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Given  a  graph,  how  can  we  
find  the  “important”  nodes?
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Given  the  web,  how  can  we  
find  authoritative webpages?
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Authoritative  nodes  and  hubs:  HITS
4

Authoritative  Sources  in  a  Hyperlinked  Environment
Jon  M.  Kleinberg
JACM 1999

Authoritative nodes  are  pointed  to  by  hubs

Hubs point  to  authoritative nodes
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Authoritative  Sources  in  a  Hyperlinked  Environment
Jon  M.  Kleinberg
JACM 1999

Authoritative nodes  are  pointed  to  by  hubs

Hubs point  to  authoritative nodes

Seems  circular  but  still  solvable!
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6

Authoritative  Sources  in  a  Hyperlinked  Environment
Jon  M.  Kleinberg
JACM 1999

Seems  circular  but  still  solvable!

*We  also  keep  authoritativeness  
and  hubness normalized

Authoritativeness 𝑞 = / Hubness(𝑝)
(5,7)∈9

Hubness 𝑝 = / Authoritativeness(𝑞)
(5,7)∈9
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Authoritative  Sources  in  a  Hyperlinked  Environment
Jon  M.  Kleinberg
JACM 1999

Alternate  updating  both  scores,  repeatedly  

*We  also  keep  authoritativeness  
and  hubness normalized

Authoritativeness 𝑞 = / Hubness(𝑝)
(5,7)∈9

Hubness 𝑝 = / Authoritativeness(𝑞)
(5,7)∈9
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Authoritative  nodes  and  hubs:  HITS
8

Authoritative  Sources  in  a  Hyperlinked  Environment
Jon  M.  Kleinberg
JACM 1999

Assume  graph  adjacent  matrix  A

Authoritativeness is  the  first  left singular  vector  of  A
Hubness is  first  right singular  vector A

Authoritativeness 𝑞 = / Hubness(𝑝)
(5,7)∈9

Hubness 𝑝 = / Authoritativeness(𝑞)
(5,7)∈9
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Authoritative  Sources  in  a  Hyperlinked  Environment
Jon  M.  Kleinberg
JACM 1999

Authoritativeness is  the  first  left singular  vector  of  A
Hubness is  first  right singular  vector A

≈
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Authoritative  Sources  in  a  Hyperlinked  Environment
Jon  M.  Kleinberg
JACM 1999

Restrict  graph  by  query  “censorship”

Authorities:
eff.org Electronic  Frontier  Foundation
eff.org/blueribbon.html EFF  Blue  Ribbon

Campaign
cdt.org Center  for  Democracy  and  Tech
vtw.org Voters  Telecommunication  Watch
aclu.org American  Civil  Liberties  Union
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(Simplified)  PageRank
12

Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

Analyze  random  walk  in  graph
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

Analyze  random  walk  in  graph

From  a  node,  take  each  outgoing  edge  with  
equal  probability.

1
2 1

2
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

Analyze  random  walk  in  graph

From  a  node,  take  each  outgoing  edge  with  
equal  probability.

Rank 𝑝 = 𝑐 /
Rank(𝑞)

OutDegree(𝑞)
7|(5,7)∈91

2 1
2
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

A’  is  a  column  normalized  adjacency  matrix

Rank 𝑝 = 𝑐 /
Rank(𝑞)

OutDegree(𝑞)
7|(5,7)∈9

1
2 1

2

𝐴′5,7 F
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

A’  is  a  column  normalized  adjacency  matrix

Rank  is  the  first  eigenvector  of  cA’

Rank 𝑝 = 𝑐 /
Rank(𝑞)

OutDegree(𝑞)
7|(5,7)∈9

1
2 1

2

𝐴′5,7 F
1

OutDegree 𝑞 	
  	
  if	
  (𝑝,𝑞) ∈ 𝐸

0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
   𝑝, 𝑞 ∉ 𝐸

Rank = 𝑐𝐴LRank
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

In  “random  walk,”  jump  to  new  node  
randomly  with  probability  (1-­c)

Rank = 𝑐𝐴LRank+
1− 𝑐
𝑛 𝟏

=  c A’ +
1 − 𝑐
𝑛

1
.
.
1
.
.
.
1
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

In  “random  walk,”  jump  to  new  node  
randomly  with  probability  (1-­c)

Rank  is  the  first  eigenvector  of  

𝑐𝐴L +
1− 𝑐
𝑛 𝟏 Q 𝟏R

Rank = 𝑐𝐴LRank+
1− 𝑐
𝑛 𝟏
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998

