrix

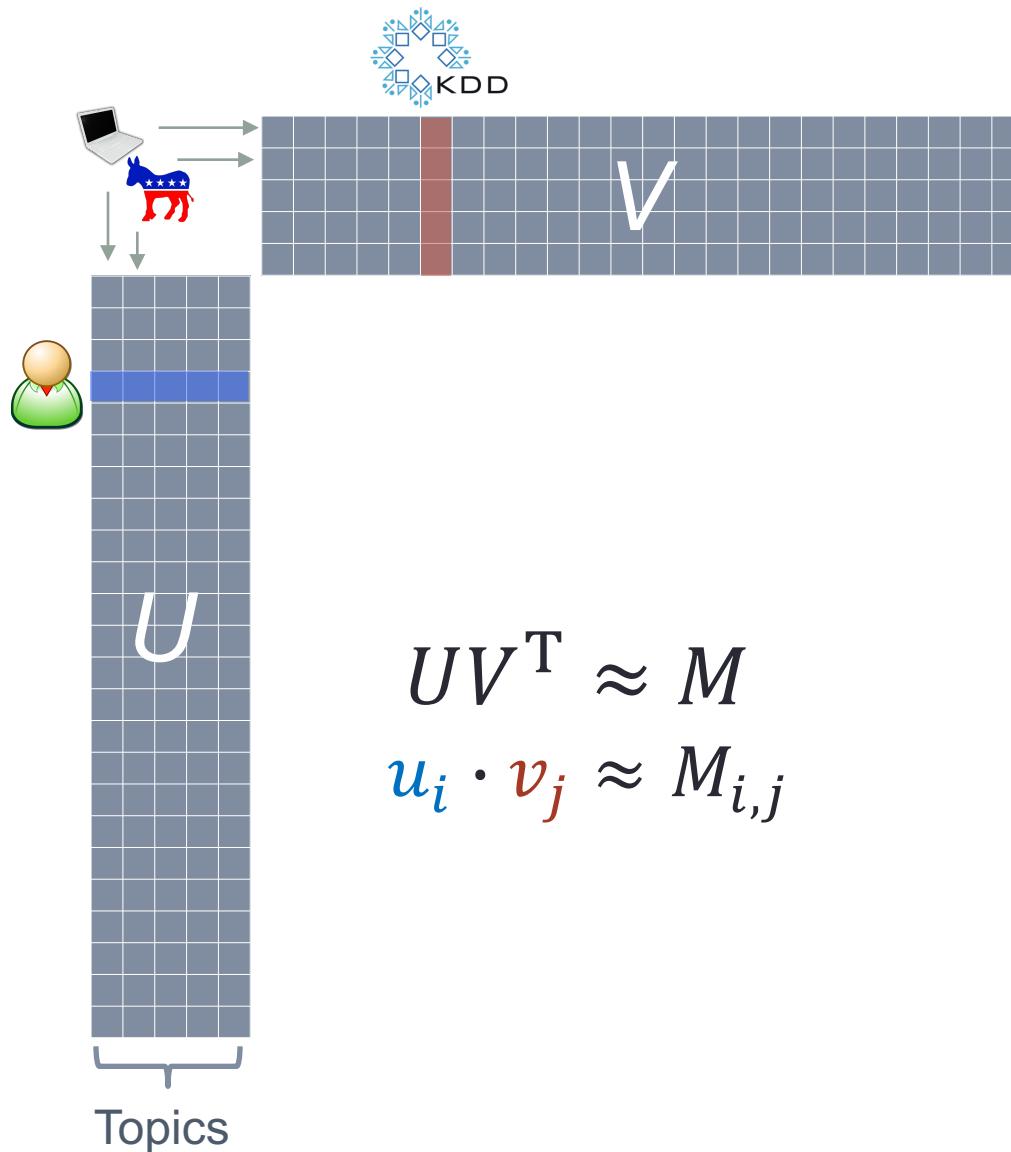
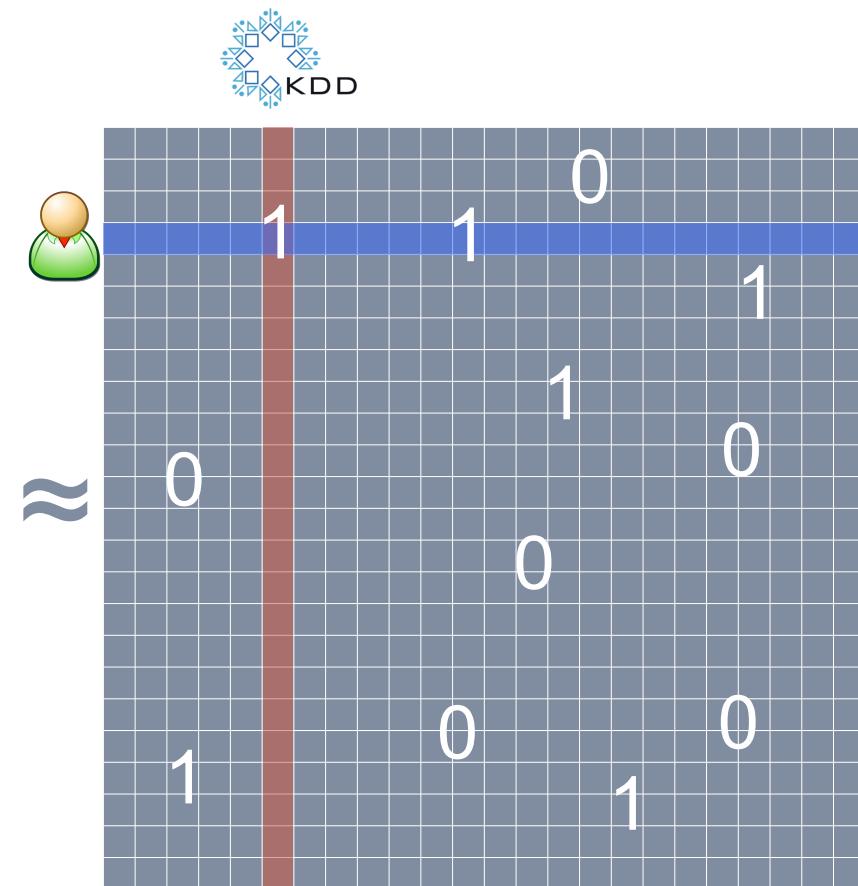
\approx



Matrix Factorization



Matrix Factorization



Matrix Factorization

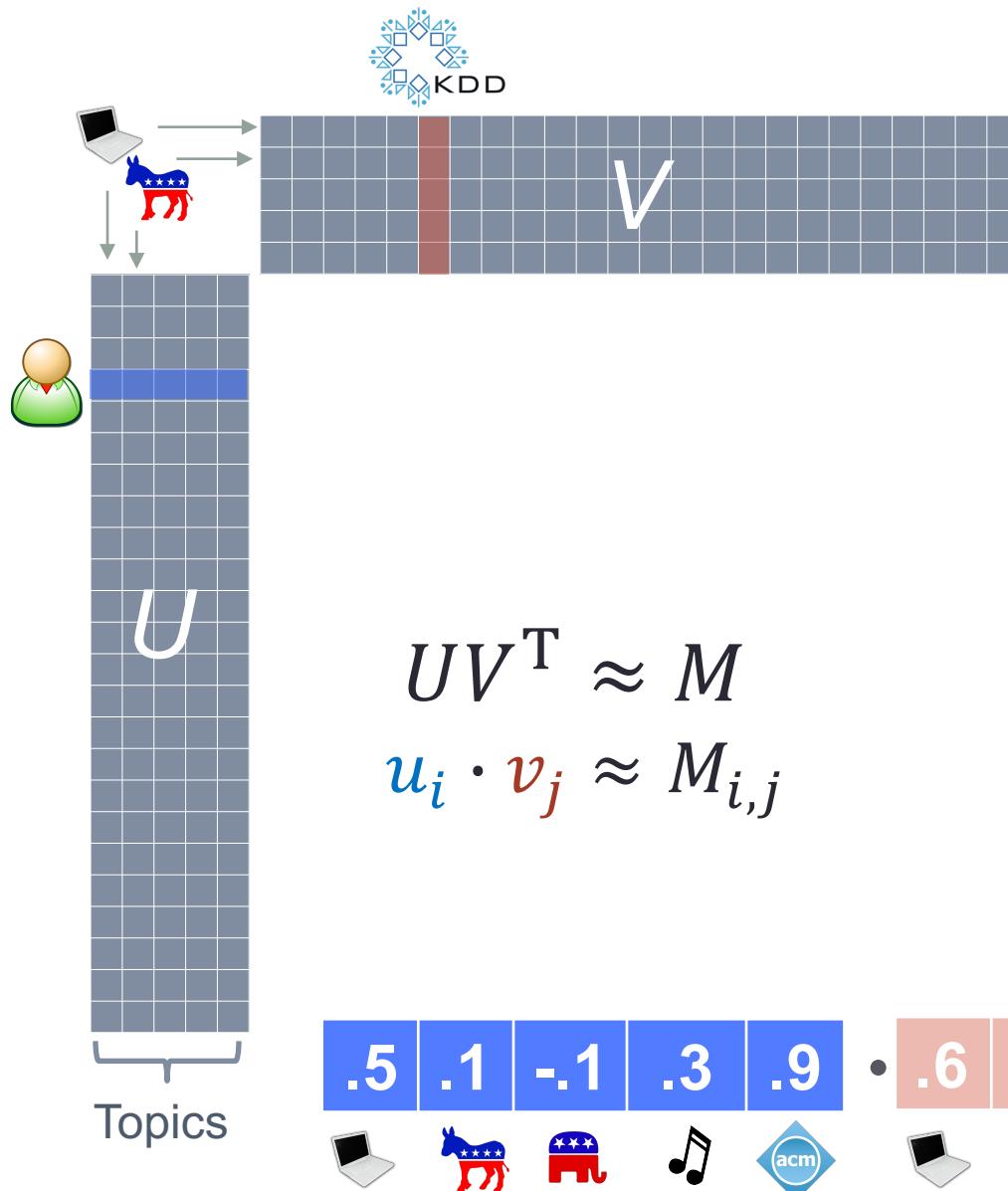
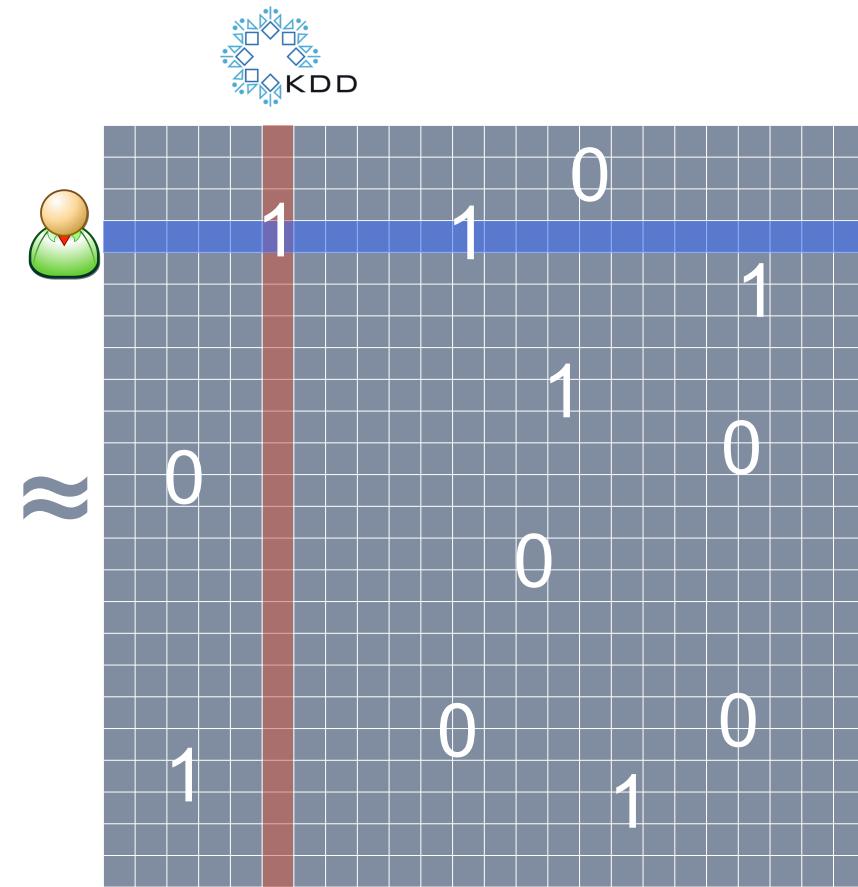


Diagram illustrating the dot product $u \cdot v$ as a weighted sum. It shows two vectors u and v represented as horizontal bars of colored squares. The vector u has values [.5, .1, -.1, .3, .9] and the vector v has values [.6, .2, .1, 0, .8]. The dot product is calculated as $.5 \cdot .6 + .1 \cdot .2 + -.1 \cdot .1 + .3 \cdot 0 + .9 \cdot .8 \approx 1$.

$$.5 \cdot .6 + .1 \cdot .2 + -.1 \cdot .1 + .3 \cdot 0 + .9 \cdot .8 \approx 1$$

1. Subgraph Analysis

2. Propagation Methods

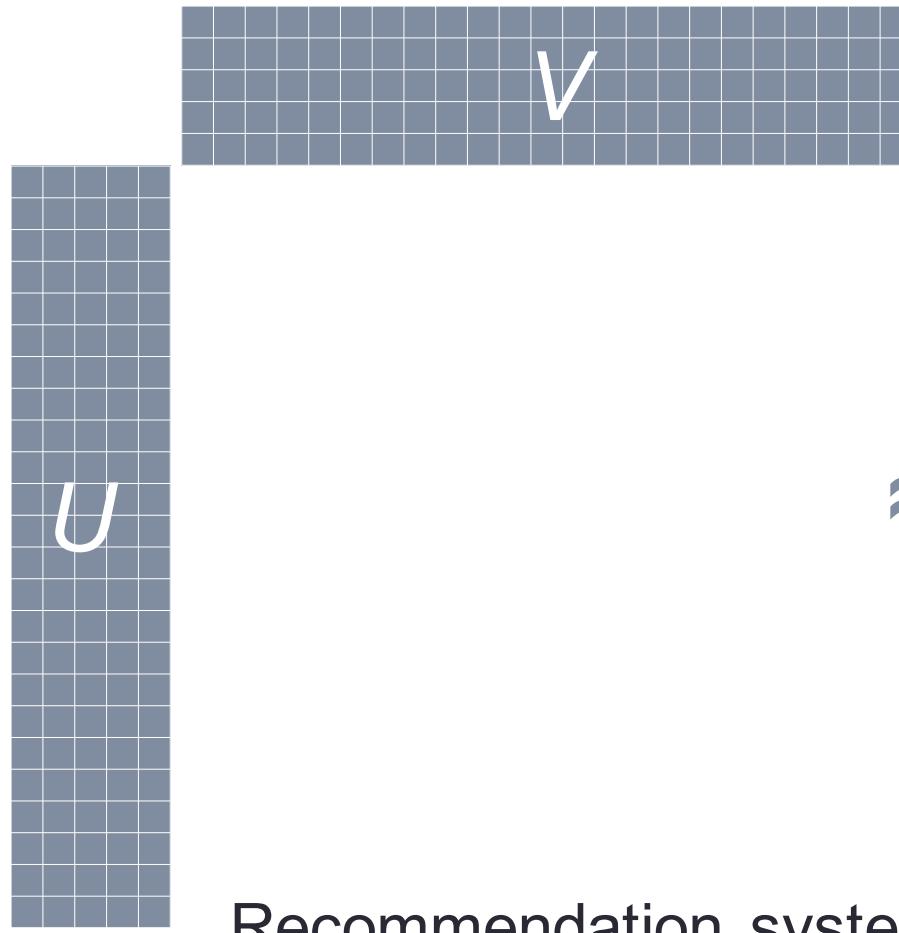
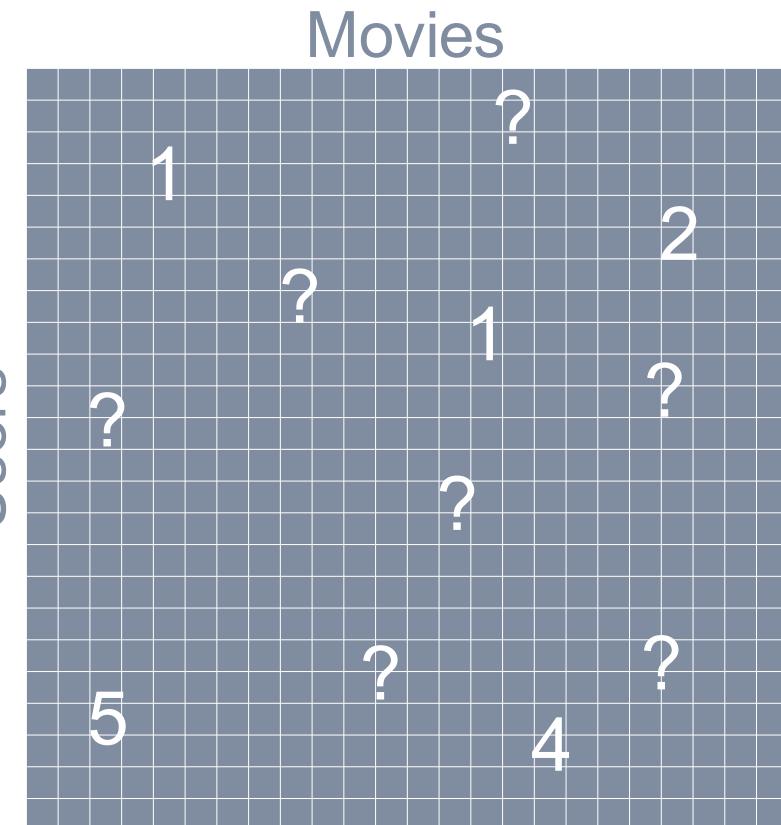
3. Latent Factor Models

a) Background

b) Normal Behavior

c) Abnormal Behavior

Matrix Completion



Recommendation systems
predict missing entries

Matrix Completion

$$U$$

$$V$$

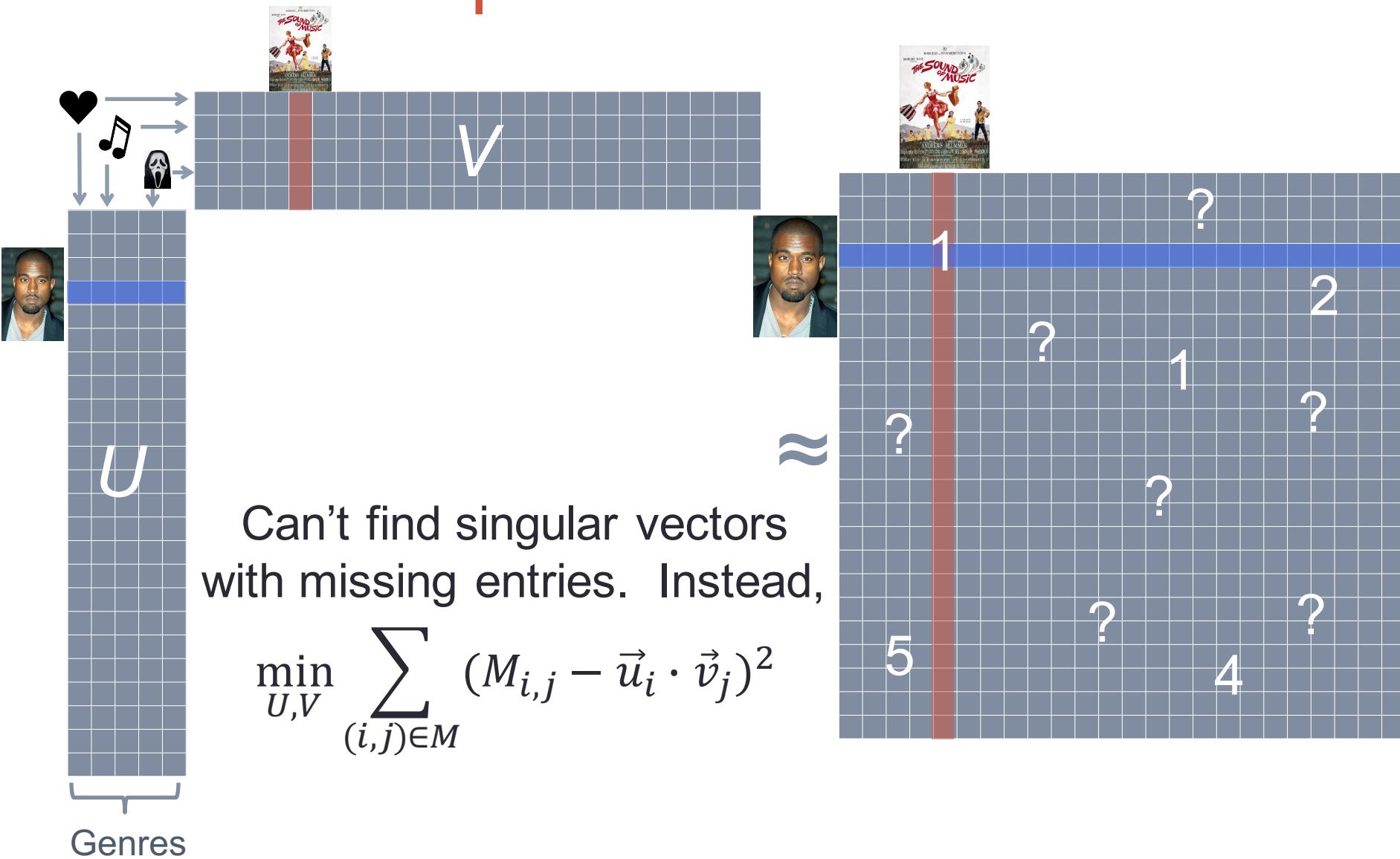
$$\approx$$

1	?	2	
?	1		?
?	?	4	?
5	?		