Random  Walk  with  Restarts

Rank  is  the  first  eigenvector  of  

𝑐𝐴L +
1− 𝑐
𝑛 𝟏 Q 𝟏R

Rank = 𝑐𝐴LRank+
1− 𝑐
𝑛 𝟏
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Anatomy  of  a  Large-­Scale  Hypertextual Web  Search  Engine
Lawrence  Page,  Sergey  Brin
WWW 1998
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Method Graph  
Type

Node  
Attributes

Edge  
Attributes

Seed  
Labels

HITS Directed

PageRank Directed Optional
Label  Prop. Undirected ✔ ️

pMRF BP Undirected Preferred

EdgeExplain Undirected ✔️ ✔️
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Given  a  graph  and  
labels  for  some  nodes,  
can  we  learn  the  labels  
for  the  other  nodes?
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Given  a  graph  and  
labels  for  some  nodes,  
can  we  learn  the  labels  
for  the  other  nodes?

Huge research  area  with  
many  different  formulations

(we  will  present  only  a  few)
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Given  a  graph  and  
labels  for  some  nodes,  
can  we  learn  the  labels  
for  the  other  nodes?

Generally,  learn  labels  X so  
neighbors  have  the  same  label

(homophily)



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Semi-­supervised  Classification

28

1

1

?

?

0
?

0

?

?

Semi-­Supervised  Learning  Using  Gaussian  Fields  and  Harmonic  Functions
Xiaojin Zhu,  Zoubin Ghahramani,  John  Lafferty  
ICML 2003

min
T
/𝑤V,W 𝑓 𝑖 − 𝑓(𝑗) [

V,W

Edge  weight  wi,j

𝑓 𝑖 =
1

∑ 𝑤V,WW
/𝑤V,W𝑓(𝑗)
W

Can  set  label   threshold  for  f(i)

Under  this  structure,  
closed  form  solution  given  in  paper
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New  Regularized  Algorithms  for  Transductive Learning
Partha Pratim Talukdar and  Koby Crammer
ECML/PKDD 2009

Can  view  as  a  random  walk:
• Go  to  neighbor  with  probability  
proportional   to  wi,j

• Return  node-­prior  with  probability  pv
• Return  no  guess  with  probability  qv

𝑓] 𝑖 = 𝑝V𝑓 𝑖 + 𝑞V
1
2 +

1
∑ 𝑤V,WW

/𝑤V,W𝑓(𝑗)
W
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New  Regularized  Algorithms  for  Transductive Learning
Partha Pratim Talukdar and  Koby Crammer
ECML/PKDD 2009

𝑦_` = [𝑝 𝐴 ,𝑝 𝐵 ,𝑝 𝐶 , 𝑝 DonLt	
  Know ]

min
g_
/𝑝`	
  (𝑦`,h − 𝑦_`,h)[+
`,h

/𝑤i,` 𝑦_i − 𝑦_` [

i,`

+/𝑞` 𝑦_̀ − 𝑟 [

`

General  prior  𝑟 = [0,0,0,1]
Observe  prior  labels	
  	
  𝑦 for  some  v



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Semi-­supervised  Classification
31

B

?
?

A

A
B

?

C

?

New  Regularized  Algorithms  for  Transductive Learning
Partha Pratim Talukdar and  Koby Crammer
ECML/PKDD 2009

𝑦_` = [𝑝 𝐴 , 𝑝 𝐵 ,𝑝 𝐶 , 𝑝 DonLt	
  Know ]

min
g_
/𝑝`	
  (𝑦`,h − 𝑦_`,h)[+
`,h

/𝑤i,` 𝑦_i − 𝑦_` [

i,`

+/𝑞` 𝑦_̀ − 𝑟 [

`

Observe  prior  labels	
  	
  𝑦 for  some  v
General  prior  𝑟 = [0,0,0,1]

Predicted  labels  
should  match  
prior  labels

Neighbors  
should  have  
similar  labels

Regularization
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New  Regularized  Algorithms  for  Transductive Learning
Partha Pratim Talukdar and  Koby Crammer
ECML/PKDD 2009

min
g_
/𝑝`	
  (𝑦`,h − 𝑦_`,h)[+
`,h

/𝑤i,` 𝑦_i − 𝑦_` [

i,`

+/𝑞` 𝑦_̀ − 𝑟 [

`

Predicted  labels  
should  match  
prior  labels

Neighbors  
should  have  
similar  labels

Regularization

Can  learn  𝑦_ through  
message  passing  of  gradients
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Semi-­supervised  Classifications:  pMRF
Probabilistic   interpretation  with  

pairwise  Markov  random  fields  (pMRF)

𝑝 𝑦V 	
  ∀𝑖 ∈ 𝒰 =
1
𝑍n𝜙V

V

(𝑦V) n 𝜓V,W(𝑦V, 𝑦W)
(V,W)∈9

Observe  labels   for  nodes  ℒ and  
infer  labels   for  nodes  in  𝒰
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Semi-­supervised  Classifications:  pMRF
Probabilistic   interpretation  with  

pairwise  Markov  random  fields  (pMRF)

𝑝 𝑦V 	
  ∀𝑖 ∈ 𝒰 =
1
𝑍n𝜙V

V

(𝑦V) n 𝜓V,W(𝑦V, 𝑦W)
(V,W)∈9

Observe  labels   for  nodes  ℒ and  
infer  labels   for  nodes  in  𝒰

Prior  belief  
for  node  i

Compatibility  
potentials  
between  
neighbors
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Semi-­supervised  Classifications:  pMRF
Probabilistic   interpretation  with  

pairwise  Markov  random  fields  (pMRF)

𝑝 𝑦V 	
  ∀𝑖 ∈ 𝒰 =
1
𝑍n𝜙V

V

(𝑦V) n 𝜓V,W(𝑦V, 𝑦W)
(V,W)∈9

Observe  labels   for  nodes  ℒ and  
infer  labels   for  nodes  in  𝒰

Compatibility  
potentials  
between  
neighbors

A B
A 0.8 0.2
B 0.2 0.8

𝑦V

𝑦W
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Semi-­supervised  Classifications:  pMRF
Probabilistic   interpretation  with  

pairwise  Markov  random  fields  (pMRF)

𝑝 𝑦V 	
  ∀𝑖 ∈ 𝒰 =
1
𝑍n𝜙V

V

(𝑦V) n 𝜓V,W(𝑦V, 𝑦W)
(V,W)∈9

Observe  labels   for  nodes  ℒ and  
infer  labels   for  nodes  in  𝒰

Use  Loopy  Belief  Propagation   [Pearl,  1982]  
to  estimate  most  likely  state.
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Semi-­supervised  Classifications:  pMRF

𝑝 𝑦V 	
  ∀𝑖 ∈ 𝒰 =
1
𝑍n𝜙V

V

(𝑦V) n 𝜓V,W(𝑦V, 𝑦W)
(V,W)∈9

Use  Loopy  Belief  Propagation   [Pearl,  1982]  
to  estimate  most  likely  state.

Iteratively  send  messages  
between  nodes  to  learn  state.
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Semi-­supervised  Classifications:  pMRF

𝑝 𝑦V 	
  ∀𝑖 ∈ 𝒰 =
1
𝑍n𝜙V

V

(𝑦V) n 𝜓V,W(𝑦V, 𝑦W)
(V,W)∈9

Use  Loopy  Belief  Propagation   [Pearl,  1982]  
to  estimate  most  likely  state.

Iteratively  send  messages  
between  nodes  to  learn  state.

Node  𝑦V estimated  by

𝑏V 𝑦V ← 𝛼𝜙V 𝑦V n 𝑚W→V(𝑦V)
(V,W)∈9

Message  from  𝑖 to  𝑗 given  by

𝑚V→W 𝑦W ←/𝜙V(𝑦V)𝜓V,W(𝑦V, 𝑦W) n 𝑚w→V(𝑦V)
(V,w)∈9|wxWgy

DETAILS!
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Unifying  Guilt-­by-­Association  Approaches:  Theorems  and  Fast  Algorithms
Danai Koutra,  Tai-­You  Ke,  U  Kang,  Polo  Chau,  
Hsing-­Kuo Kenneth  Pao,  Christos  Faloutsos
ECML/PKDD  2011

Method Homophily Heterophily Convergence Scalability
RWR ✔️ ✖️ ✔️ ✔️
SSL ✔️ ? ✔️ ✔️
BP ✔️ ✔️ ? ✔️
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Unifying  Guilt-­by-­Association  Approaches:  Theorems  and  Fast  Algorithms
Danai Koutra,  Tai-­You  Ke,  U  Kang,  Polo  Chau,  
Hsing-­Kuo Kenneth  Pao,  Christos  Faloutsos
ECML/PKDD  2011
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Table 2: Major Symbols and Definitions. (matrices in bold capital, vectors in bold
lowercase, and scalars in plain font)
Symbols Definitions Explanations

n number of nodes in the graph

A n ⇥ n symmetric adjacency matrix

D n ⇥ n diagonal matrix of degrees Dii =

P
j Aij and Dij = 0 for i 6= j

I n ⇥ n identity matrix

“about-half” final beliefs b = n ⇥ 1 vector of the BP final beliefs

b � 0.5 b(i){> 0.5, < 0.5} means i 2 {“+”, “-”} classbh

b(i) = 0 means i is unclassified (neutral)