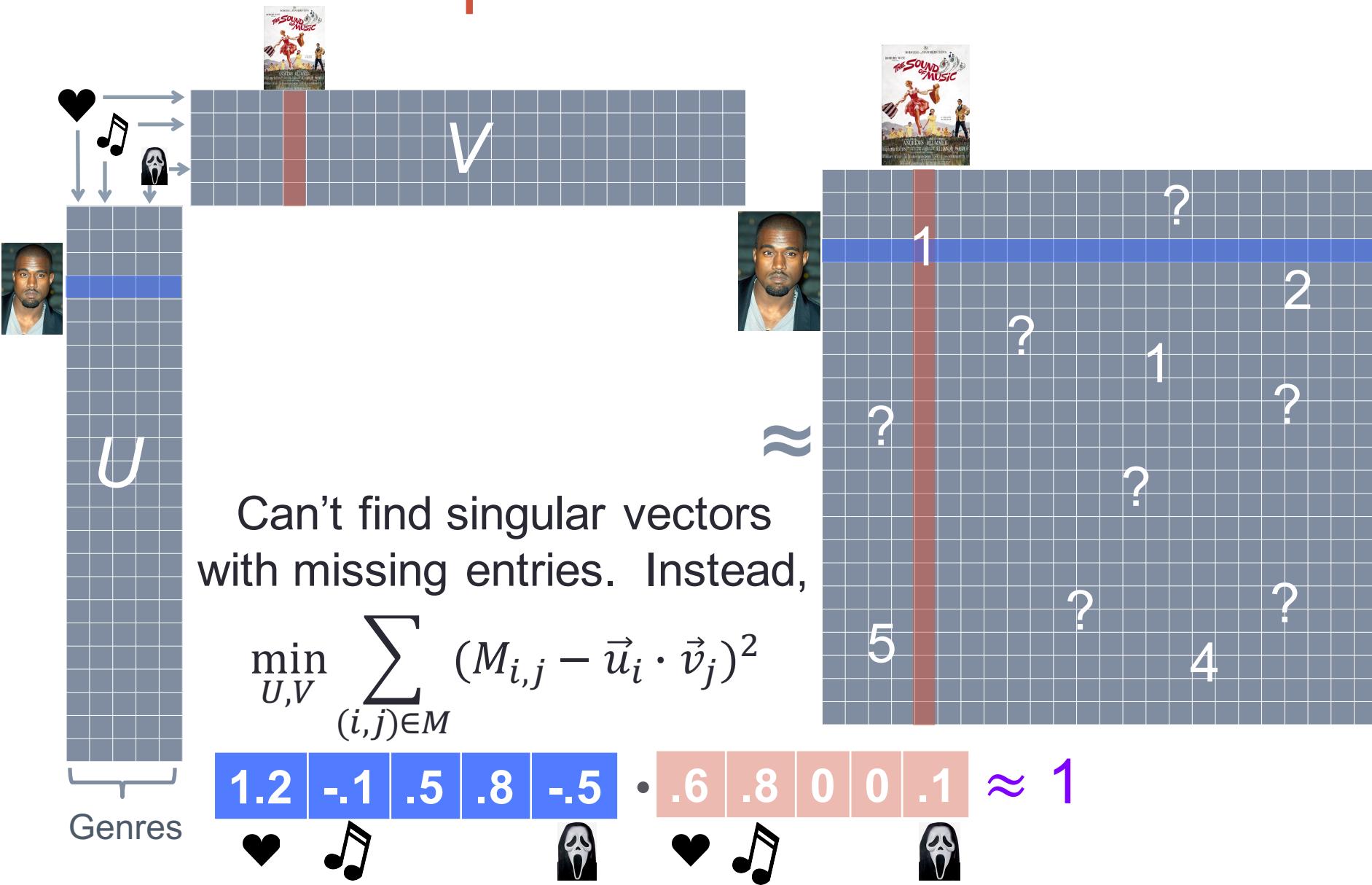
Can't find singular vectors with missing entries. Instead,

$$\min_{U,V} \sum_{(i,j) \in M} (M_{i,j} - \vec{u}_i \cdot \vec{v}_j)^2$$

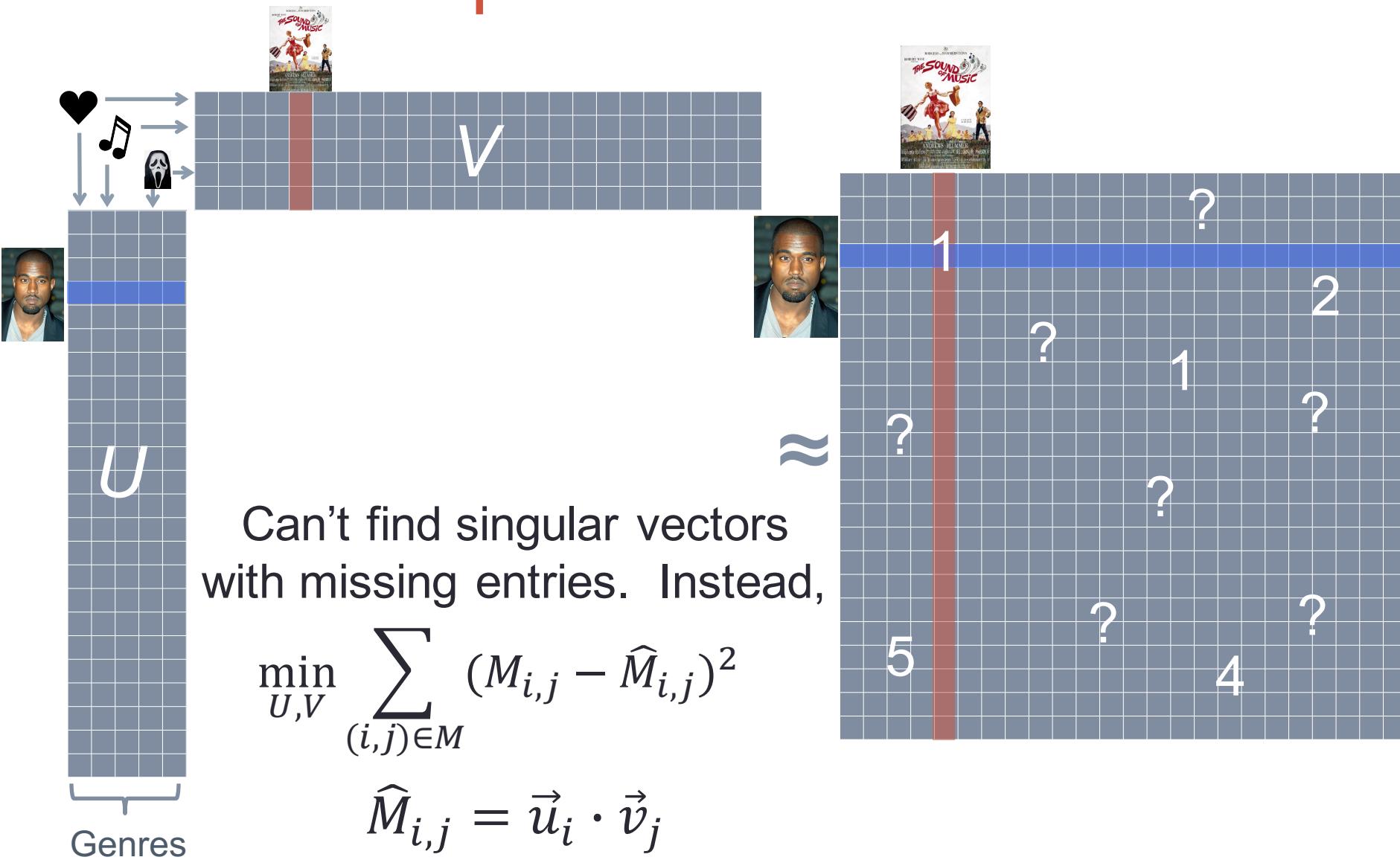
Matrix Completion



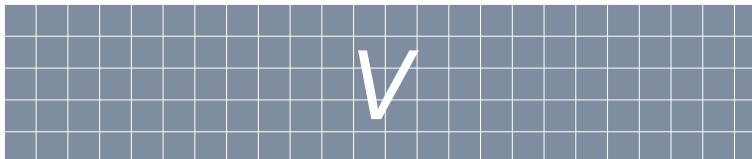
Matrix Completion



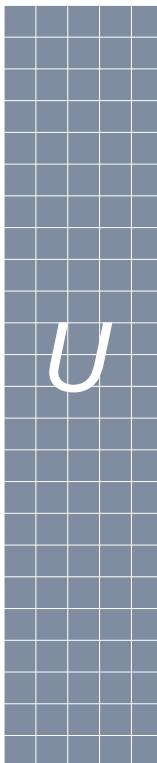
Matrix Completion



Adding Latent Factors



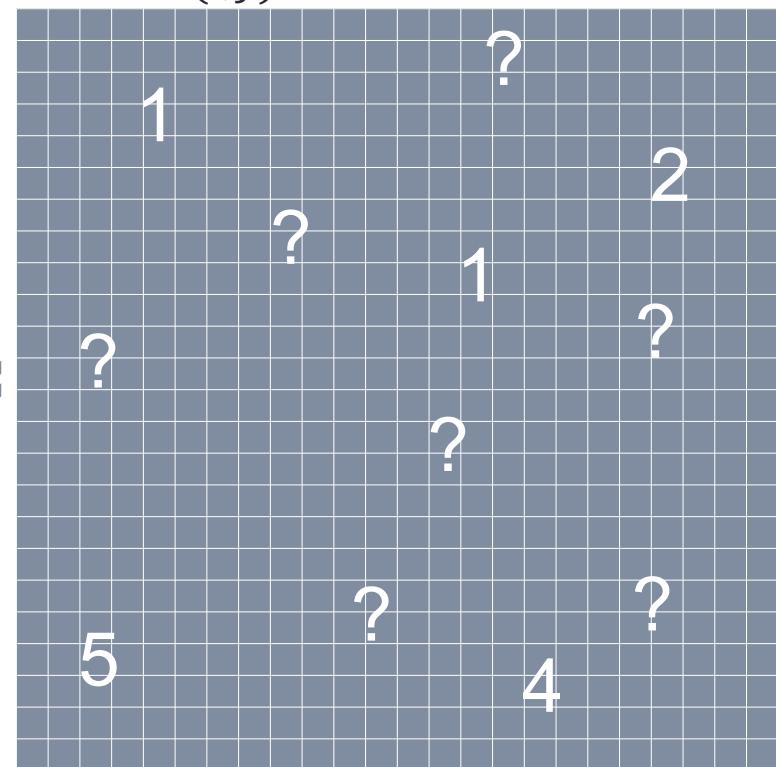
$$\min_{U,V} \sum_{(i,j) \in M} (M_{i,j} - \hat{M}_{i,j})^2$$



Consider additional factors:

- Dataset mean μ
- Row (user) baseline b_i \approx
- Column (movie) baseline b_j

$$\hat{M}_{i,j} = \mu + b_i + b_j + \vec{u}_i \cdot \vec{v}_j$$



1	?	?	?	?
?	1	?	?	?
?	?	1	?	?
5	?	?	4	?
?	?	?	?	?

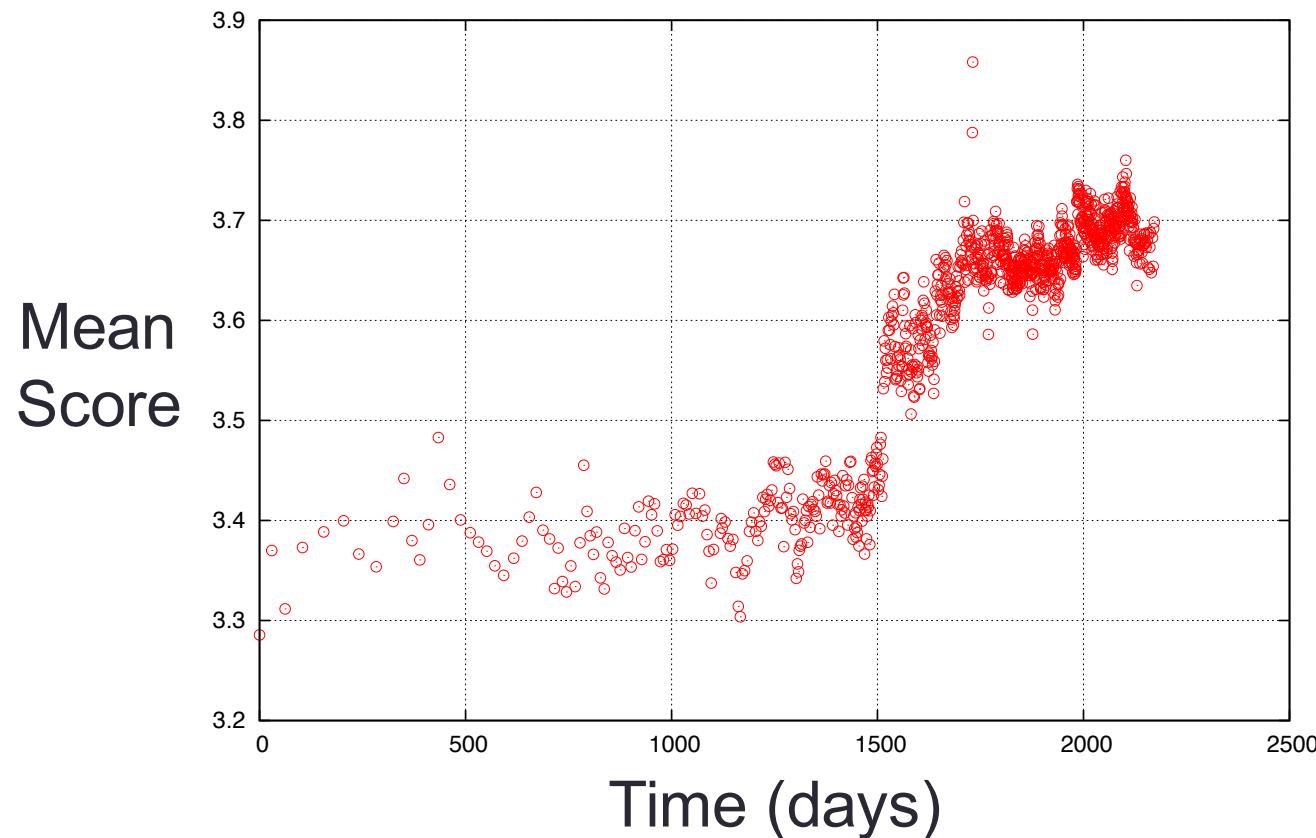
Adding Latent Factors

What if we know the **time** of the rating
(time of the edge being created)?

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

Adding Latent Factors

Mean Rating by Date (Netflix)



Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

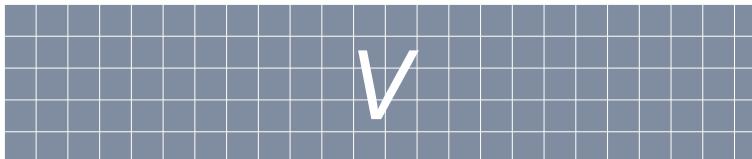
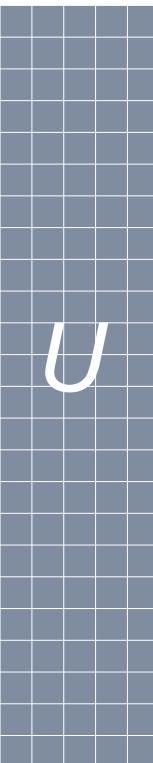
Adding Latent Factors

Mean Rating by Movie Age (Netflix)



Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

Adding Latent Factors



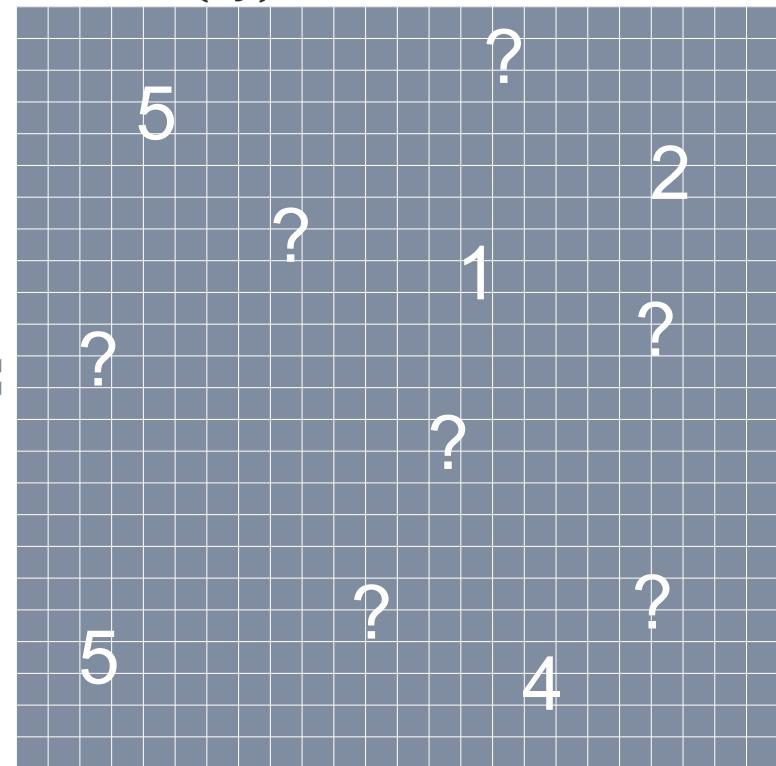
Time factors:

- Column (movie)- time baseline $b_{j,\text{Bin}(t)}$
- Row (user)-time baseline function $b_i(t)$

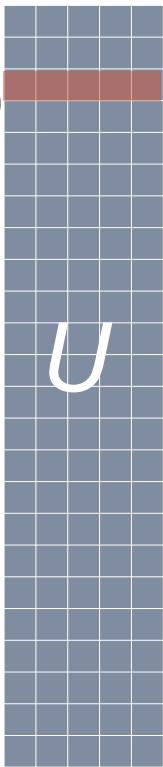
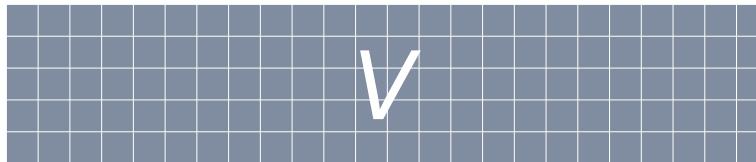
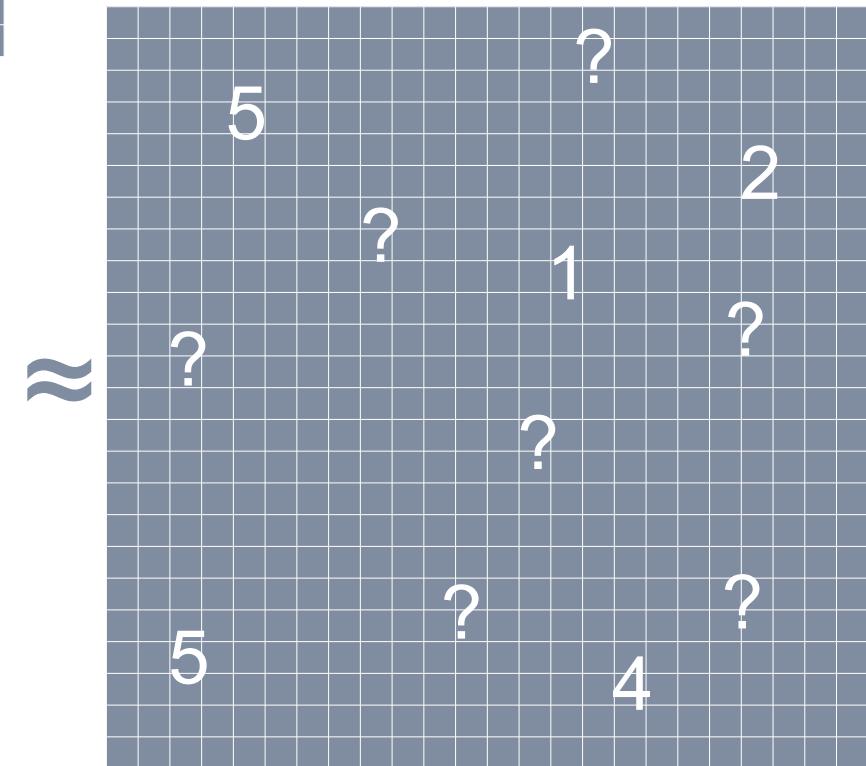
$$\widehat{M}_{i,j} = \mu + b_i + b_j + \vec{u}_i \cdot \vec{v}_j + b_{j,\text{Bin}(t)} + b_i(t)$$