�h “about-half” prior beliefs, � � 0.5 � = n ⇥ 1 vector of the BP prior beliefs

“about-half” homophily factor h =  (“+”,“+”): BP propagation matrix entry

h � 0.5 h ! 0 means strong heterophilyhh

h ! 1 means strong homophily

Table 3: Main results, to illustrate correspondence: n ⇥ n matrices in bold capital,
n⇥ 1 vectors in bold lowercase, and scalars in plain font.

Method matrix unknown known
RWR [I � cAD�1]⇥ x = (1� c) y
SSL [I+ ↵(D�A)]⇥ x = y

Gaussian BP = SSL [I+ ↵(D�A)]⇥ x = y

FaBP [I+ aD� c

0A]⇥ b
h

= �

h

Theorem 1 (FaBP). The solution to Belief Propagation can be approximated
by the linear system

[I+ aD� c

0A]b
h

= �

h

(1)

where a = 4h2

h

/(1 � 4h2

h

), and c

0 = 2h
h

/(1 � 4h2

h

). The definitions of h
h

, �
h

and b
h

are given in Table 2. Specifically, �
h

corresponds to the prior beliefs of
the nodes, and node i, about which we have no information, has �

h

(i) = 0; b
h

corresponds to the vector of our final beliefs for each node.

Proof. The goal behind the “about-half” is the linearization of BP using Maclau-
rin expansions. The preliminary analysis of FaBP, and the necessary lemmas
for the linearization of the original BP equations are given in Appendix A. For
the detailed proof of this theorem see Appendix B.

Lemma 1 (Personalized RWR). The linear system for RWR given an observa-
tion y, is described by the following equation:

[I� cAD�1]x = (1� c)y (2)

where 1� c is the restart probability, c 2 [0, 1]. Similarly to the BP case above, y
corresponds to the prior beliefs for each node, with the small di↵erence that y

i

= 0
means that we know nothing about node i, while a positive score y

i

> 0 means
that the node belongs to the positive class (with the corresponding strength).

Proof. See [11], [24].

Lemma 2 (SSL and Gaussian BP). Suppose we are given l labeled nodes (x
i

, y

i

),
i = 1, . . . , l, y

i

2 {0, 1}, and u unlabeled nodes (x
l+1

, ..., x

l+u

). The solution to
a Gaussian BP and SSL problem is given by the linear system:

[↵(D�A) + I]x = y (3)



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015 41

1.  Subgraph  Analysis

2.  Propagation  Methods

3.  Latent  Factor  Models

a)  Background

b)  Normal  Behavior

c)  Abnormal  Behavior



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015 42

Joint  Inference  of  Multiple  Label  Types  in  Large  Networks
Deepayan Chakrabarti,  Stanislav  Funiak,  
Jonathan  Chang,  Sofus A.  Macskassy
ICML 2014

Duke
New  York

CMUStanford

Stanford
Boston

Tokyo

New  York

If  we  have  incomplete  
labels  of  many  types,
can  we  infer  the  
rest  of  the  labels?

Idea:  
Adjacent  nodes  only  need  
to  be  agree  on  one label

Explain  friendships  to  infer  user  properties



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015 43

Joint  Inference  of  Multiple  Label  Types  in  Large  Networks
Deepayan Chakrabarti,  Stanislav  Funiak,  
Jonathan  Chang,  Sofus A.  Macskassy
ICML 2014

Duke
New  York

CMU,  ?Stanford,  ?

Stanford
Boston

Tokyo
?

New  York
?

If  we  have  incomplete  
labels  of  many  types,
can  we  infer  the  
rest  of  the  labels?

Idea:  
Adjacent  nodes  only  need  
to  be  agree  on  one label

Explain  friendships  to  infer  user  properties
?,?

?,?

?,?



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Explain  friendships  to  infer  user  properties
44

Joint  Inference  of  Multiple  Label  Types  in  Large  Networks
Deepayan Chakrabarti,  Stanislav  Funiak,  
Jonathan  Chang,  Sofus A.  Macskassy
ICML 2014

Duke
New  York

CMUStanford

Stanford
Boston

Tokyo

New  York

If  we  have  incomplete  
labels  of  many  types,
can  we  infer  the  
rest  of  the  labels?

Idea:  
Adjacent  nodes  only  need  
to  be  agree  on  one label

New  YorkStanford



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Explain  friendships  to  infer  user  properties
45

Joint  Inference  of  Multiple  Label  Types  in  Large  Networks
Deepayan Chakrabarti,  Stanislav  Funiak,  
Jonathan  Chang,  Sofus A.  Macskassy
ICML 2014

Duke
New  York

CMUStanford

Stanford
Boston

Tokyo

New  York

If  we  have  incomplete  
labels  of  many  types,
can  we  infer  the  
rest  of  the  labels?

Idea:  
Adjacent  nodes  only  need  
to  be  agree  on  one label

Stanford,
New  York



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Explain  friendships  to  infer  user  properties
46

Joint  Inference  of  Multiple  Label  Types  in  Large  Networks
Deepayan Chakrabarti,  Stanislav  Funiak,  
Jonathan  Chang,  Sofus A.  Macskassy
ICML 2014

Duke
New  York

CMUStanford

Stanford
Boston

Tokyo

New  York

Stanford,
New  York

𝑝 𝑦_ =
1
𝑍 n 𝜎 𝑐 + 𝛼 / 𝑦_i,{ Q 𝑦_`,{

R|}~	
  {(i,`)∈9

For  each  user  u and  property  
type  t,  we  can  observe  
1  label   from  set  L(t),  
as  given  by  vector  𝑦i,{

/ 𝑦_i,{,h = 1
h∈�({)

Probability  vectors:



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Explain  friendships  to  infer  user  properties
47

Joint  Inference  of  Multiple  Label  Types  in  Large  Networks
Deepayan Chakrabarti,  Stanislav  Funiak,  
Jonathan  Chang,  Sofus A.  Macskassy
ICML 2014

Duke
New  York

CMUStanford

Stanford
Boston

Tokyo

New  York

Stanford,
New  York

𝑝 𝑦_ =
1
𝑍 n 𝜎 𝑐 + 𝛼 / 𝑦_i,{ Q 𝑦_`,{

R|}~	
  {(i,`)∈9

/ 𝑦_i,{,h = 1
h∈�({)

Probability  vectors:

Sigmoid  function  so  no  
additional   benefit  beyond  
being  similar  on  one type

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

0

1



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Explain  friendships  to  infer  user  properties
48

Joint  Inference  of  Multiple  Label  Types  in  Large  Networks
Deepayan Chakrabarti,  Stanislav  Funiak,  
Jonathan  Chang,  Sofus A.  Macskassy
ICML 2014

Joint Inference of Multiple Label Types in Large Networks

Hometown Current city High school College Employer

Li
ft 

of
 E

dg
e−

Ex
pl

ai
n 

ov
er

 K
=2

0

0%

20%

40%

60%

80%

100%
K
50
100
200
400

Hometown Current city High school College Employer

Li
ft 

of
 E

dg
e−

Ex
pl

ai
n 

ov
er

 K
=2

0

0%

20%

40%

60%

80%

100%
K
50
100
200
400

(a) Recall at 1 (b) Recall at 3

Figure 2. Recall of EDGEEXPLAIN for graphs built with different number of friends K: The plot shows lift in recall with respect to a
fixed baseline of EDGEEXPLAIN with K = 20. Increasing K increases recall up to a point, but then the extra friends introduce noise
which hurts accuracy.
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(a) Recall at 1 (b) Recall at 3

Figure 3. Lift of EDGEEXPLAIN over label propagation: Increasing the number of friends K benefits EDGEEXPLAIN much more than
label propagation for high school, college, and especially employer.

Table 1. Lift in recall from using group memberships: Inclusion
of group membership barely improves recall@3, even though it
is an orthogonal feature with wide coverage. Thus, information
about label types is already encoded in the network structure, and
careful modeling via EDGEEXPLAIN is sufficient to extract it.

LABEL TYPE RECALL AT 1 RECALL AT 3

HOMETOWN �0.1% 0.7%
CURRENT CITY 0.4% 1.0%
HIGH SCHOOL 0.1% 0.8%
COLLEGE �0.6% 1.0%
EMPLOYER �2.8% 1.2%

friendships based on the actual employer. By attempting
to explain each friendship, EDGEEXPLAIN is able to infer
the employer even under such difficult circumstances, and
the ability to perform well even for under-represented label
types makes EDGEEXPLAIN particularly attractive.
INCLUSION OF EXTRA FEATURES. In Section 5, we dis-
cussed how extra features could be used within the EDGE-
EXPLAIN framework. In particular, we showed how the
fact that some users are members of groups can be used to
infer (say) their college, if the group turns out to be college-
specific group. Group memberships are extensive and pro-
vide information that is orthogonal to friendships; thus, a

priori, one would expect the addition of group membership
features to have significant impact on label inference.