\approx

$$\min_{U,V} \sum_{(i,j) \in M} (M_{i,j} - \widehat{M}_{i,j})^2$$

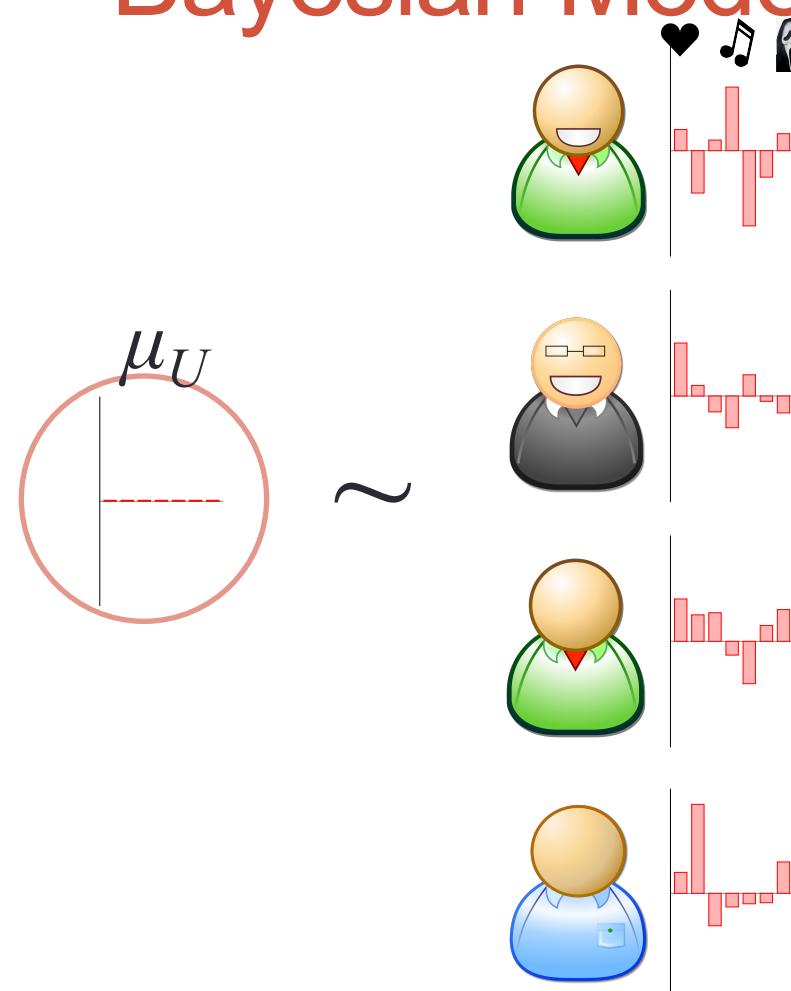


Bayesian Modeling



Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

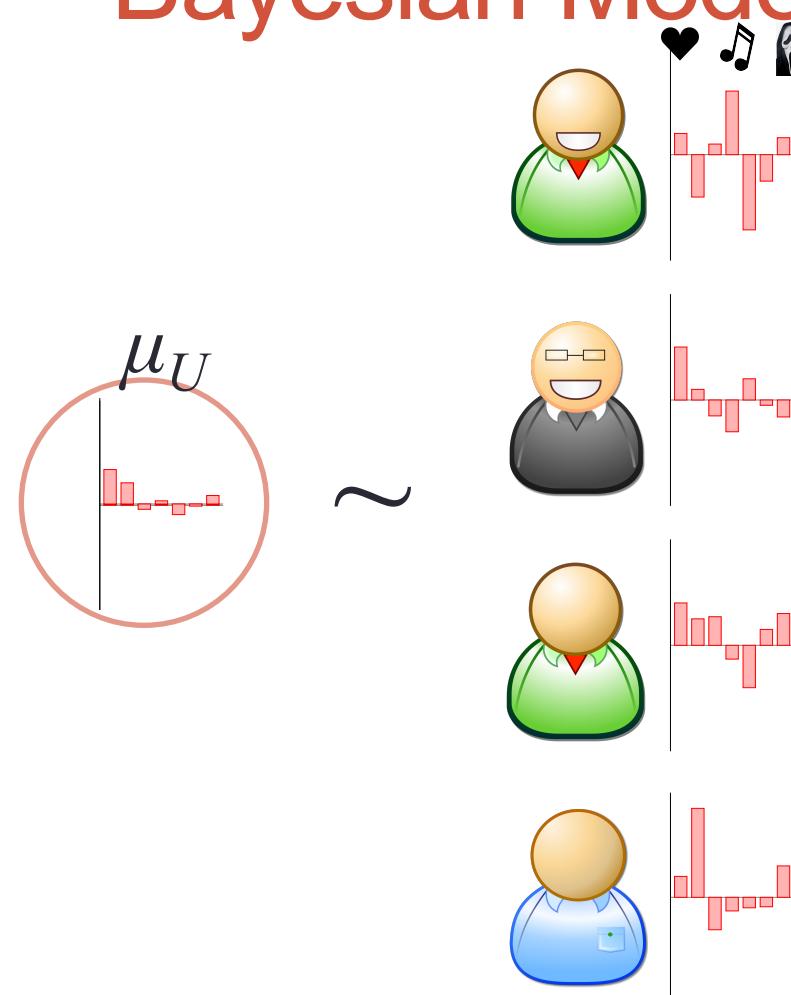
Bayesian Modeling



Sample user factors from
Normal distribution

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

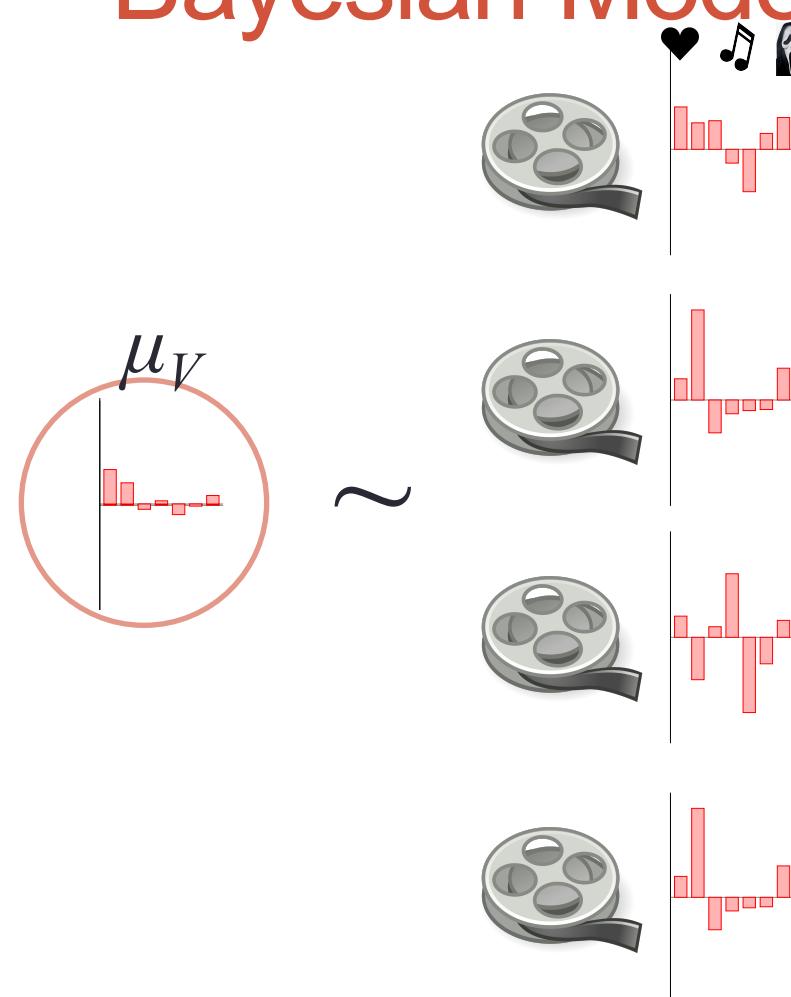
Bayesian Modeling



Sample user factors from
Normal distribution

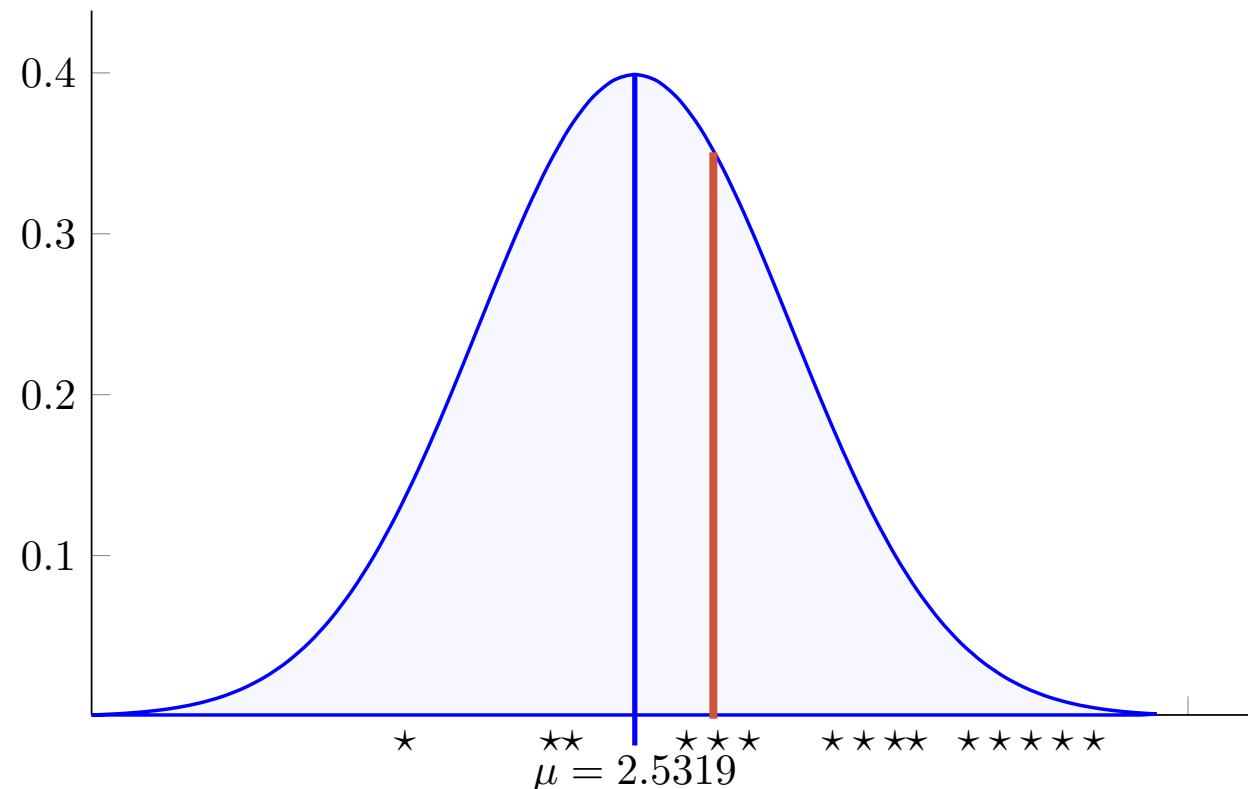
Update mean based on
user factors

Bayesian Modeling



Similarly sample movie factors

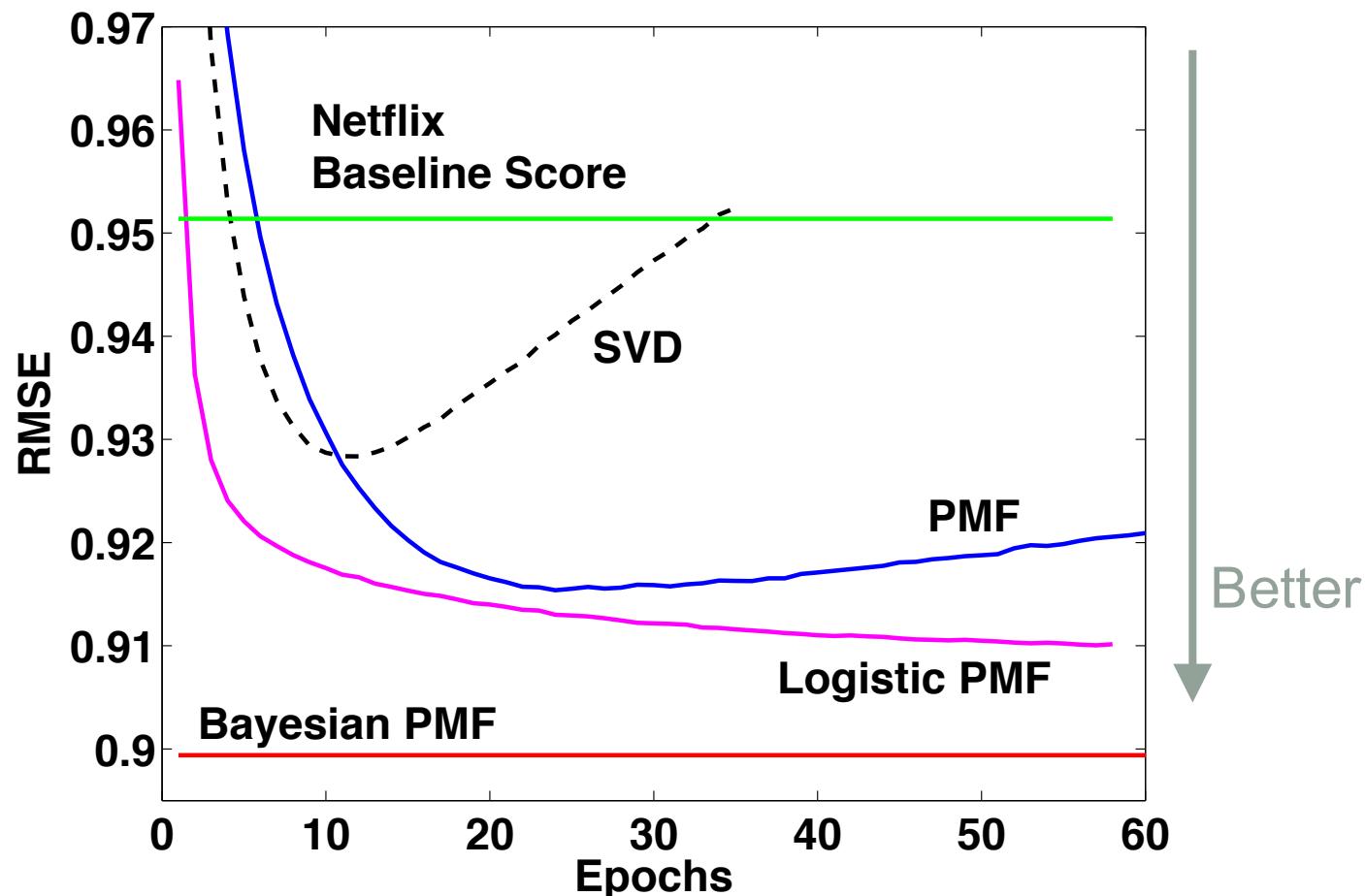
Bayesian Modeling



$$p(M_{i,j} | U, V) = \mathcal{N}(M_{i,j} | \vec{u}_i \cdot \vec{v}_j, \sigma^2)$$

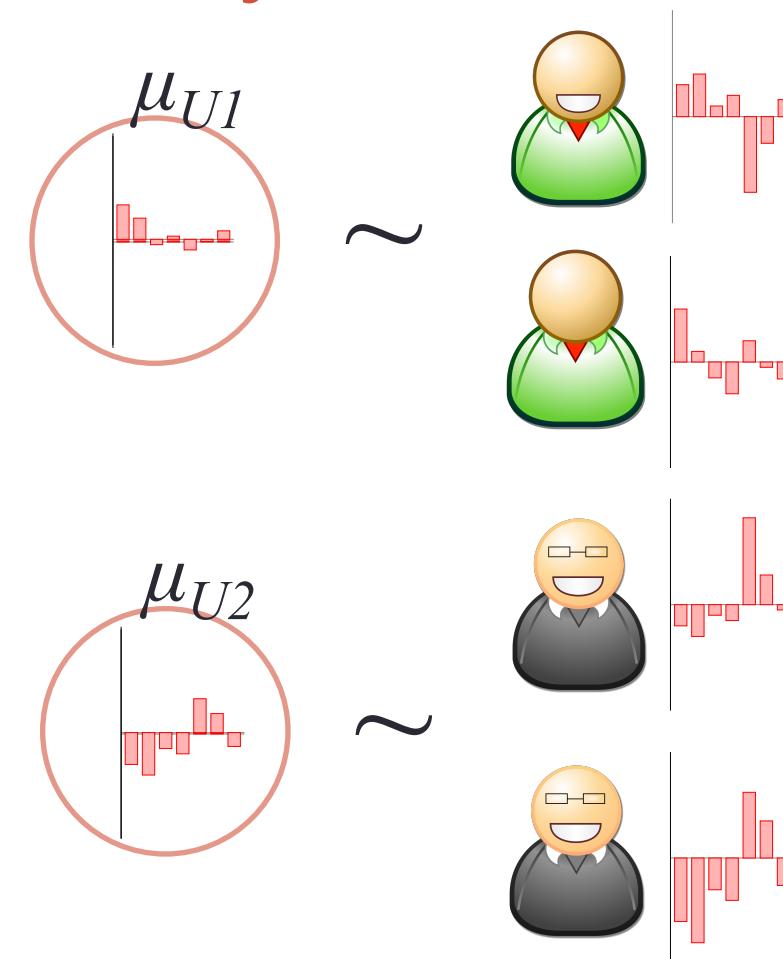
Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

Bayesian Modeling



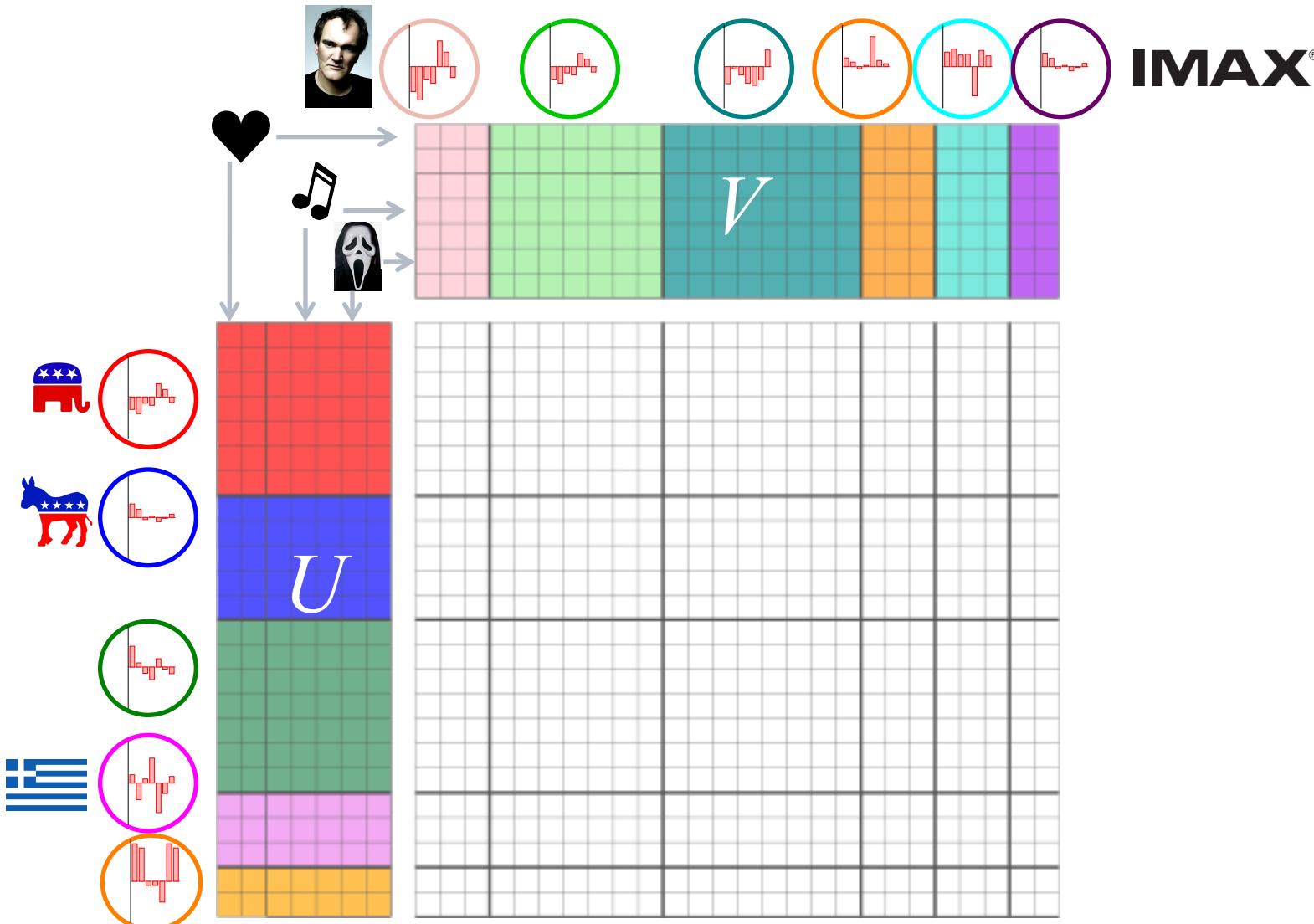
Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

Bayesian Modeling with Co-Clustering



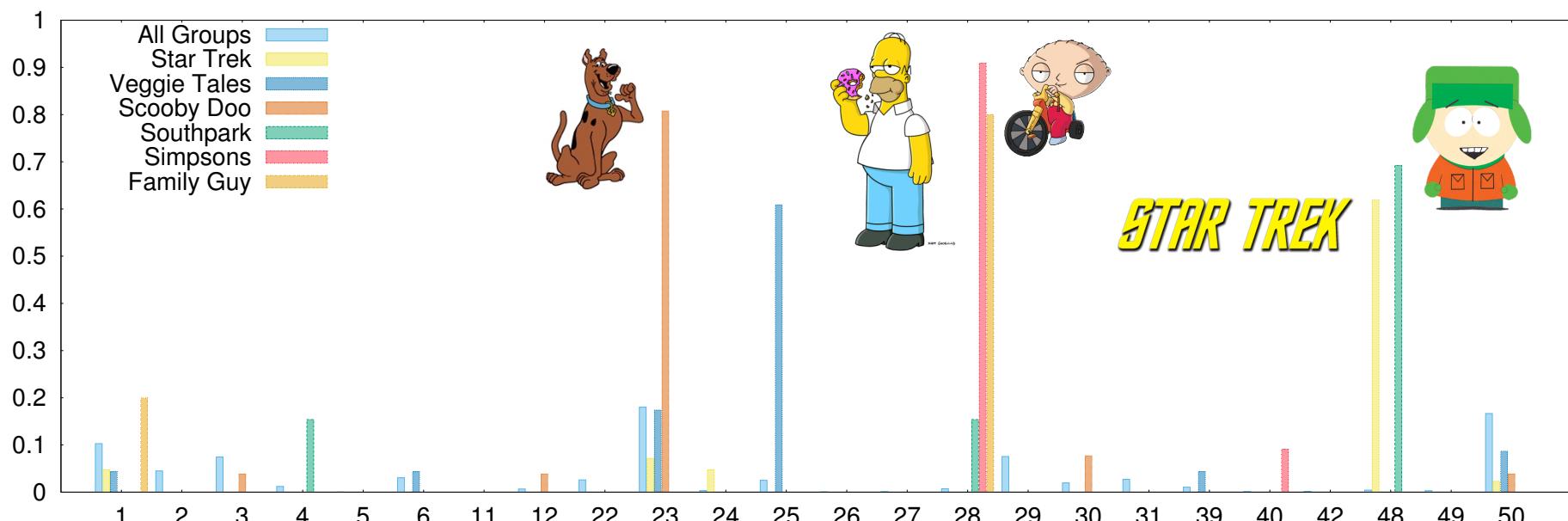
Cluster users
with similar factors

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014



CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

Bayesian Modeling with Co-Clustering

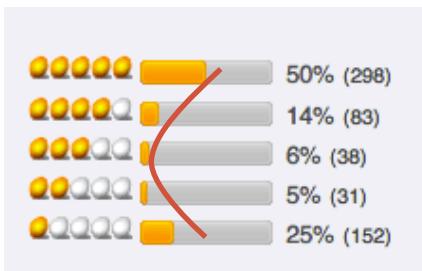
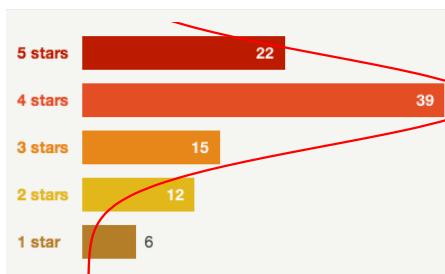


Cluster 28	Cluster 30	Cluster 48
Simpsons	Scooby Doo	Star Trek
Family Guy	Spy Kids	Back to the Future
Monty Python	Stuart Little	Southpark
Curb your Enthusiasm	Dr. Dolittle	Lord of the Rings
The Twilight Zone	Lion King	Harry Potter
Arrested Development	Agent Cody Banks	The X-Files

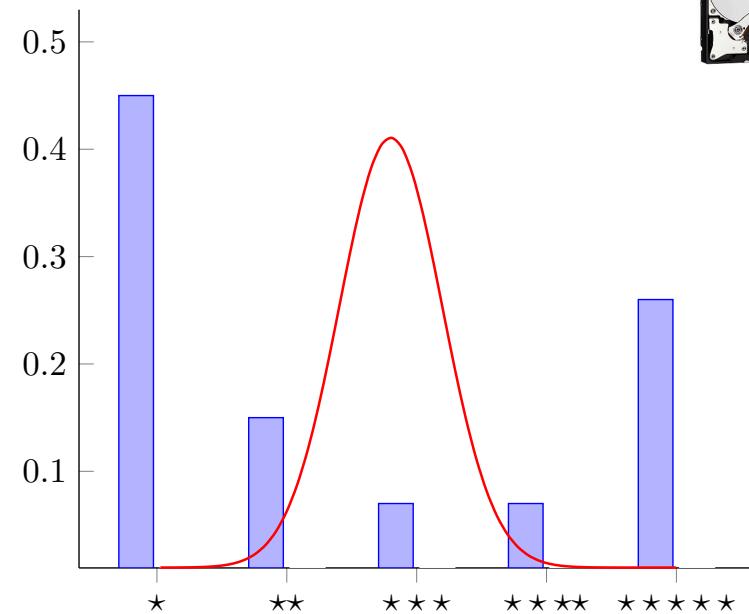
CoBaFi: Collaborative Bayesian Filtering

Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

Online Rating Models



Typically fit a Gaussian - Minimize RMSE

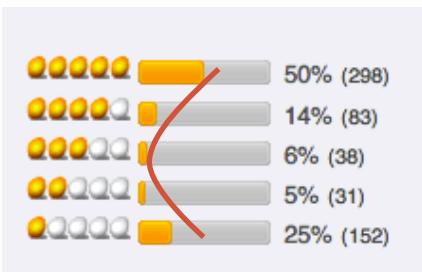
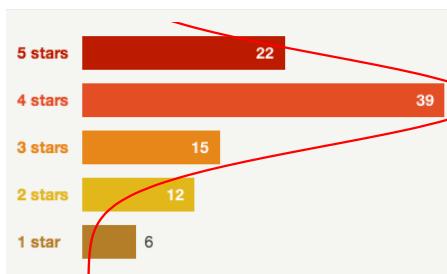


Data

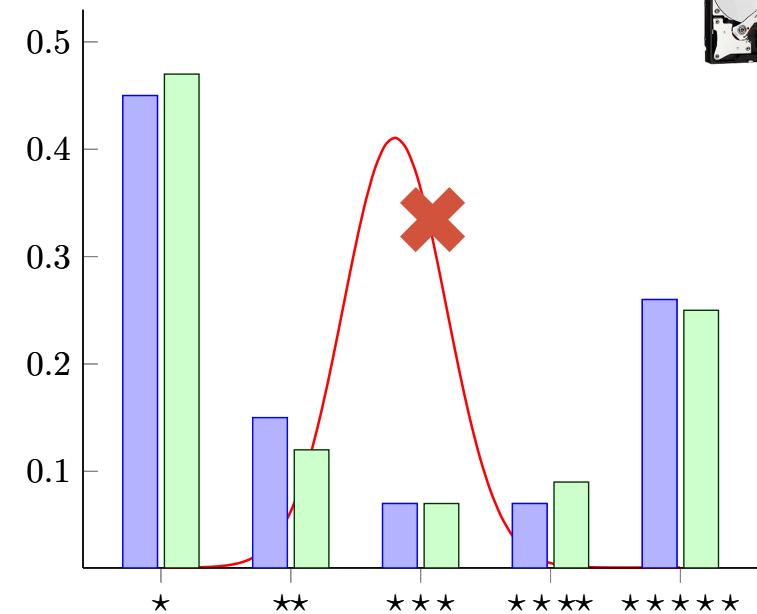
Normal CF

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

Online Rating Models



Typically fit a Gaussian - Minimize RMSE

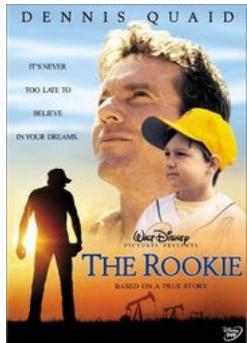
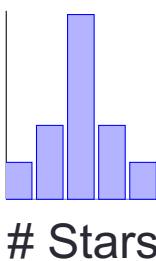


Data

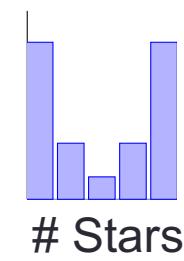
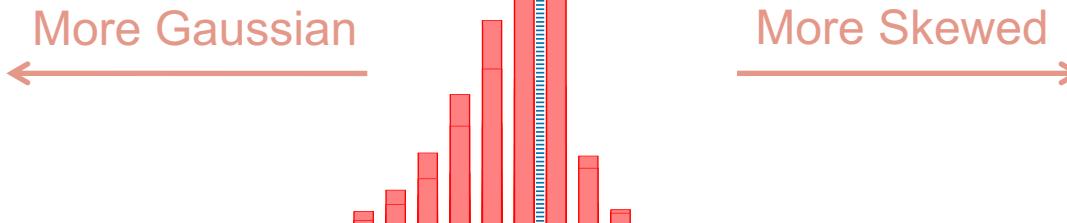
Normal CF

CoBaFi

Shape of Netflix reviews



Most Gaussian	Most skewed
The Rookie	The O.C. Season 2
The Fan	Samurai X: Trust and Betrayal
Cadet Kelly	Aqua Teen Hunger Force: Vol. 2
Money Train	Sealab 2001: Season 1
Alice Doesn't Live Here	Aqua Teen Hunger Force: Vol. 2
Sea of Love	Gilmore Girls: Season 3
Boiling Point	Felicity: Season 4

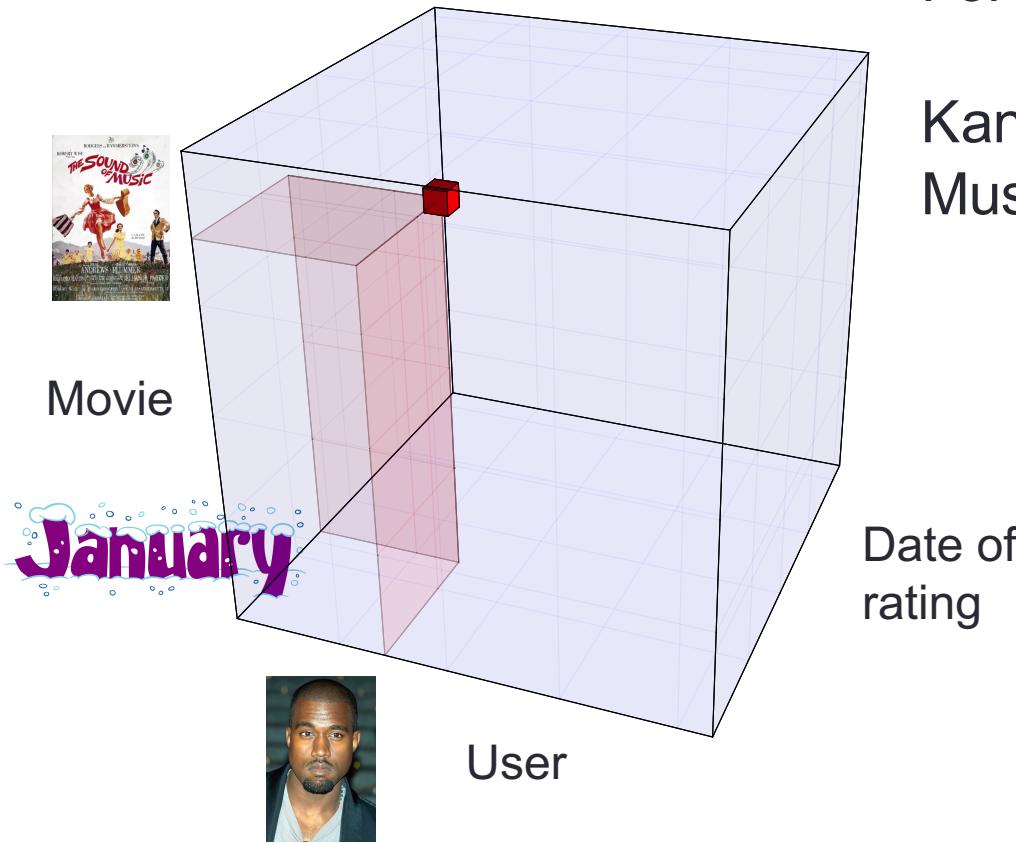


What is a tensor?