Table 1 shows the lift in recall for EDGEEXPLAIN when
group memberships are used in addition to K = 100

friends. While the addition of group memberships in-
creases the size of the graph by ⇡ 25%, the observed ben-
efits for recall are minor: a maximum lift of only 1.2%
for employer inference, and indeed reduced recall at 1 for
several label types. Note that the lift in recall would have
appeared very significant had we compared it to label prop-
agation with K = 100; however, this gain largely disap-
pears when the friendships are considered in the framework
of EDGEEXPLAIN. Thus, it is not merely the scalability of
EDGEEXPLAIN, but also the careful modeling of properties
(P1)-(P3) that makes group membership redundant.

Given the a priori expectations of the impact of group
memberships, this surprising result suggests that informa-
tion regarding our label types are already encoded in the
structure of the social network and hence the orthogonal
information from the group memberships actually turn out
to be redundant.

THE LIMITS OF RESOLUTION. Our model theoretically
should be able to handle any number of label types, but

Recall   (at  1)  relative  to  Label  Propagation
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Figure 4. Probability of correctly inferring (in the top-3) the value
of a given label type t for a user, given the fraction of friends with
known label for t who actually share the user’s label for t: All
label types are broadly similar, with a fraction of 0.1 usually being
sufficient for inference. For fraction > 0.2, the plot flattens out.

empirically this may not hold true for our network. How
many friends sharing a certain label type (say, the same
college) does a user need to have in order to correctly infer
the value of that label type? To answer this, we select, for
each user, the set of friends whose label for the given label
type t is known, and we compute the fraction that actually
shared the user’s label for t. Figure 4 shows the probabil-
ity that EDGEEXPLAIN correctly infers the user’s label as
a function of this fraction (i.e., the correct label is among
the top 3 predictions). All label types are similar, though
high school is somewhat easier and employer harder; hav-
ing 10 � 15% of friends sharing a user’s label is sufficient
to infer the label in our graph. Note that certain label types
are more likely to be publicly declared than others, and this
explains differences in recall observed earlier.
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Figure 5. Effect of ↵: Lift in recall at 1 is plotted for different
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EFFECT OF ↵. Figure 5 shows that the lift in recall at 1 for
various values of the parameter ↵, with respect to ↵ = 0.1.
Performance generally improves with increasing ↵. Re-
sults for recall at 3 are qualitatively similar, though the ef-
fect is more muted. We find that ↵ 2 [10, 40] offer the best
results, and EDGEEXPLAIN is robust to the specific choice
of ↵ within this range. Recall that with large ↵, a single

matching label is enough to explain an edge, while with
small ↵, multiple matching labels may be needed. Thus,
the outperformance of large ↵ provides strong empirical
validation of property (P2) (on our network).
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Figure 6. Running time increases linearly with K.

RUNNING TIME. Figure 6 shows the wall-clock time as a
function of K. The running time should depend linearly
on the graph size, which grows almost linearly with K; as
expected, the plot is linear, with deviations due to garbage
collection stoppages in Java.

7. Conclusions

We proposed the problem of jointly inferring multiple cor-
related label types in a large network and described the
problems with existing single-label models. We noted that
one particular failure mode of existing methods in our prob-
lem setting is that edges are often created for a reason asso-
ciated with a particular label type (e.g., in a social network,
two users may link because they went to the same high
school, but they did not go to the same college). We identi-
fied three network properties that model this phenomenon:
edges are created for a reason (P1), they are generally cre-
ated only for one reason (P2), and sharing the same value
for a label type is necessary but not sufficient for having an
edge between two nodes (P3).

We introduced EDGEEXPLAIN, which carefully models
these properties. It leverages a gradient-based method for
collective inference which allows for fast iterative inference
that is equivalent in running time to basic label propagation.
Our experiments with a billion-node subset of the Facebook
graph amply demonstrate the benefits of EDGEEXPLAIN,
with significant improvements across a set of different label
types. Our further analysis validates many of the properties
and intuitions we had about modeling networks, primarily
that one can achieve significant improvements if one con-
siders and models the reason an edge exists. Whether one
is interested in inferring one or multiple label types, mod-
eling these explanations will have significant impact on the
accuracy of the final predictions.

Probability  of  correct  inference  
based  on  percent  of  friends  agreeing
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Figure 9: Good sites in PageRank and TrustRank buckets.
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Figure 10: Bad sites in PageRank and TrustRank buckets.