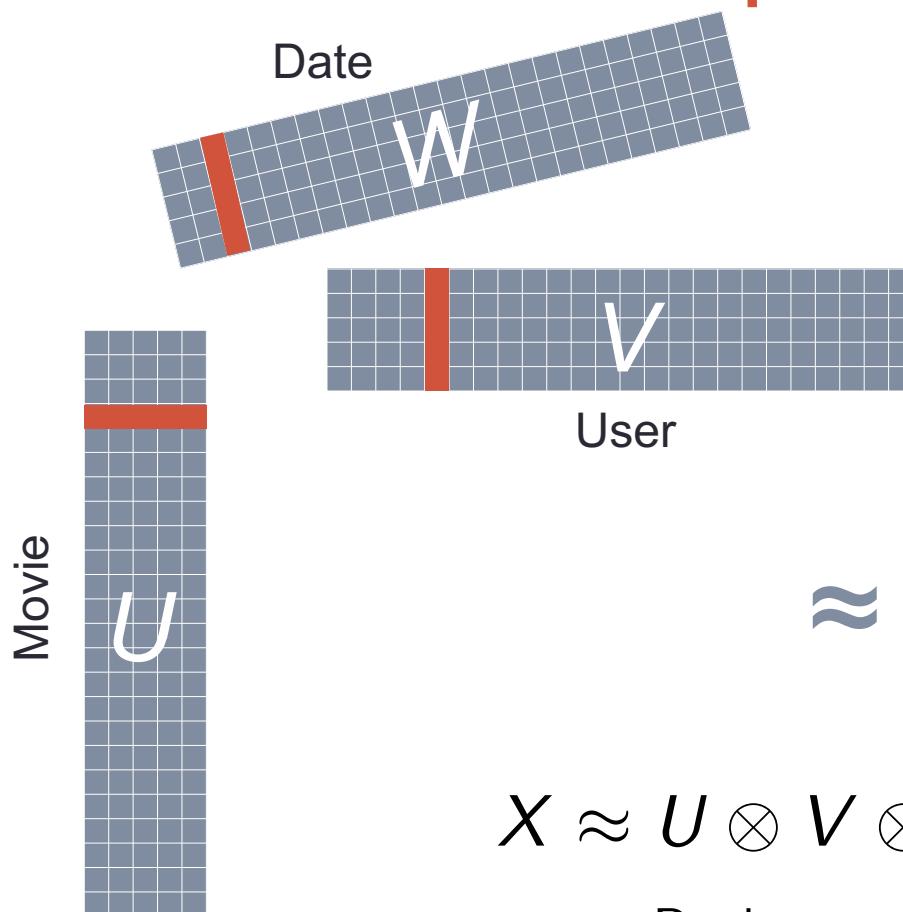
- Tensors are used for structured data > 2 dimensions
- Think of as a 3D-matrix

For example:

Kanye West rated The Sound of Music five stars last January.



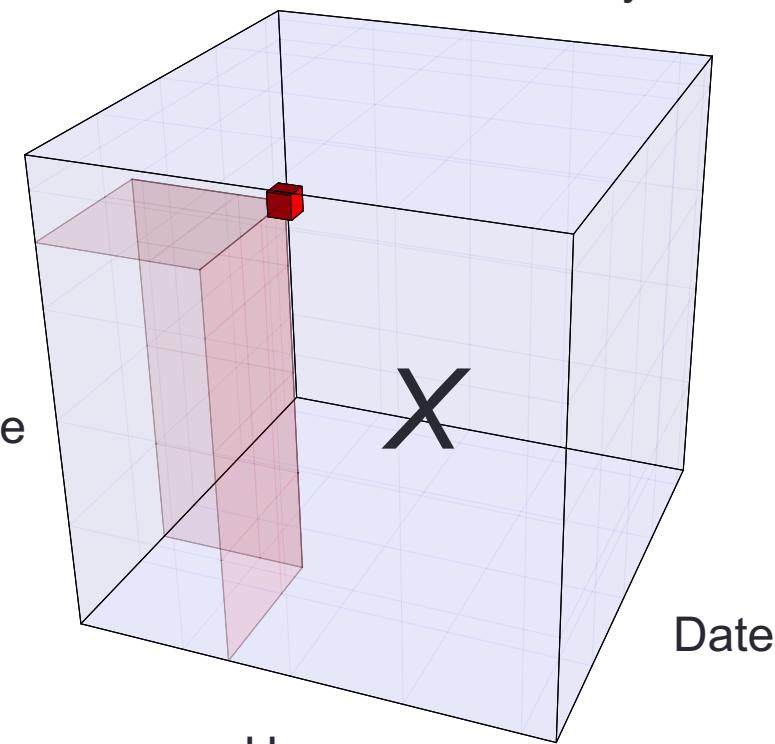
Tensor Decomposition



$$X \approx U \otimes V \otimes W$$

$$X_{i,j,k} \approx \sum_{r=1}^{\text{Rank}} U_{i,r} V_{j,r} W_{k,r}$$

Kanye West rated The Sound of Music five stars last January.



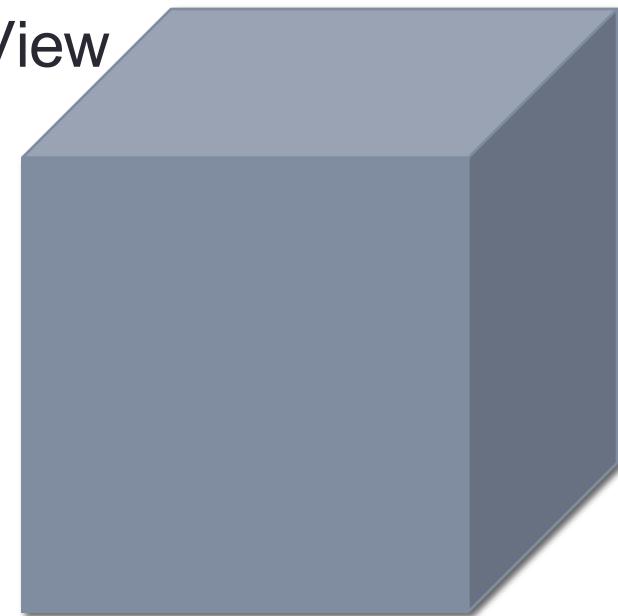
Graph Clustering with Tensors

Multiple possible views
of the DBLP network:
1. Who-cites-whom
2. Co-authorship
3. Using same words in title

Graph View

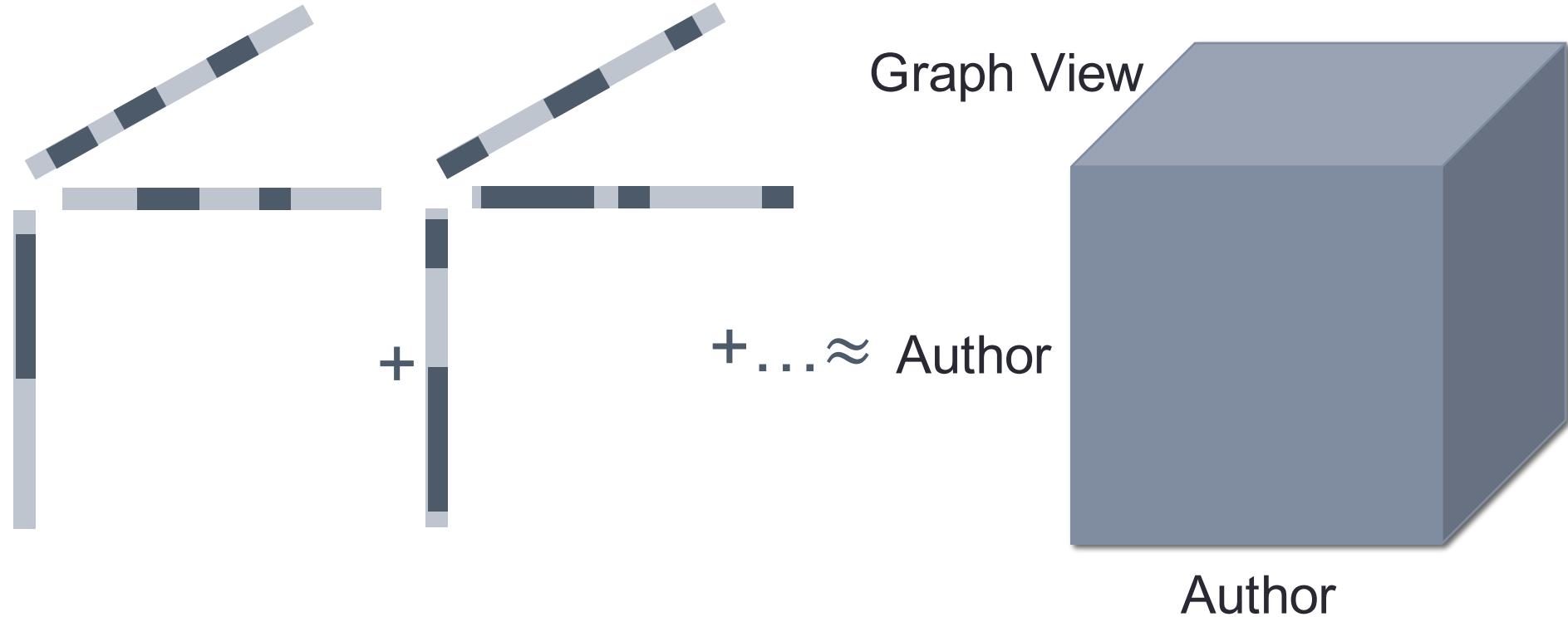
Author

Author



Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco
FUSION 2013

Graph Clustering with Tensors

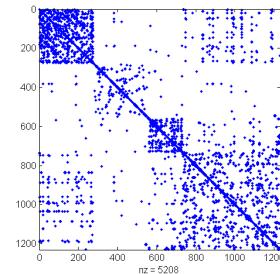


Sparse Tensor Factorization

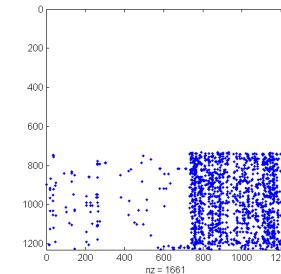
Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco
FUSION 2013

Graph Clustering with Tensors

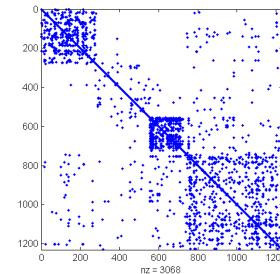
DBLP-1



(a) citation

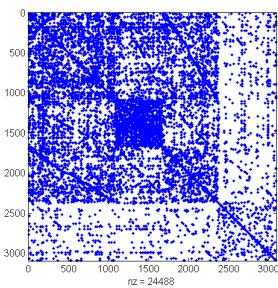


(b) co-auth.

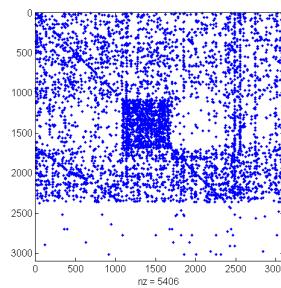


(c) co-term

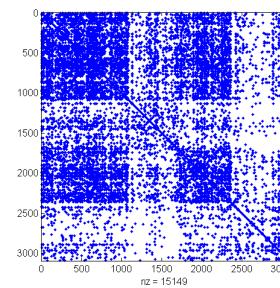
DBLP-2



(a) citation



(b) co-auth.



(c) co-term

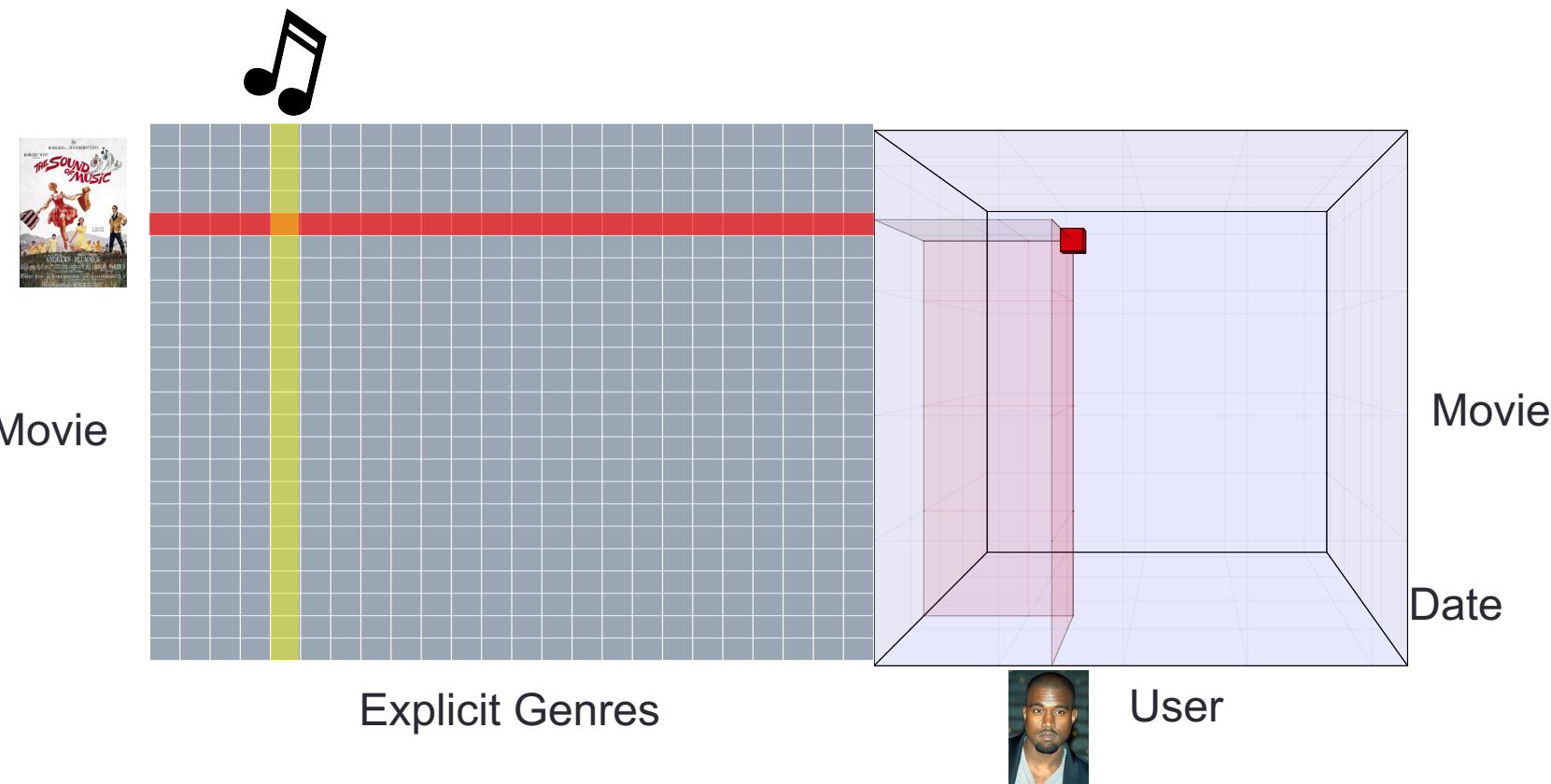
Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco
FUSION 2013

Graph Clustering with Tensors

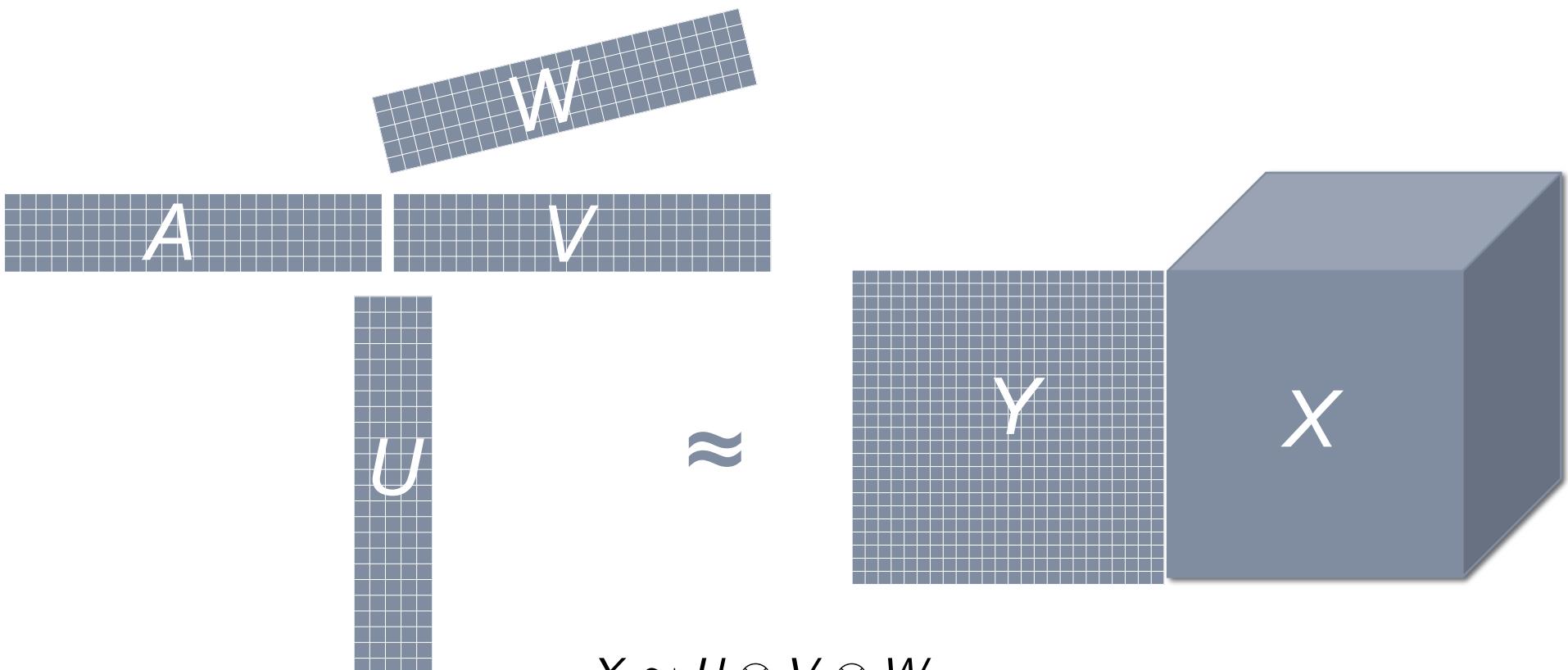
Dataset	Baseline	GraphFuse
DBLP-1	0.12	0.30
DBLP-2	0.08	0.12