1. TrustRank. We used the algorithm in Figure 5 (MB =
20 iterations and decay factor of αB = 0.85) and our
selected 178 good seeds.

2. PageRank. PageRank was originally considered
highly resilient to spamming because it measures
global importance (limited, local changes to the link
structure have low impact on the scores). Thus, it is
natural to ask how well PageRank can cope with spam
in today’s world. Thus, for this alternative we simply
used the PageRank of site a as the value of T(a). We
again performed M = 20 iterations, with a decay fac-
tor of α= 0.85.

3. Ignorant Trust. As another baseline, we generated the
ignorant trust scores of sites. All sites were assigned
an ignorant trust score of 1/2, except for the 1250
seeds, which received scores of 0 or 1.

6.4.1 PageRank versus TrustRank

Let us discuss the difference between PageRank and Trust-
Rank first. Remember, the PageRank algorithm does not
incorporate any knowledge about the quality of a site, nor
does it explicitly penalize badness. In fact, we will see that
it is not very uncommon that some site created by a skilled
spammer receives high PageRank score. In contrast, our
TrustRank is meant to differentiate good and bad sites: we
expect that spam sites were not assigned high TrustRank
scores.
Figures 9 and 10 provide a side-by-side comparison of

PageRank and TrustRank with respect to the ratio of good

and bad sites in each bucket. PageRank buckets were in-
troduced in Section 6.3; we defined TrustRank buckets as
containing the same number of sites as PageRank buckets.
Note that we merged buckets 17 through 20 both for Page-
Rank and TrustRank. (These last 4 buckets contained the
more than 13 million sites that were unreferenced. All such
sites received the same minimal static PageRank score and
a zero TrustRank score, making it impossible to set up an
ordering among them.)
The horizontal axes of Figures 9 and 10 mark the Page-

Rank and TrustRank bucket numbers, respectively. The
vertical axis of the first figure corresponds to the percentage
of good within a specific bucket, i.e., the number of good
sample sites divided by the total number of sample sites in
that bucket. Note that reputable, advertisement, and web
organization sites all qualify as good ones; their relative
contributions are shown by white, middle gray, and dark
gray segments, respectively. The vertical axis of the sec-
ond figure corresponds to the percentage of bad within a
specific bucket. For instance, we can derive from Figure 10
that 31% of the usable sample sites in TrustRank bucket 11
are bad ones.
From these figures we see that TrustRank is a reasonable

spam detection tool. In particular, note that there is virtu-
ally no spam in the top 5 TrustRank buckets, while there is
a marked increase in spam concentration in the lower buck-
ets. At the same time, it is surprising that almost 20% of
the second PageRank bucket is bad. For PageRank, the pro-
portion of bad sites peaks in buckets 9 and 10 (50% spam),
indicating that probably this is as high as average spammers

585

Bad  pages  by  “Bucket”



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Distrust  Rank
71

Propagating  Trust  and  Distrust  to  Demote  Web  Spam
Baoning Wu,  Vinay  Goel,  Brian  D.  Davison
WWW 2006

Given  a  small  seed  set  
of  spam  pages,  

can  we  find  other  spammy pages?
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Method Graph  
Type

Node  
Attributes

Edge  
Attributes

Seed  
Labels

CatchSync Directed

TrustRank Directed ✔️

Distrust Rank Directed ✔️

SibylRank Directed ✔️

NetProbe Directed

FraudEagle Bipartite ✔️

SpEagle Tripartite ✔️
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NetProbe:  A  Fast  and  Scalable  System  for  Fraud  Detection  in  Online  Auction  Networks
Shashank Pandit,  Duen Horng Chau,  
Samuel  Wang,  Christos  Faloutsos
WWW  2007

• Auction  sites:  Attractive  target  for  fraud
• 63%  of  complaints   to  Federal  Internet  Crime  Complaint  
Center  in  U.S.  in  2006

• Average  loss  per  incident:  =  $385
• Often  non-­delivery   fraud:

$$$ 

Seller Buyer 
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Individual   features,  e.g.  geography,  are  too  easy  to  fake!