Modeling Accuracy

Coupled Matrix + Tensor Decomposition



Coupled Matrix + Tensor Decomposition

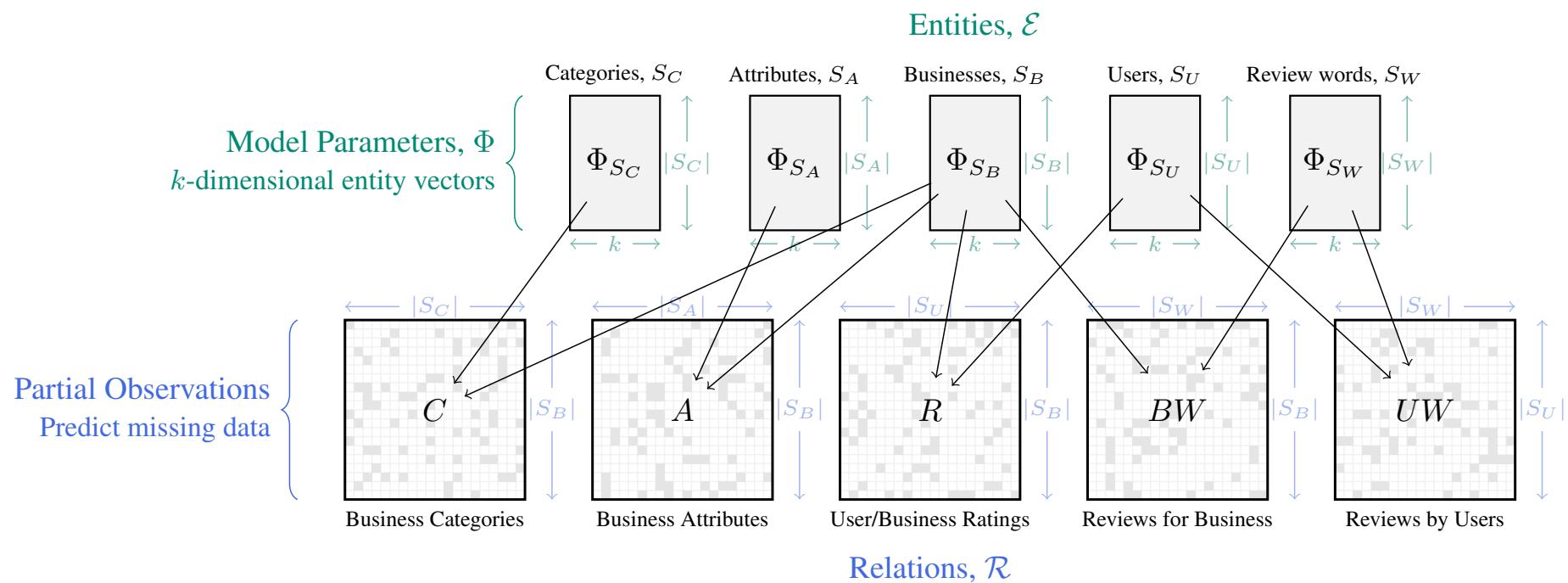


$$X \approx U \otimes V \otimes W$$

$$Y \approx UA^T$$

$$\min_{U, V, W, A} \|X - U \otimes V \otimes W\|_F^2 + \|Y - UA^T\|_F^2$$

Joint Factorization

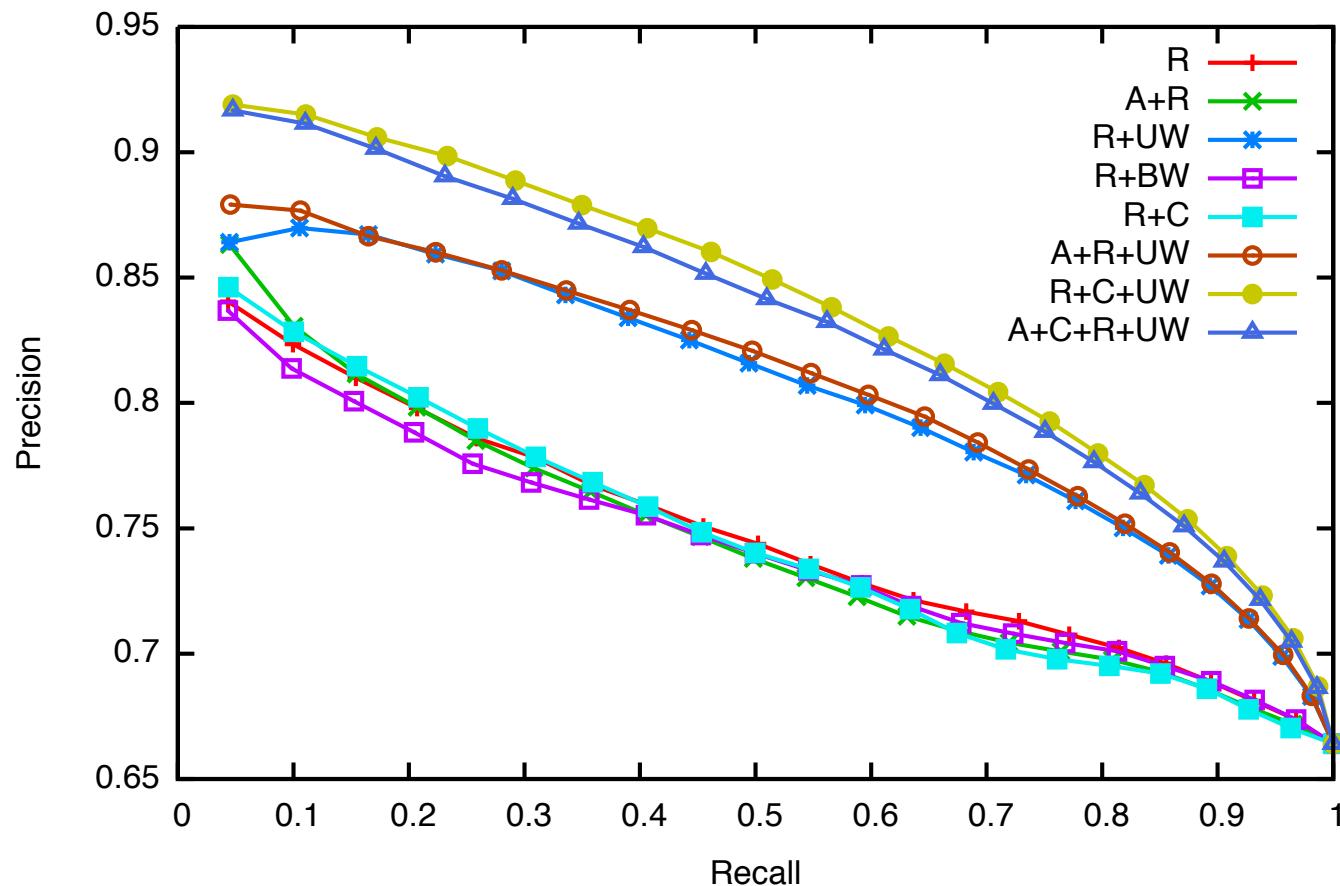


Collective Factorization for Relational Data: An Evaluation on the Yelp Datasets

Nitish Gupta, Sameer Singh

Joint Factorization

PR Curve (Ratings)



Most valuable:

1. Ratings
2. Review text
3. Business Categories

Collective Factorization for Relational Data:
An Evaluation on the Yelp Datasets
Nitish Gupta, Sameer Singh

1. Subgraph Analysis

2. Propagation Methods

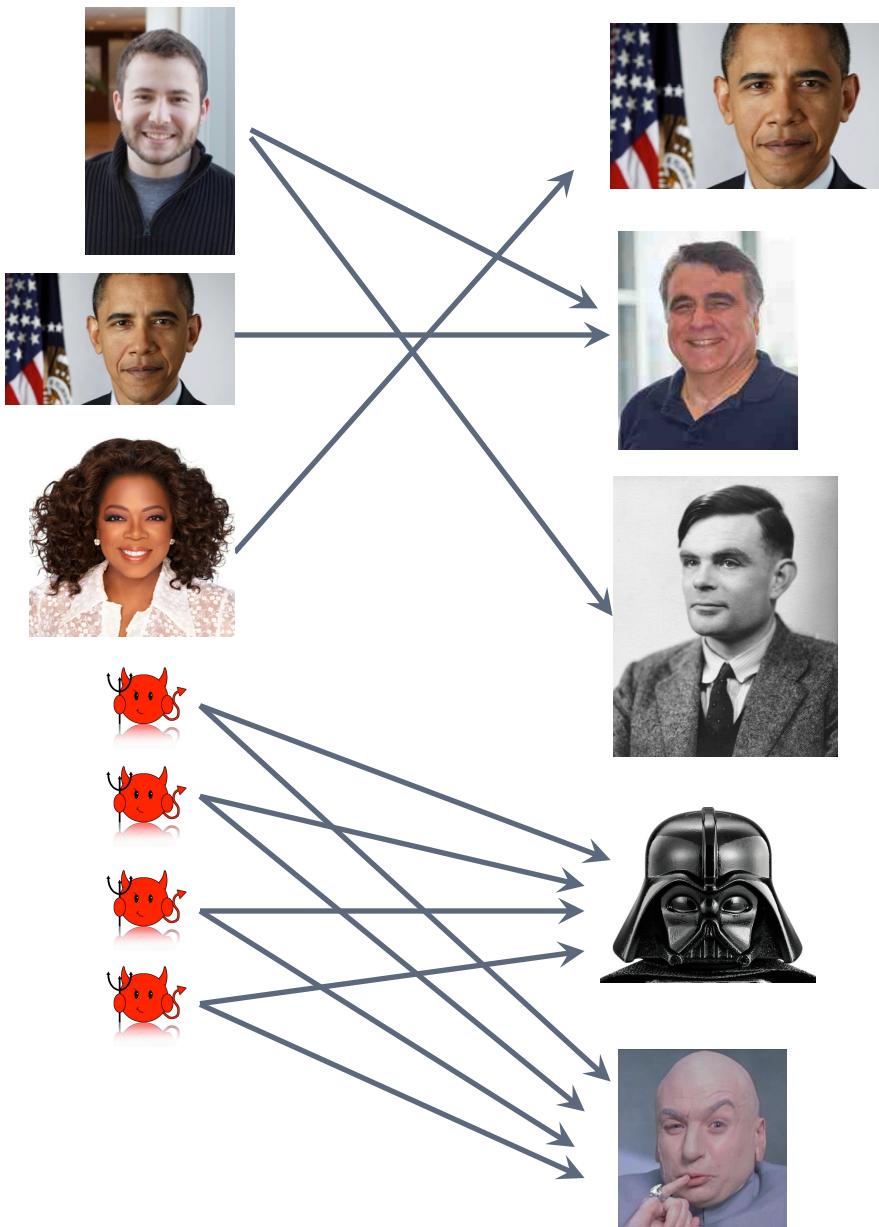
3. Latent Factor Models

a) Background

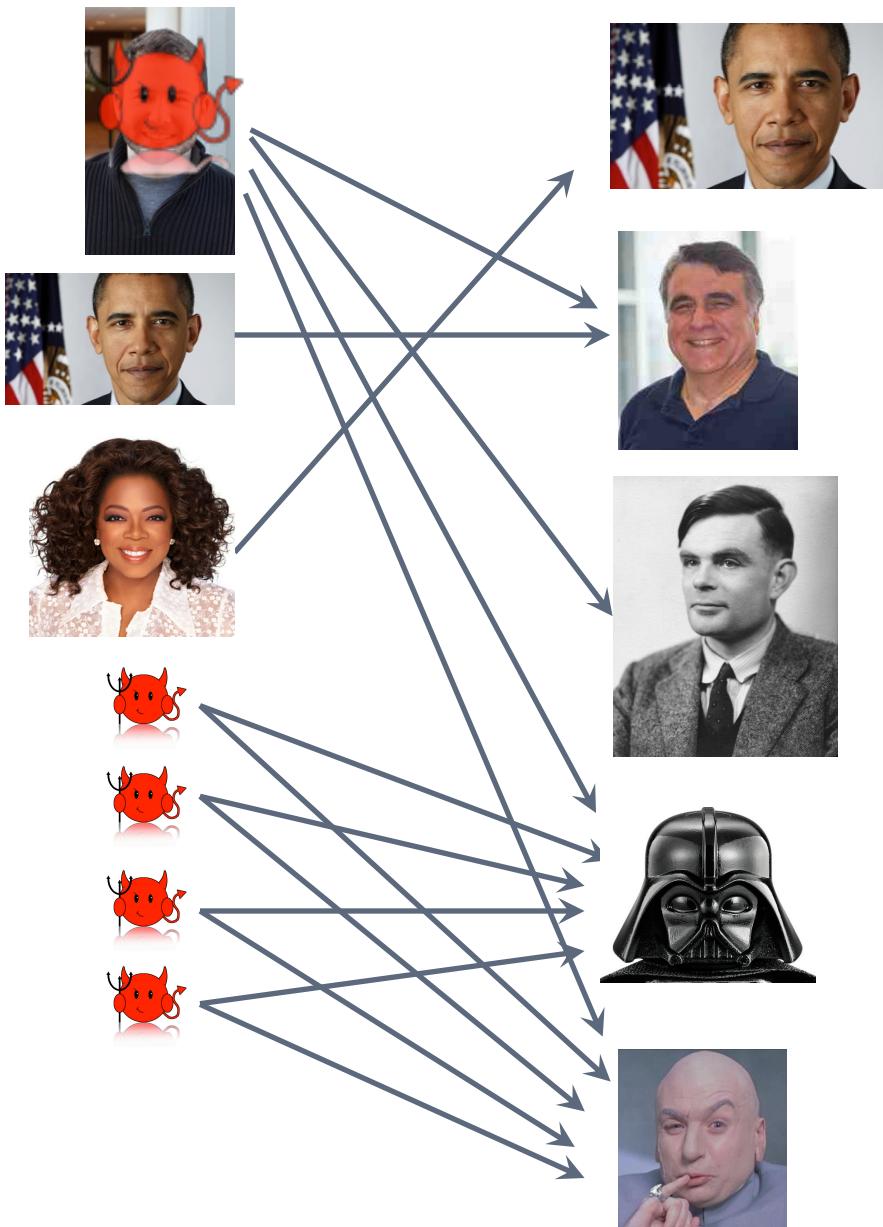
b) Normal Behavior

c) Abnormal Behavior

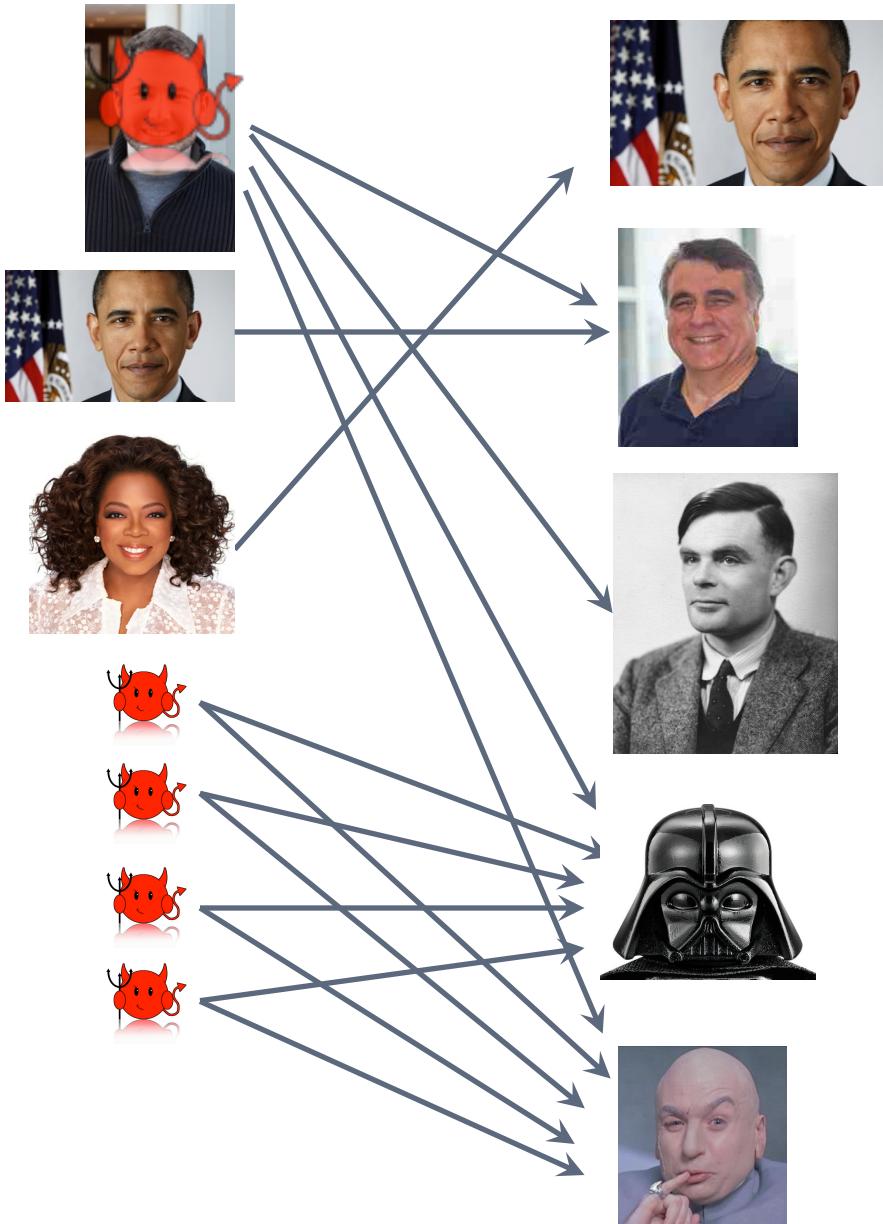
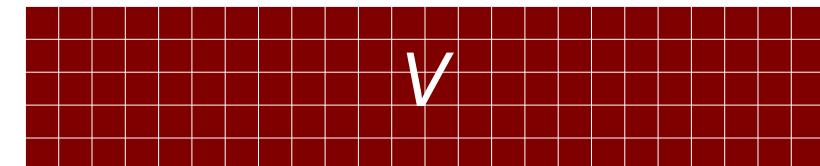
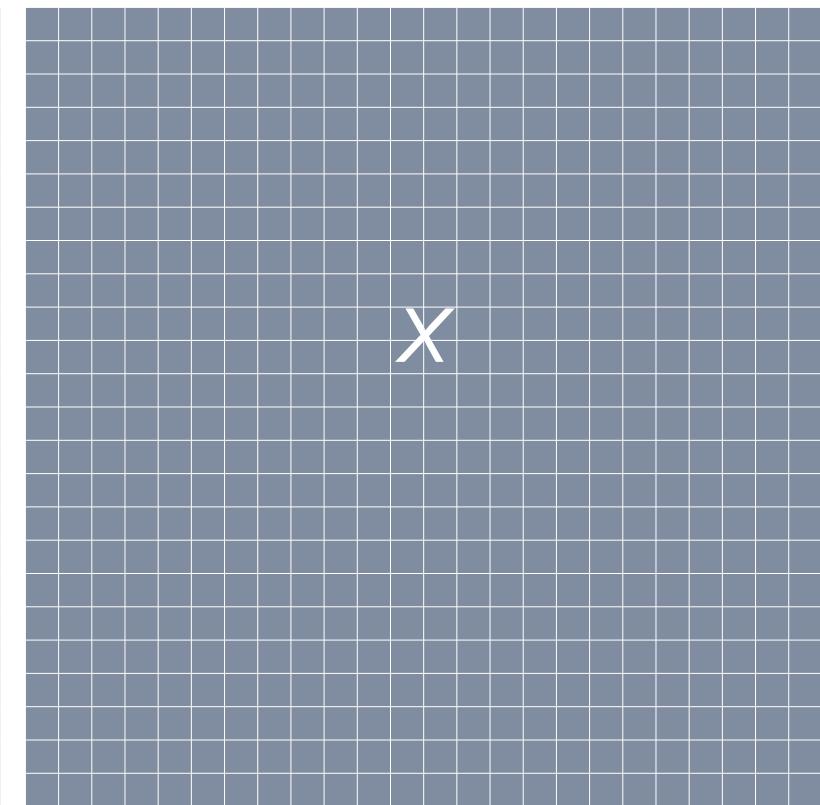
Fraud Detection



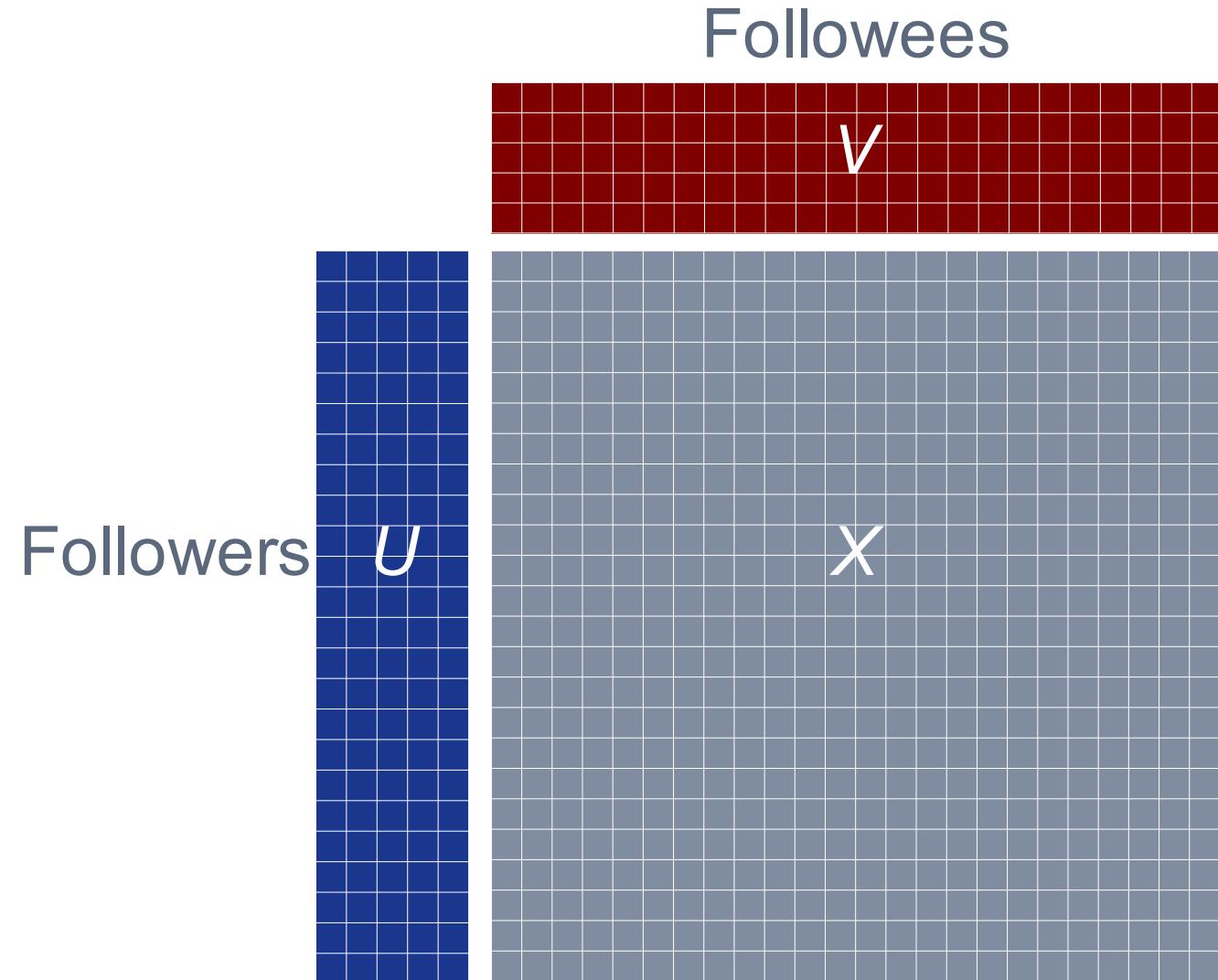
Fraud Detection



Fraud within a factorization



Fraud within a factorization



Fraud within a factorization

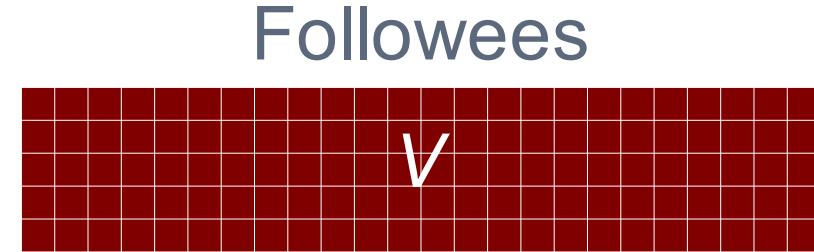
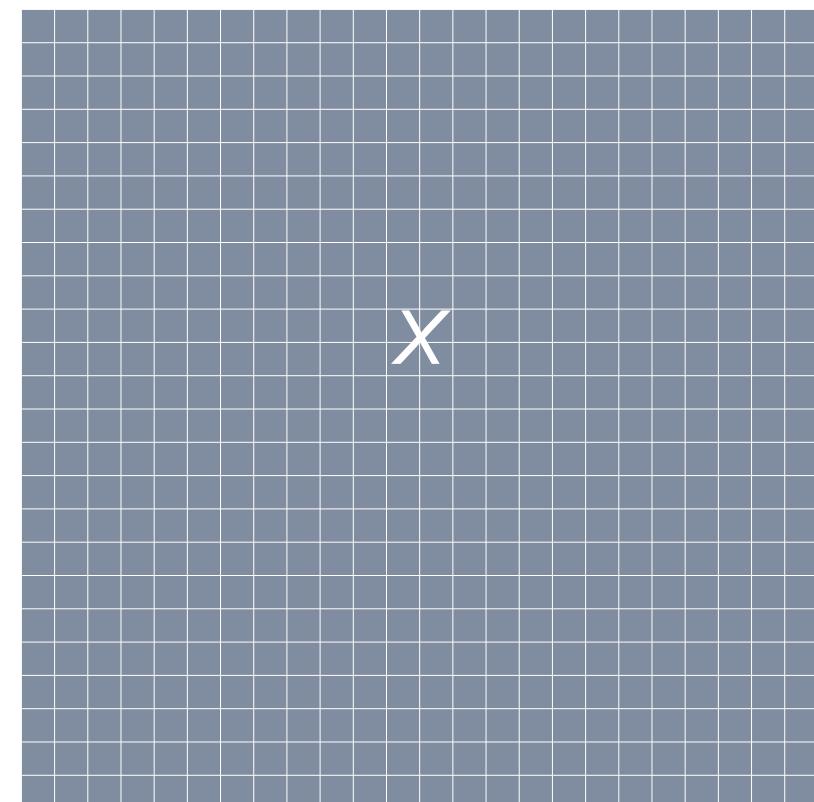
1.5	1	-0.5	-2	1
-----	---	------	----	---

Followers U

?	?	?	?	?
---	---	---	---	---

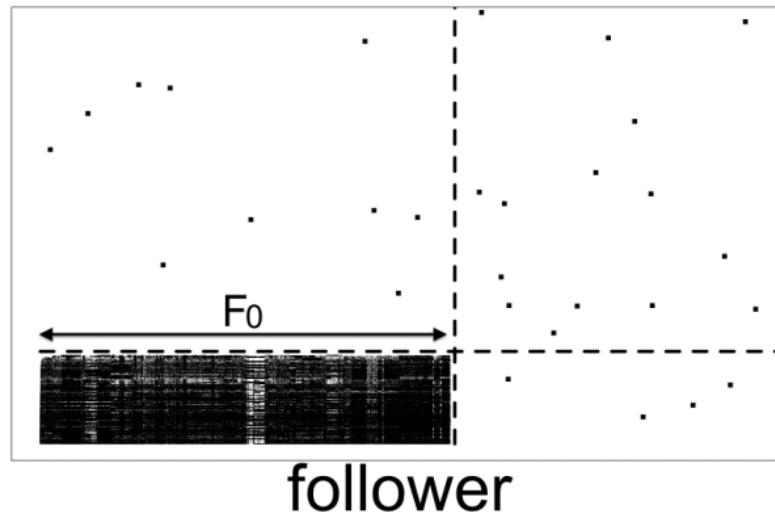
?	?	?	?	?
---	---	---	---	---

?	?	?	?	?
---	---	---	---	---



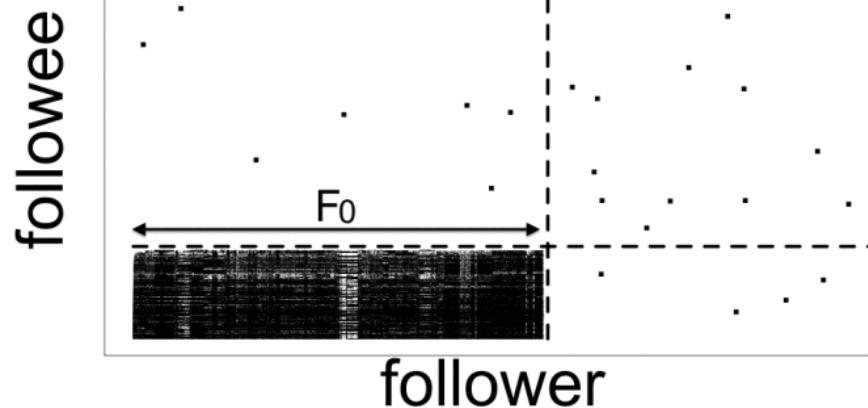
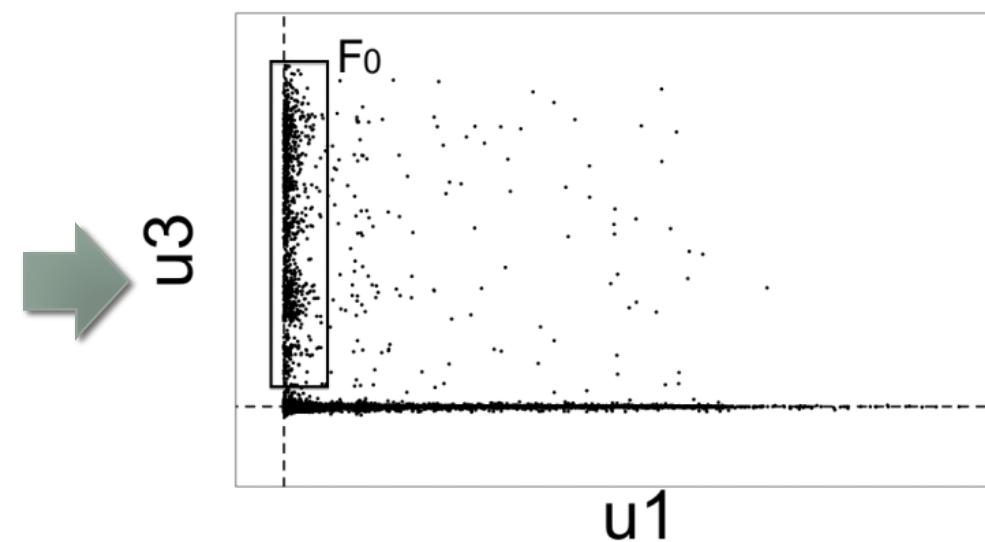
Fraud within a factorization

followee



EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs
B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri,
Sridhar Machiraju, Christos Faloutsos
PAKDD, 2010

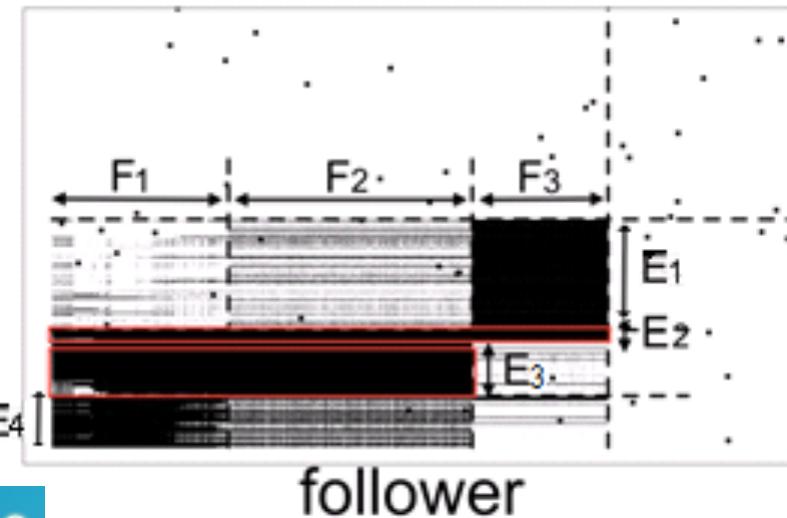
Fraud within a factorization



EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs
B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri,
Sridhar Machiraju, Christos Faloutsos
PAKDD, 2010

Fraud within a factorization

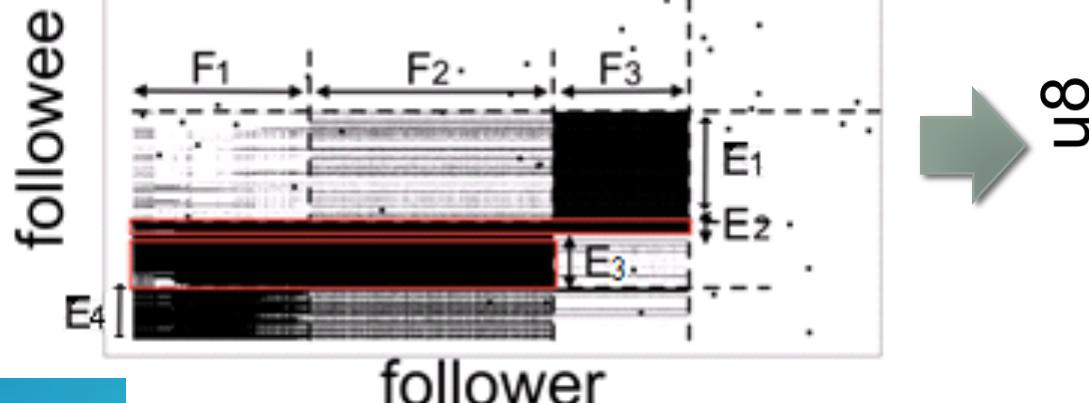
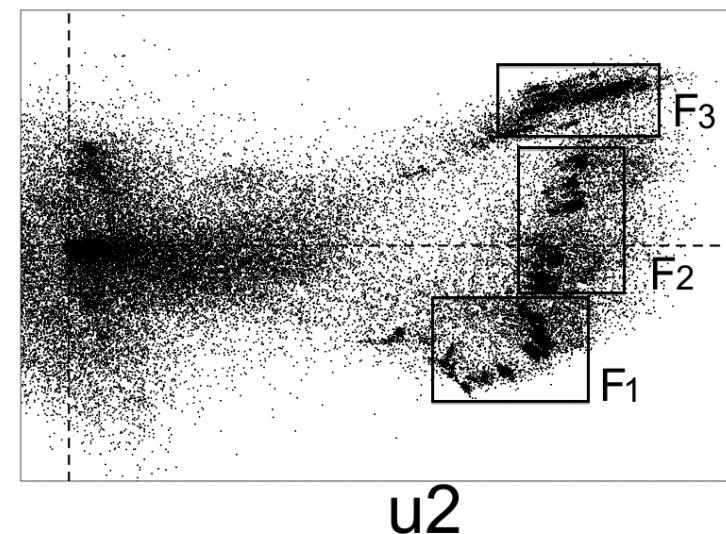
follower



Inferring Strange Behavior from Connectivity Pattern in Social Networks

Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang.
PAKDD, 2014

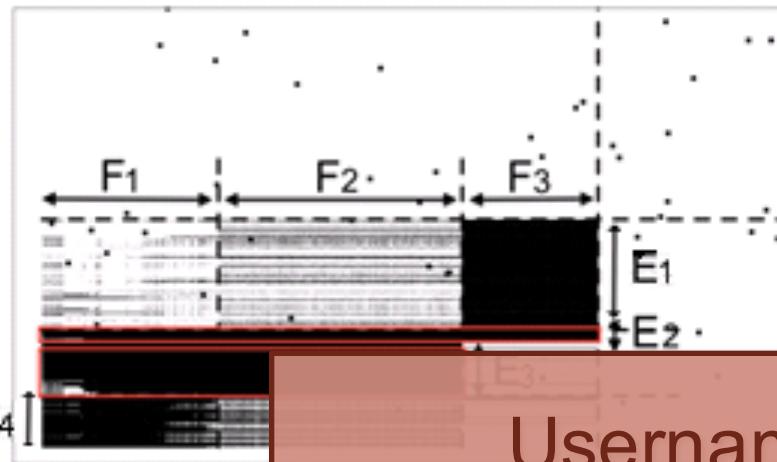
Fraud within a factorization



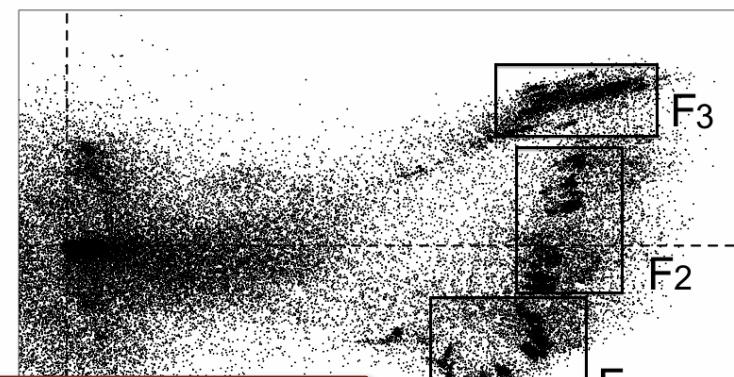
Inferring Strange Behavior from Connectivity Pattern in Social Networks

Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang.
PAKDD, 2014

Fraud within a factorization



u_8



Username: a#####
Birthday: January 1st

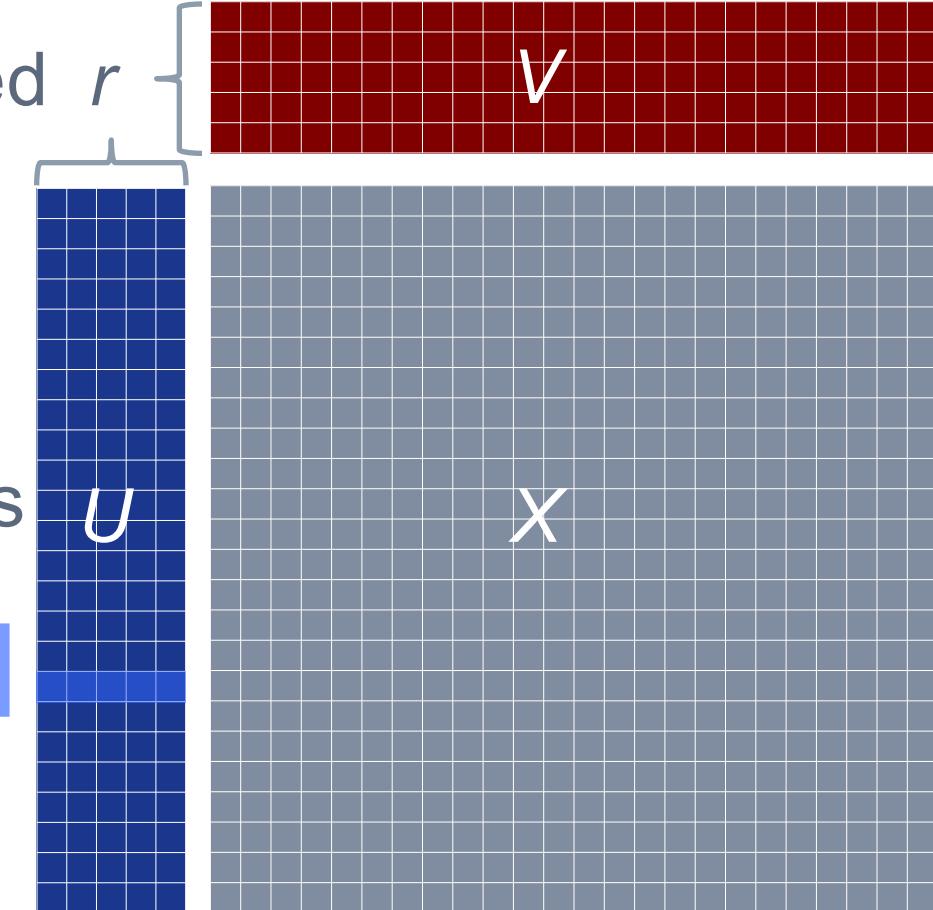
Inferring Strange Behavior from Connectivity Pattern in Social Networks

Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang.
PAKDD, 2014

Complementary Fraud Detection

Followees

Limited r



?

?

?

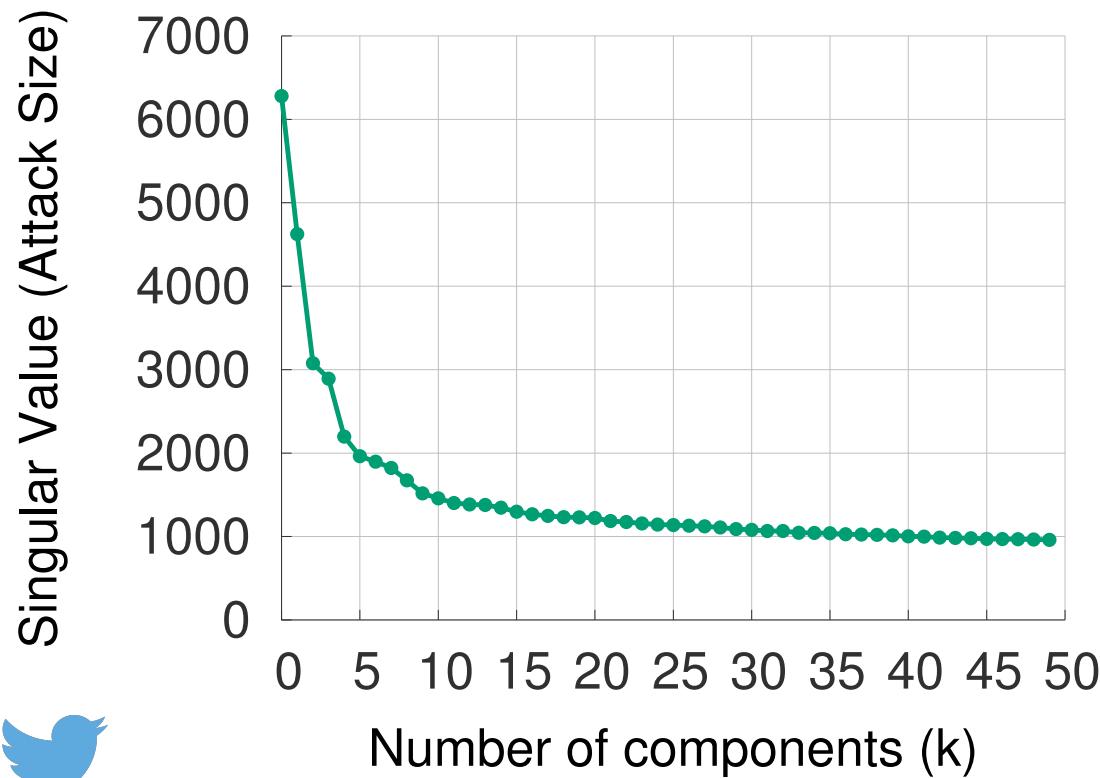
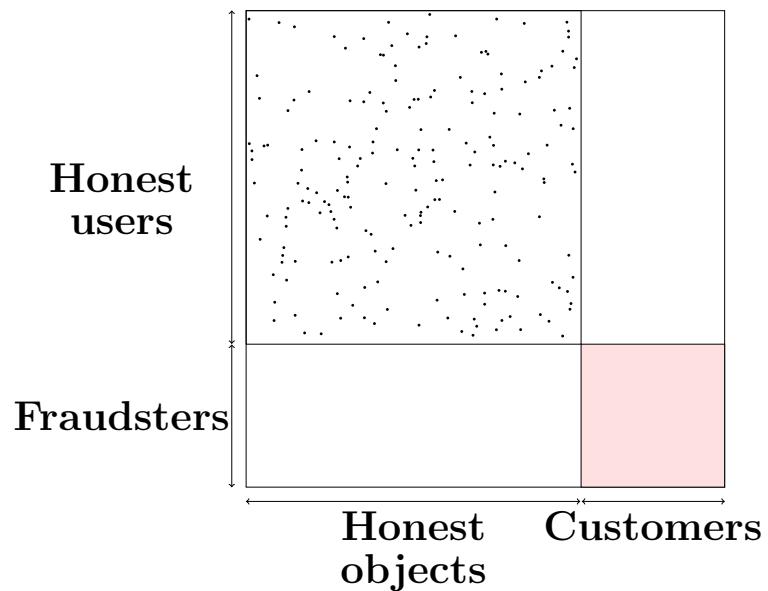
?

?

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

Complementary Fraud Detection

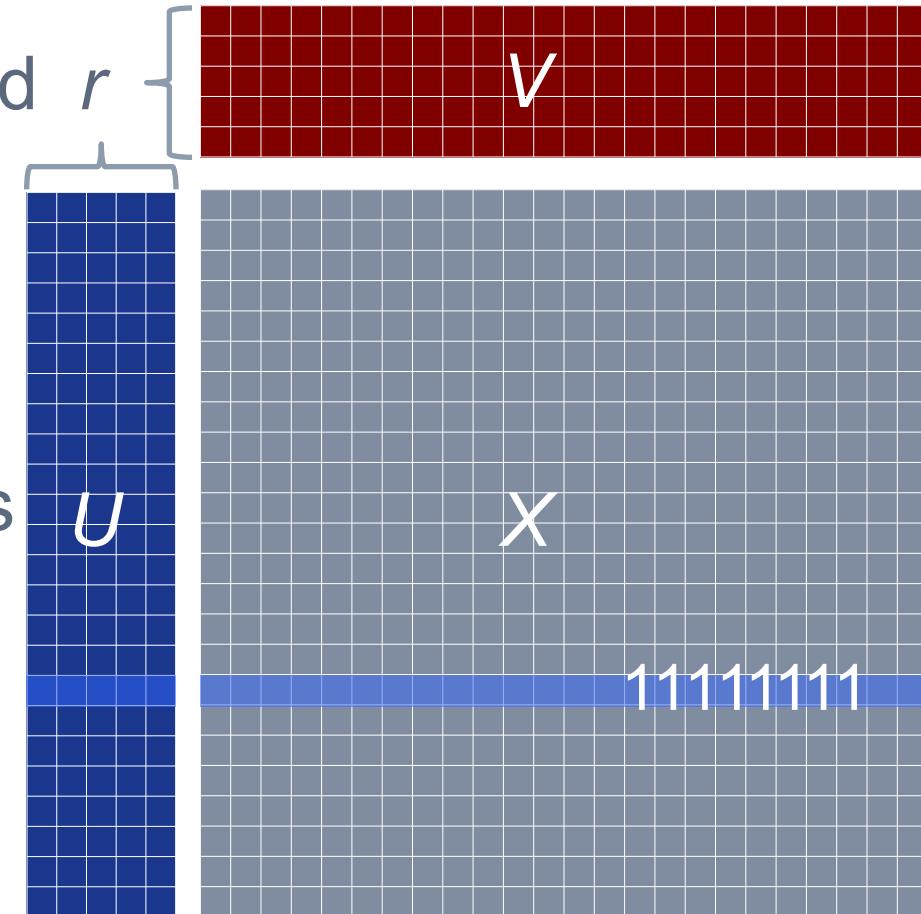
960 fraudsters
safely following
960 customers



Complementary Fraud Detection

Followees

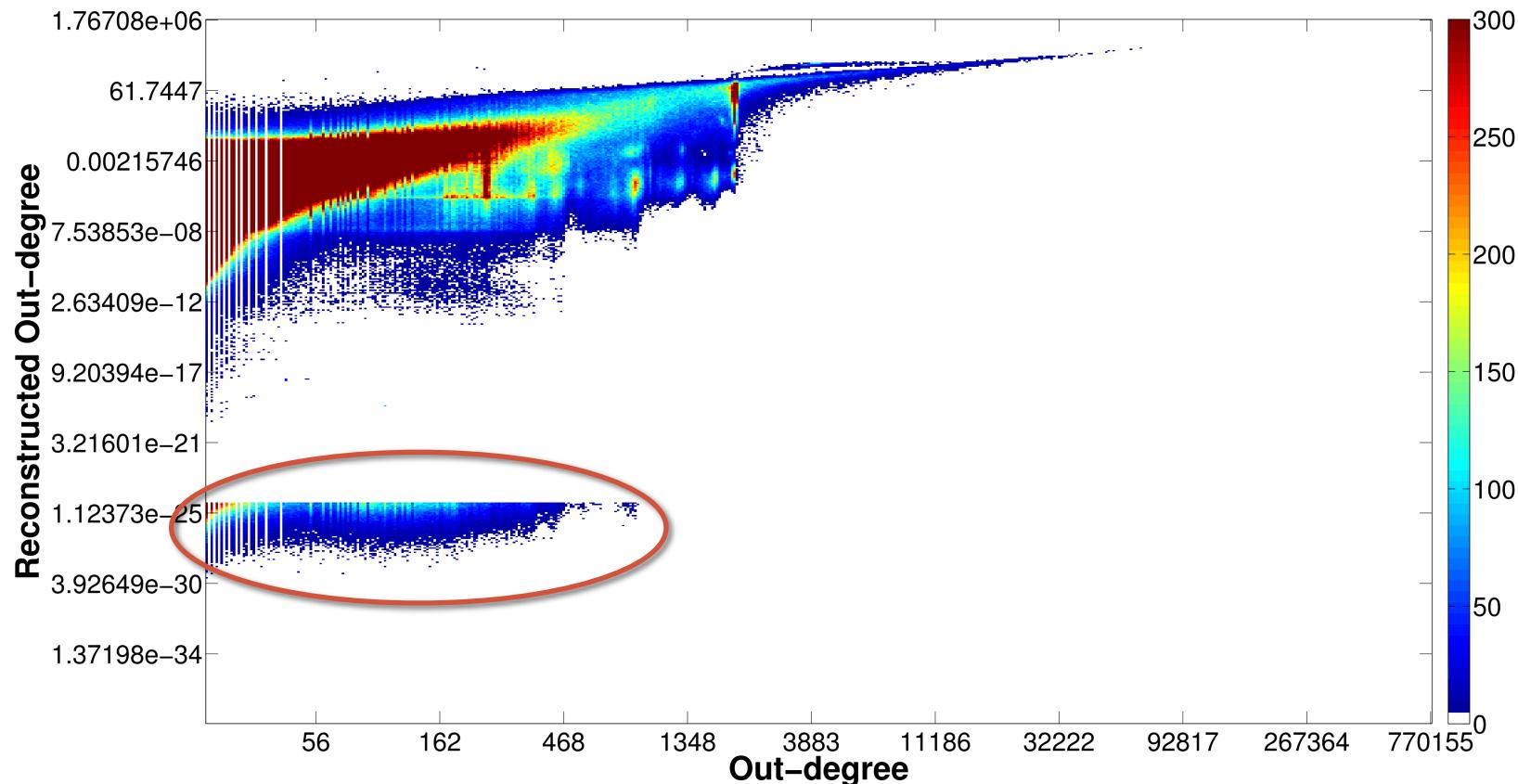
Limited r



Followers

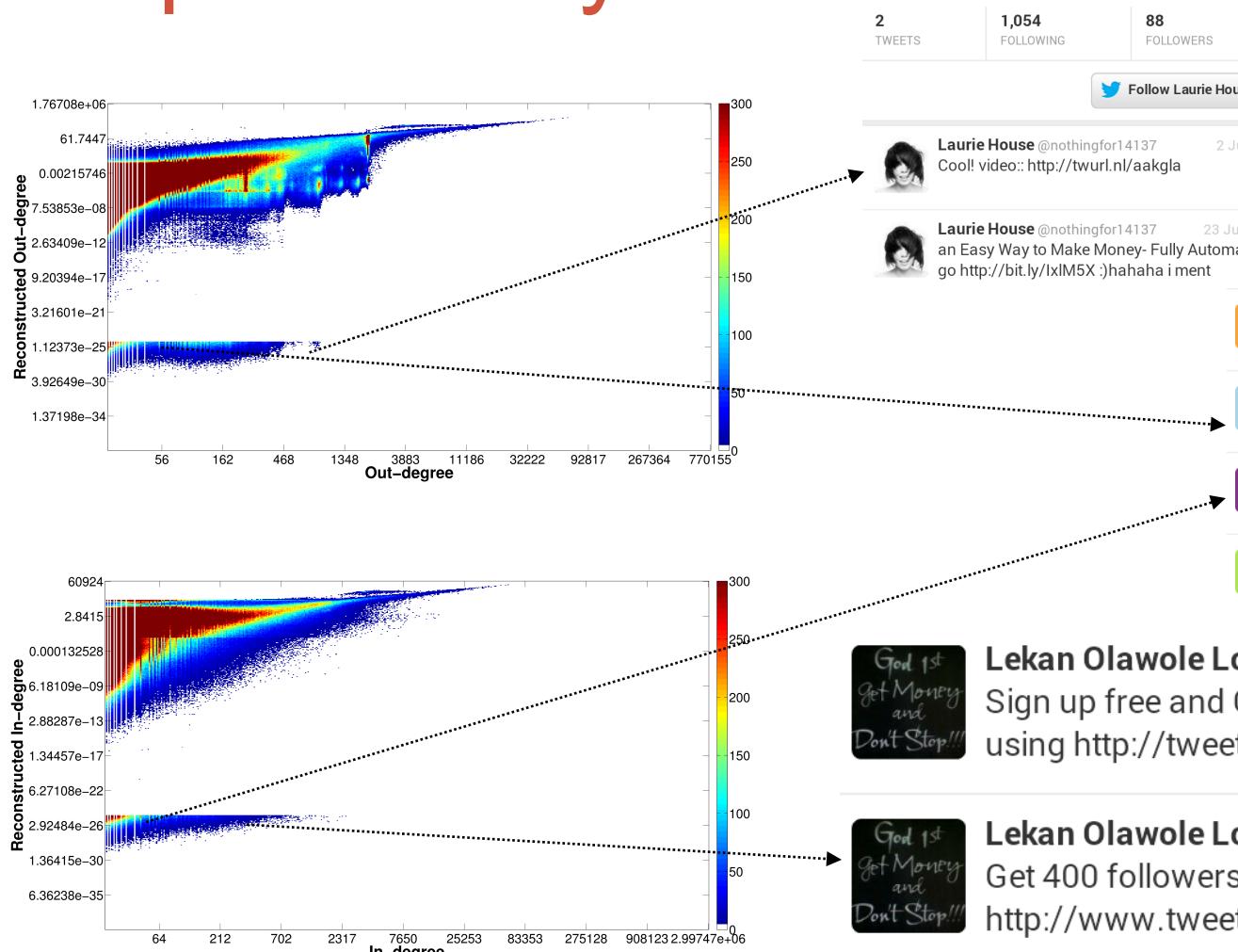
Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

Complementary Fraud Detection



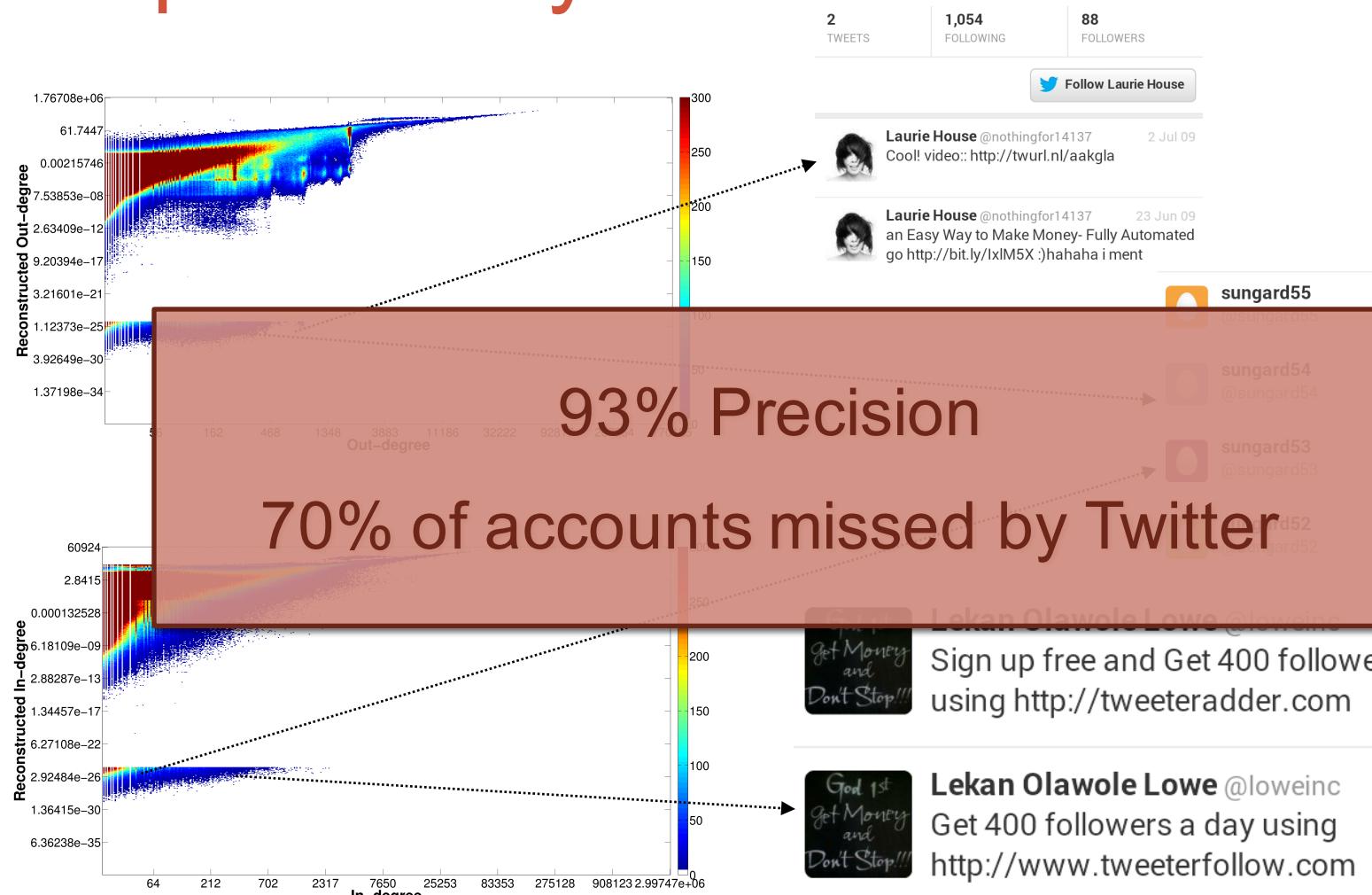
Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

Complementary Fraud Detection



Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

Complementary Fraud Detection

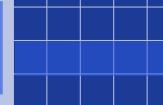


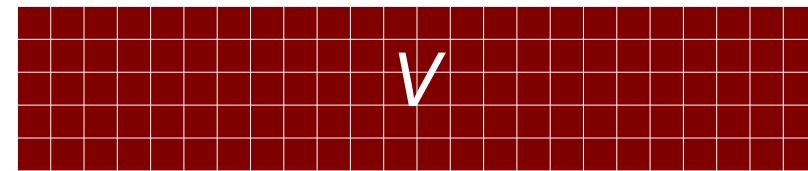
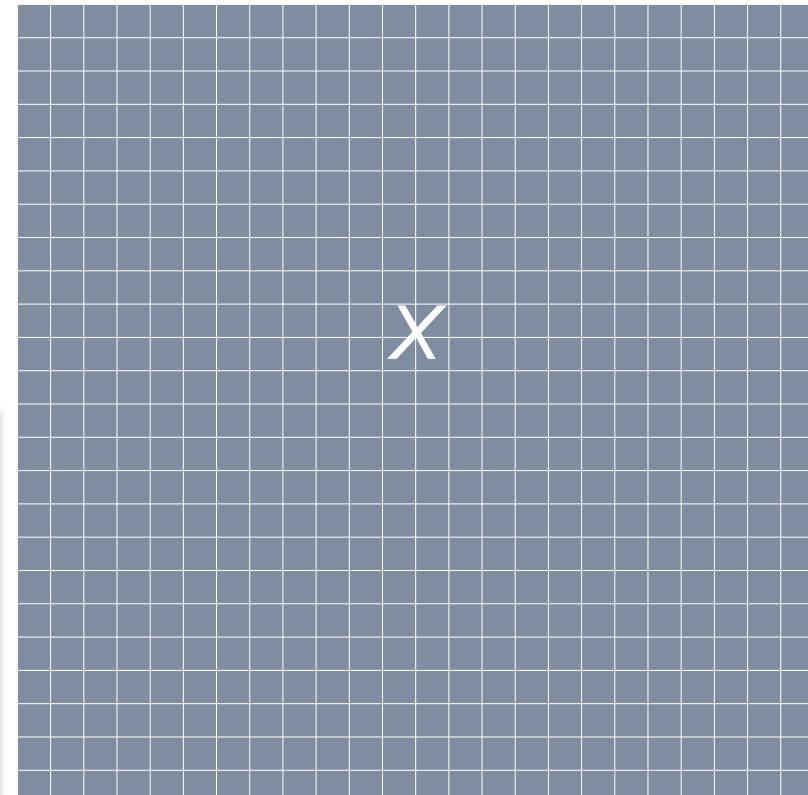
Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

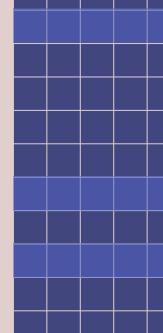
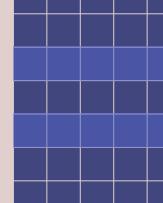
Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
EigenSpokes	Directed+			
Get-the-Scoop	Directed+			
fBox	Directed+			
CoBaFi	Bipartite+		✓	
CDOutliers	Undirected	✓		

Detecting Fraud within Recommendation

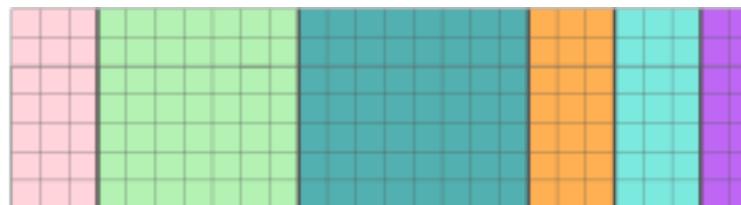
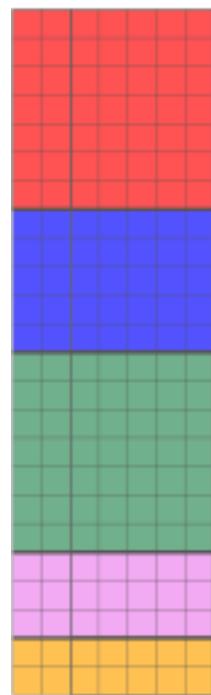
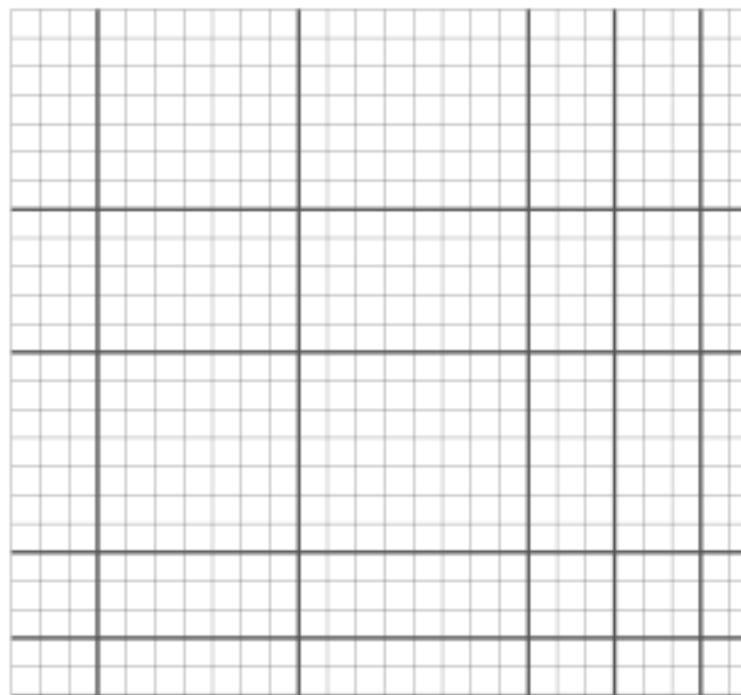
	1.4	0.8	-0.2	-1.5	0.6	
	1.5	1	-0.5	-2	1	



	?	?	?	?	?	
	?	?	?	?	?	
	?	?	?	?	?	

Detecting Fraud within Recommendation

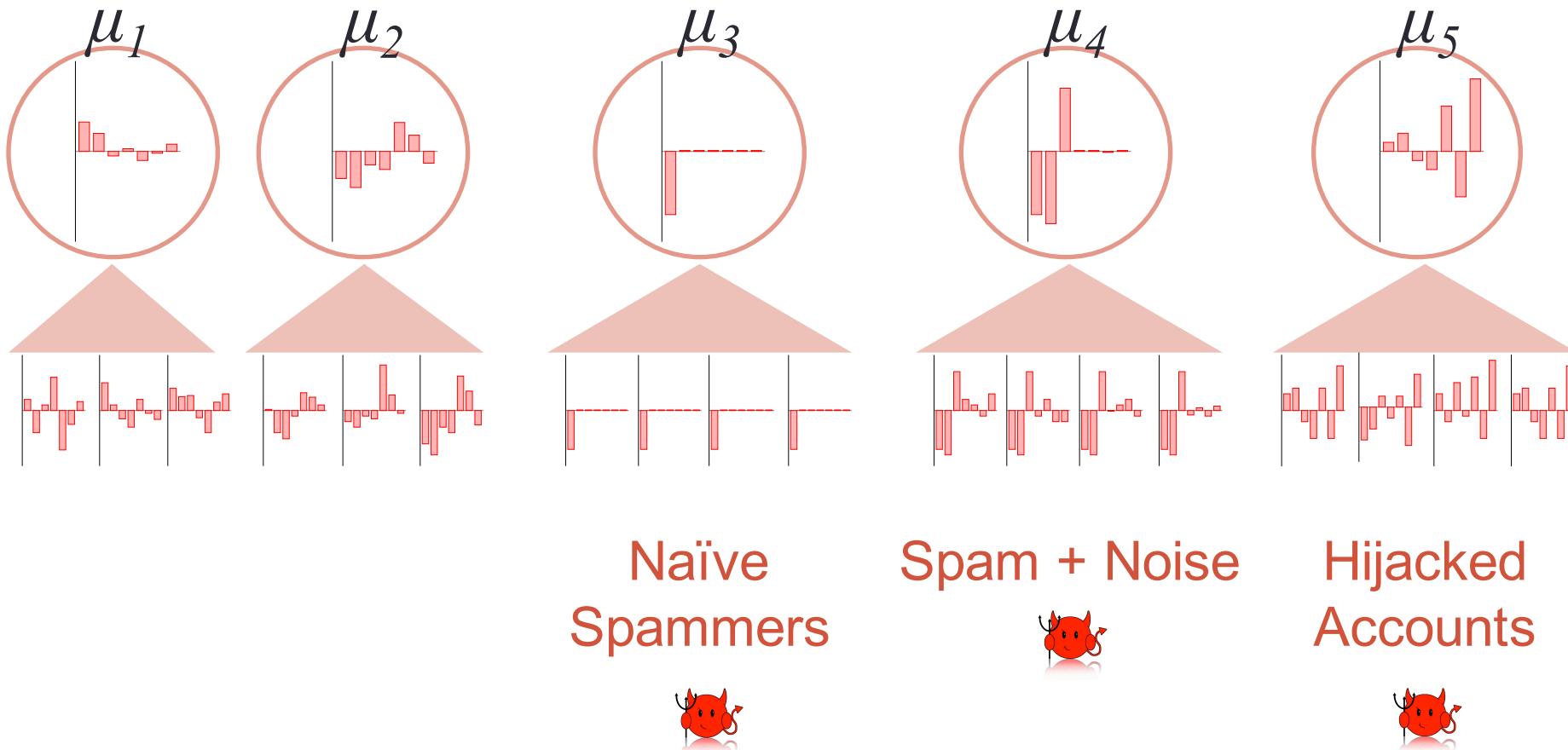
IMAX®



CoBaFi: Collaborative Bayesian Filtering

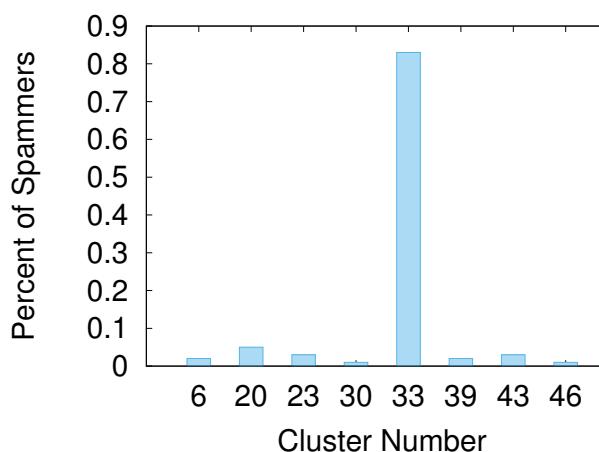
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

Clustering Fraudsters

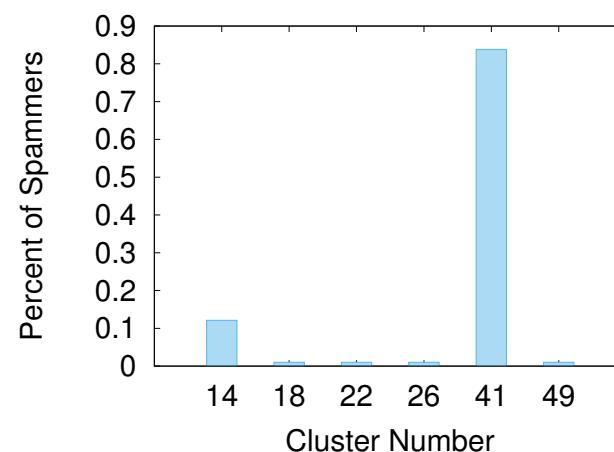


Clustered Fraudsters

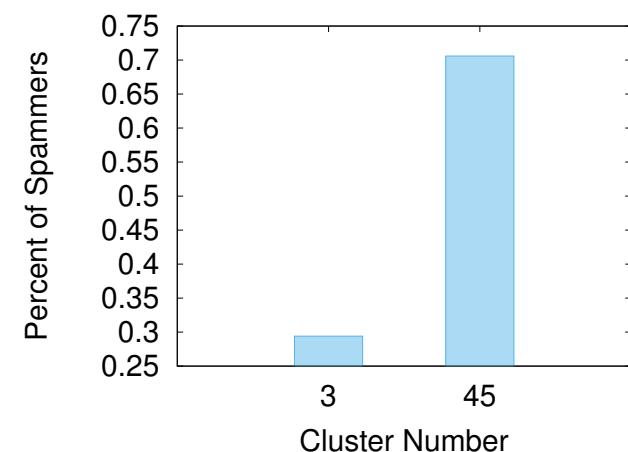
Clustered naïve spammers



Clustered hijacked accounts

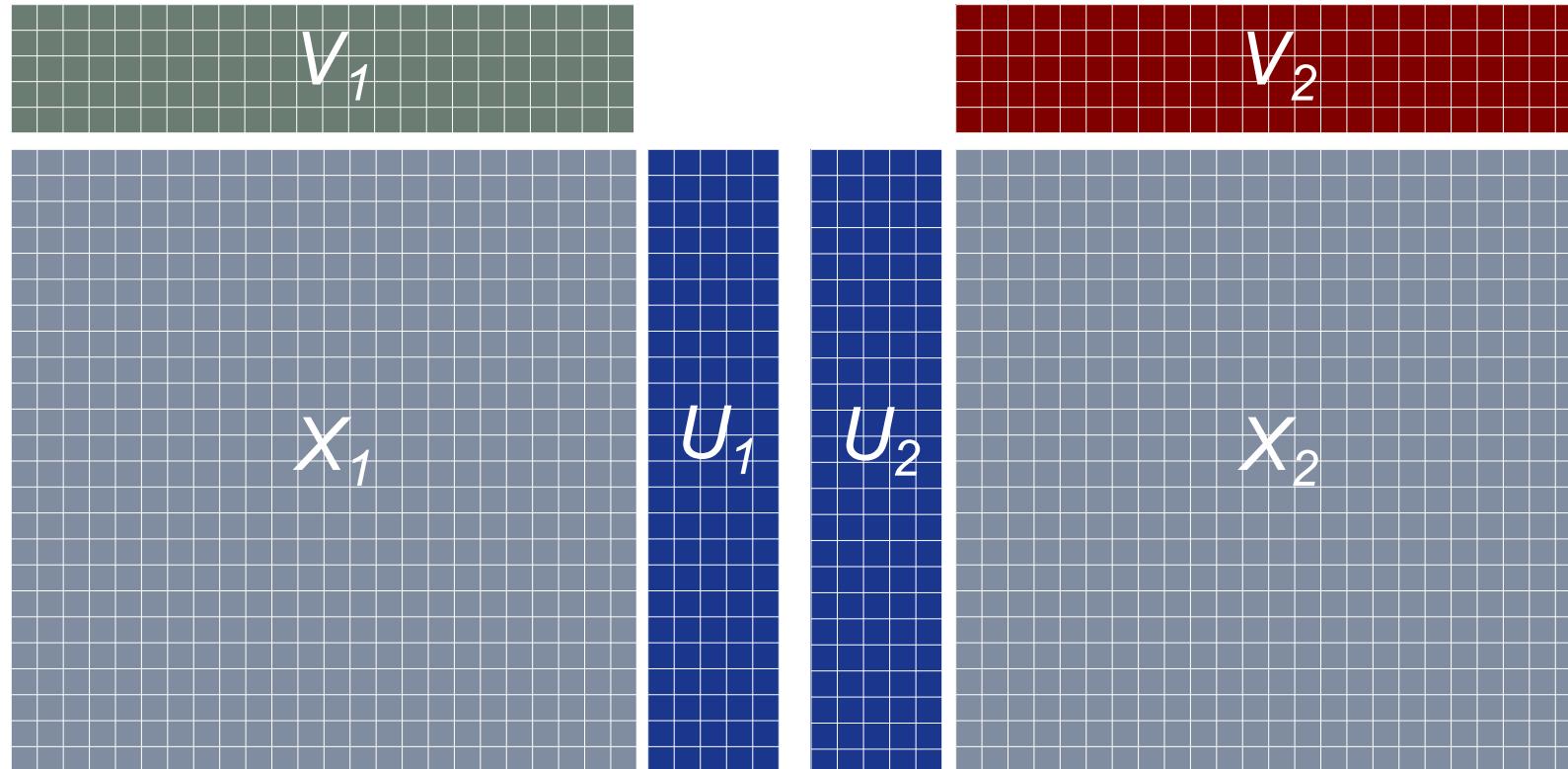


Clustered “attacked” movies



83% are clustered together

Outliers in Joint Factorization

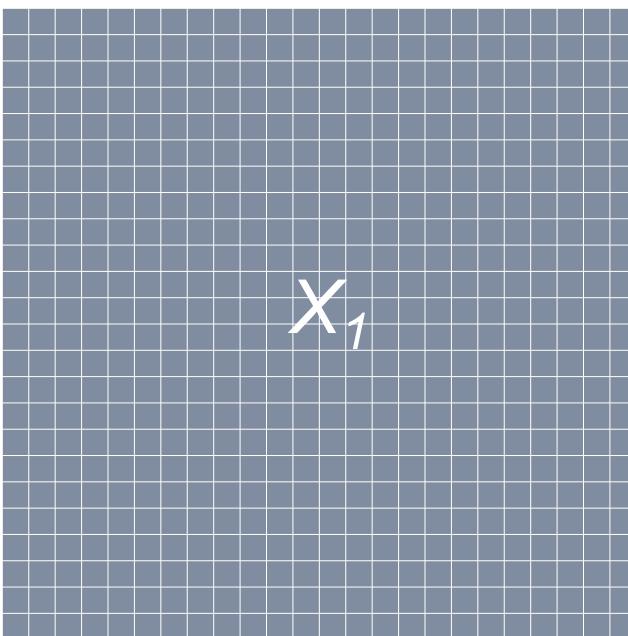
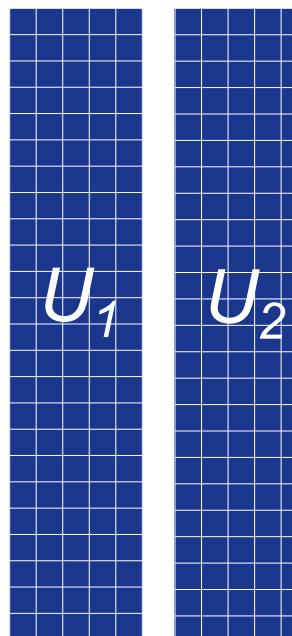
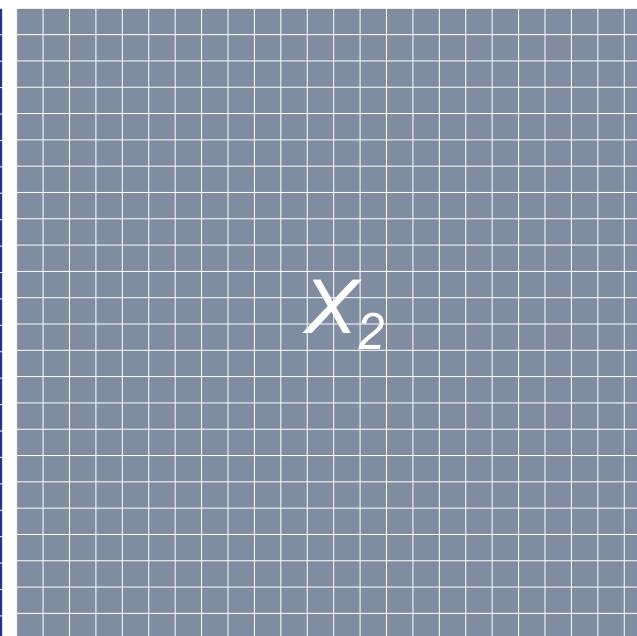


Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \geq 0$

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han
ECML/PKDD 2013

Outliers in Joint Factorization

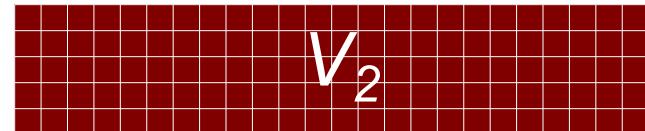
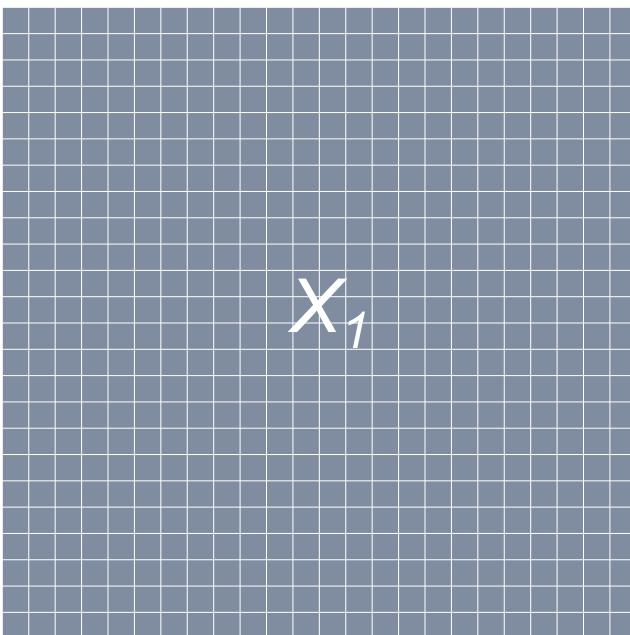
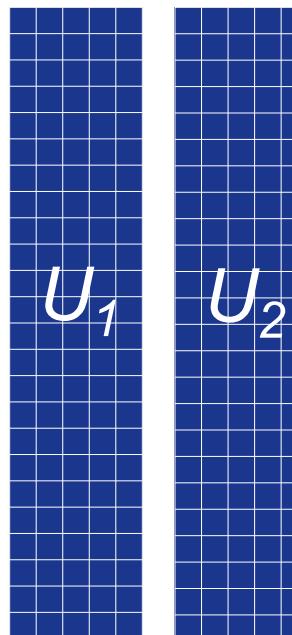
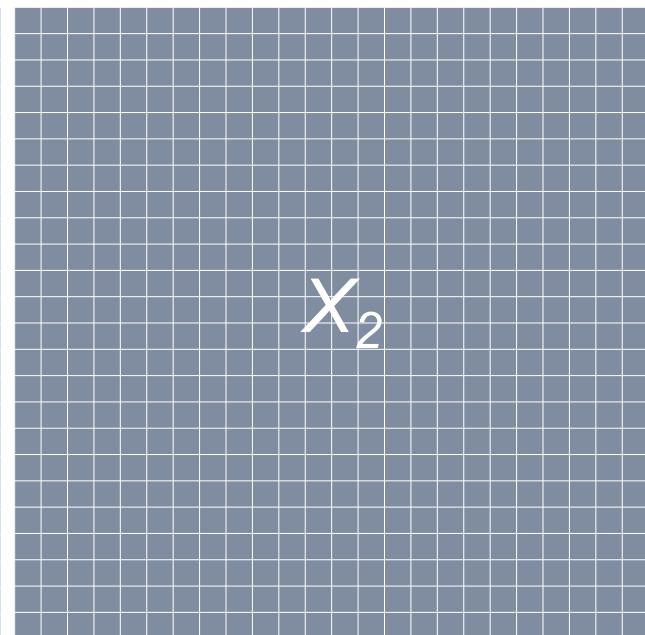
Interesting design of X_1 and X_2 ; see paper for details



Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \geq 0$

Outliers in Joint Factorization

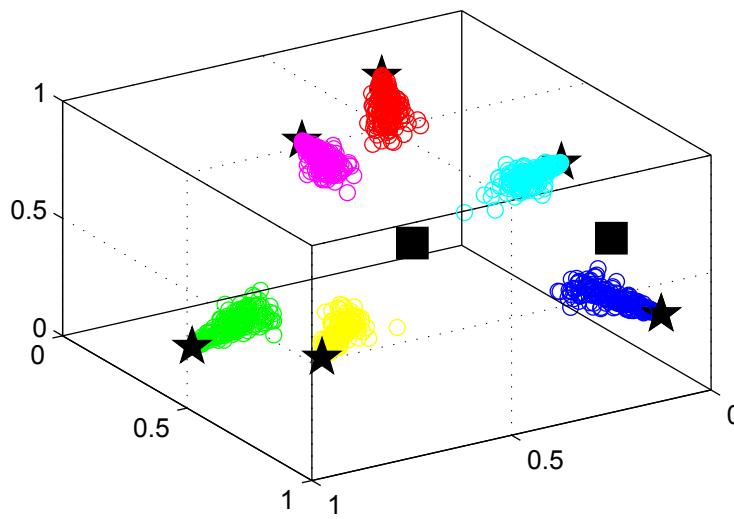
Rows of V_2 represent common patterns in X_2 (cluster centroids)



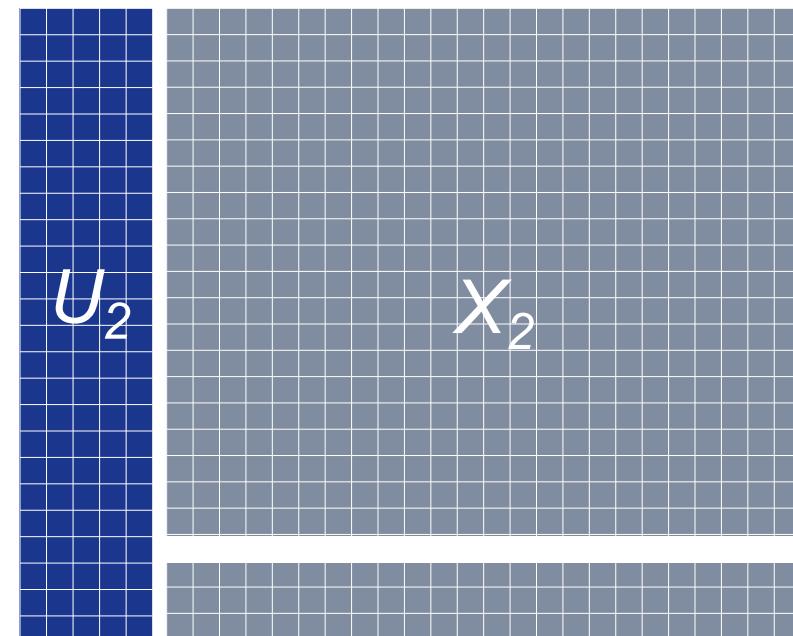
Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \geq 0$

Outliers in Joint Factorization

An anomaly is a row of X_i that is *not* similar to any row in V_i



Rows of V_2 represent common patterns in X_2 (cluster centroids)

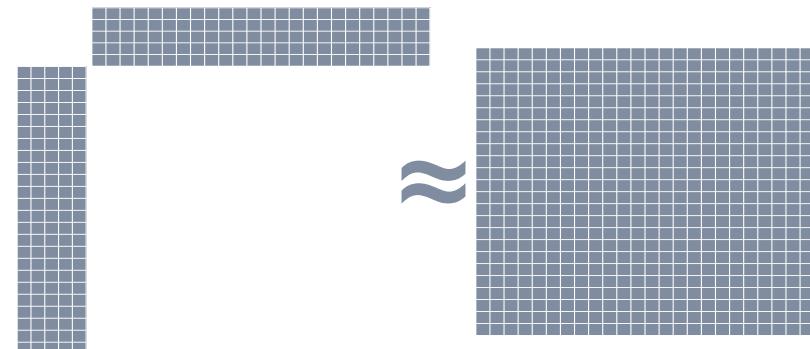


Practitioner's Guide

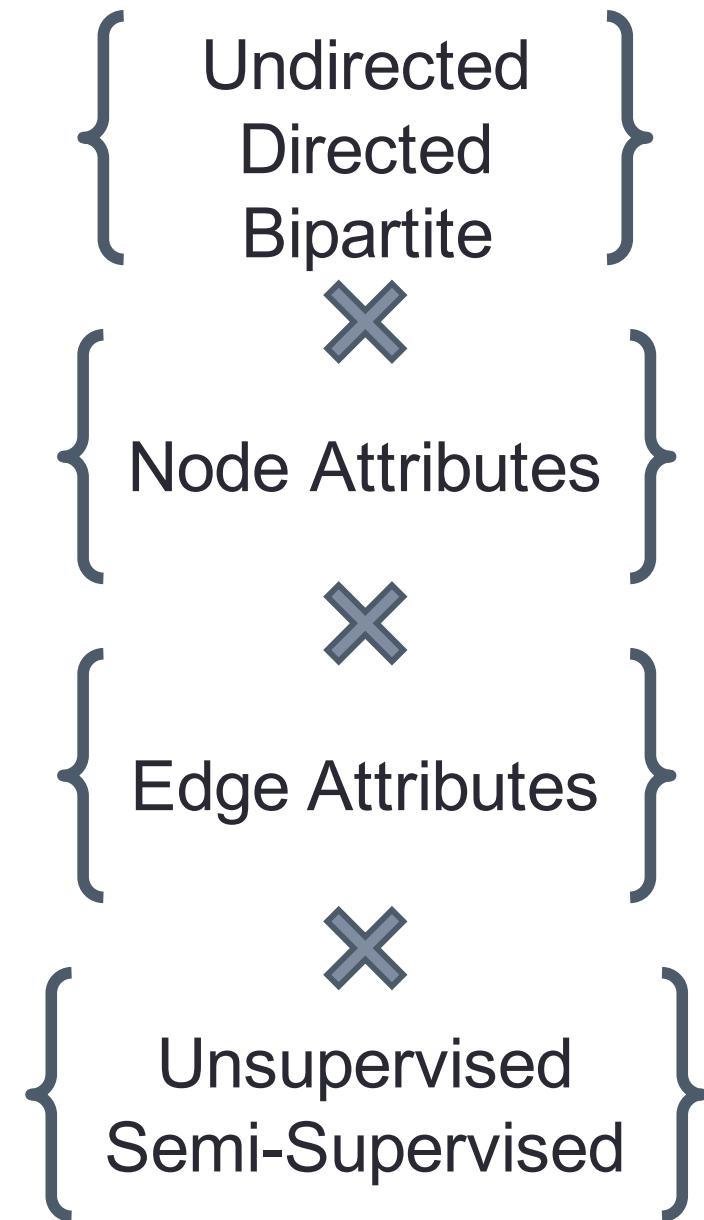
Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
EigenSpokes	Directed+			
Get-the-Scoop	Directed+			
fBox	Directed+			
CoBaFi	Bipartite+		✓	
CDOutliers	Undirected	✓		

Recap

- SVD captures communities of interest
- Bayesian methods can:
 - Handle missing values
 - Give factorization models (-> patterns, & anomalies)
- Group-outliers: spotted by CoBaFi, Get-the-Scoop, etc.

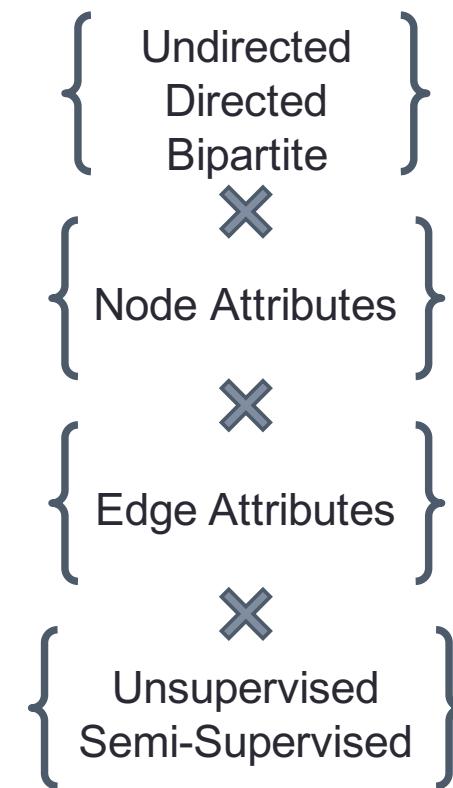


CONCLUSION



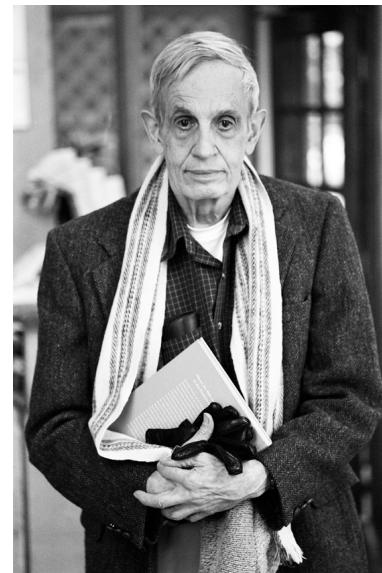
Open Problems / Opportunities

P1. Complex data: How should we integrate data from multiple data sources?



Open Problems / Opportunities

P2. Adversarial analysis: Can we offer provable guarantees on detecting fraud and spam?



Open Problems / Opportunities

P3. Early detection: Can we detect fraudsters before they cause significant damage?

Summary

Local Subgraph Analysis: Patterns and Features e.g. using ego-nets

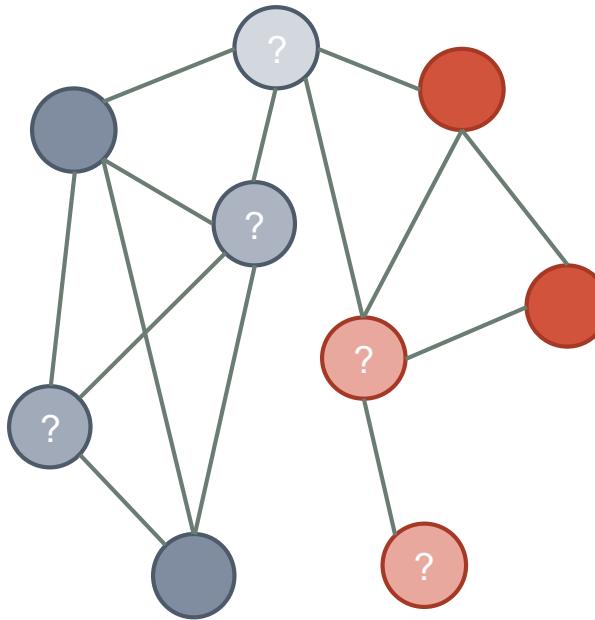
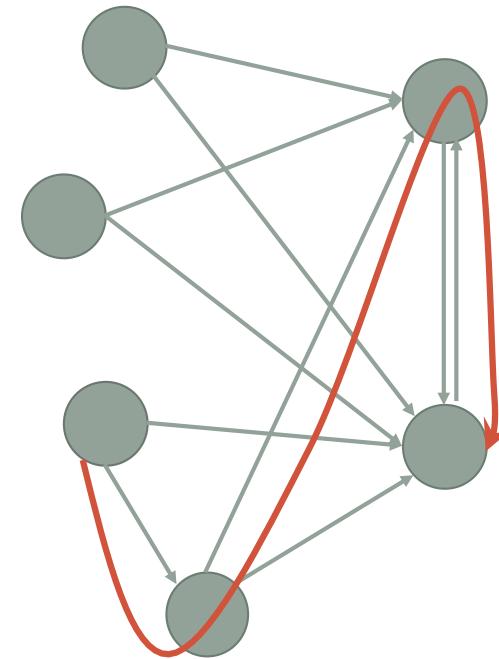


Summary

Propagation Methods

“Guilt-by-association”

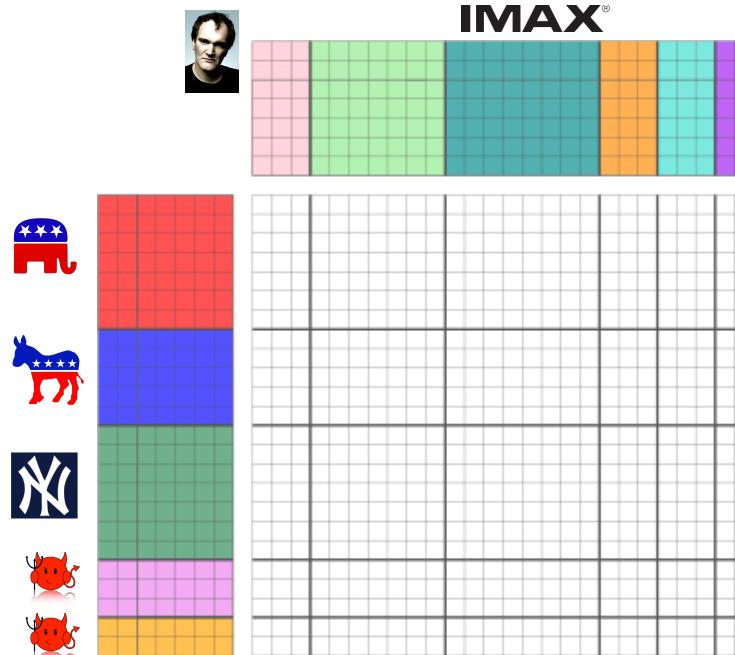
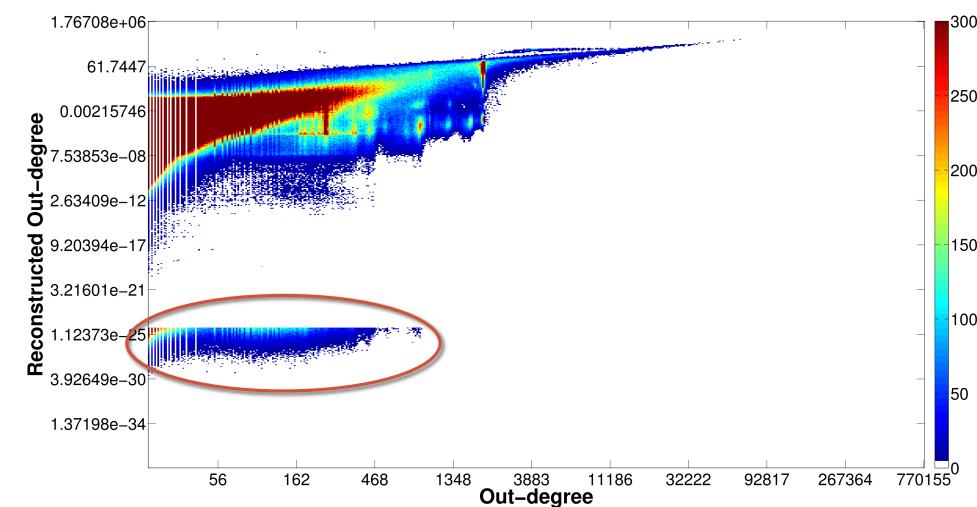
“Importance-by-association” = PageRank



Summary

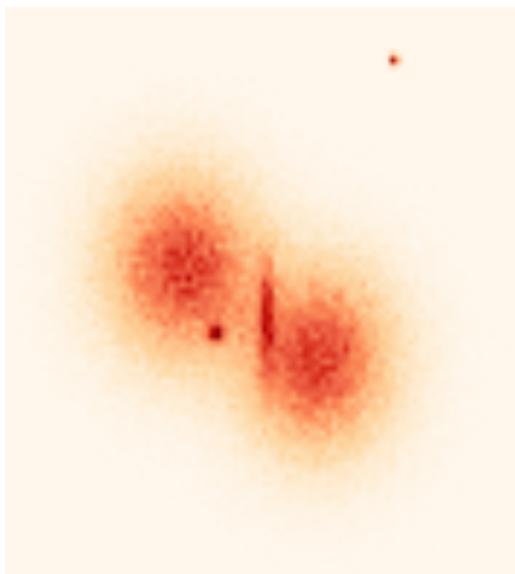
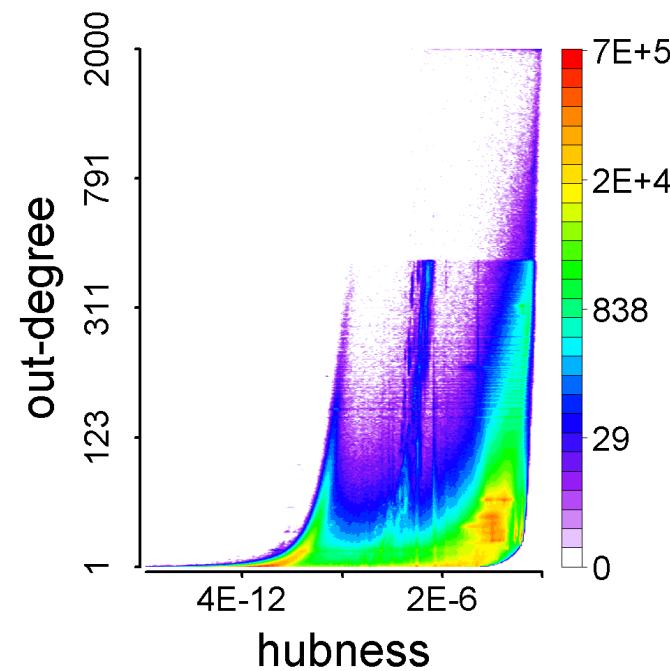
Latent Factor Models

Find multiple communities, patterns and anomalies.



Take Away

User Modeling and Fraud Detection
are two sides of the same coin.



ODDx3 workshop TODAY 9:30-5:45

Afternoon Schedule:

- **Keynote** by [Vipin Kumar](#)
- **Panel 'What is an Anomaly?'** by [Tiberio Caetano](#), [Vipin Kumar](#), [Tina Eliassi-Rad](#), [Ted Senator](#), [Jimeng Sun](#)
- **Research talks**

<http://outlier-analytics.org/odd15kdd/>

ACM SIGKDD 2015 Workshop

ODDx3: Outlier Definition, Detection, and Description

Thanks again to

NSF Grant No. IIS-1408924, IIS-1408287,
CAREER 1452425, DGE-1252522, ...

Questions?

Carnegie
Mellon
University

Stony Brook
University

References and resources available at
cs.cmu.edu/~abeutel/kdd2015_userbehavior