Given  a  graph  of  user  interactions,  
what  does  fraud  look  like  and  how  can  we  catch  it?
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Each  user  gets  a  reputation  score  based  on  peer  feedback:

Score  =  70 +  1 Score  =  -­10  -­ 1
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Each  user  gets  a  reputation  score  based  on  peer  feedback:

Score  =  70 +  1 Score  =  -­10  -­ 1

Fraudsters  need  to  keep  a  high  reputation  score

How  do  they  game the  system?
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Do  they  all  just  
give  each  other  
positive  reviews?
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No,  because  if  one  
is  caught  they  are  
all  revealed.
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Fraudsters  form  
near-­bipartite  core  
of  2  roles:
1. Accomplices:
Trade  with  honest,  
looks  normal

2. Fraudsters:
Trade  with  
accomplices
Fraud  with  honest

Fraudsters
Accomplices
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Use  Belief  Propagation!

Fraud Accomplice Honest
Fraud 𝜖 𝟏 − 𝟐𝝐 𝜖
Accomplice 𝟎. 𝟓 2𝜖 𝟎. 𝟓 − 𝟐𝝐
Honest 𝜖 (𝟏 − 𝝐)/𝟐 (𝟏 − 𝝐)/𝟐

Node  State

Neighbor
State
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Initialize  prior  beliefs  of  
fraudsters  to  P(f)=1

Initialize  
other  
nodes  as  
unbiased



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Fraud  in  Online  Auctions
96

NetProbe:  A  Fast  and  Scalable  System  for  Fraud  Detection  in  Online  Auction  Networks
Shashank Pandit,  Duen Horng Chau,  
Samuel  Wang,  Christos  Faloutsos
WWW  2007

Initialize  prior  beliefs  of  
fraudsters  to  P(f)=1

Initialize  
other  
nodes  as  
unbiased

At  each  iteration,  for  each  
node,  compute  messages  to  
its  neighbors



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Fraud  in  Online  Auctions
97

NetProbe:  A  Fast  and  Scalable  System  for  Fraud  Detection  in  Online  Auction  Networks
Shashank Pandit,  Duen Horng Chau,  
Samuel  Wang,  Christos  Faloutsos
WWW  2007

Initialize  prior  beliefs  of  
fraudsters  to  P(f)=1

Initialize  
other  
nodes  as  
unbiased

At  each  iteration,  for  each  
node,  compute  messages  to  
its  neighbors

Continue  till  
“convergence”



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Fraud  in  Online  Auctions
98

NetProbe:  A  Fast  and  Scalable  System  for  Fraud  Detection  in  Online  Auction  Networks
Shashank Pandit,  Duen Horng Chau,  
Samuel  Wang,  Christos  Faloutsos
WWW  2007

Initialize  prior  beliefs  of  
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Figure 5: Cores detected by NetProbe in the eBay dataset. Nodes shaded in red denote confirmed fraudsters.

Fraud Accomplice Honest

0.0256 0.0084 0.016

Table 3: Fraction of negative feedback received by
different categories of users

users are likely fraudsters, it is not easy to design a quan-
titative metric to measure effectiveness. A user who looks
honest presently might in reality be a fraudster, and it is im-
possible to judge the ground truth correctly. Therefore, we
relied on a subjective evaluation of NetProbe’s effectiveness.

Through manual investigation (Web site browsing, news-
paper reports, etc.) we located 10 users who were guaran-
teed fraudsters. NetProbe correctly labeled each of these
users as fraudsters. Moreover, it also labeled the neighbors
of these fraudsters appropriately so as to reveal hidden bi-
partite cores. Some of the detected cores are shown in Fig-
ure 5. Each core contains a confirmed fraudster represented
by a node shaded with red color. This evidence heavily sup-
ports our hypothesis that fraudsters hide behind bipartite
cores to carry out their fraudulent activities.

Since we could not manually verify the correctness of every
fraudster detected by NetProbe, we performed the following
heuristic evaluation. For each user, we calculated the frac-
tion of his last 20 feedbacks on eBay which were negative. A
fraudster who has already committed fraudulent activities
should have a large number of recent negative feedbacks.
The average bad feedback ratios for nodes labeled by Net-
Probe are shown in Table 3. Nodes labeled by NetProbe
as fraud have a higher bad feedback ratio on average, in-
dicating that NetProbe is reasonably accurate at detecting
prevalent fraudsters. Note that this evaluation metric does
not capture NetProbe’s ability to detect users likely to com-
mit frauds in the future via unearthing their bipartite core
structured networks with other fraudsters.

Overall, NetProbe promises to be a very effective mecha-
nism for unearthing hidden bipartite networks of fraudsters.
A more exhaustive and objective evaluation of its effective-
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Figure 7: Performance of NetProbe over synthetic
graphs with incremental edge additions

4.3 Performance of Incremental NetProbe
To evaluate the performance of Incremental NetProbe, we

designed the following experiment. We generated synthetic
graphs of varying sizes, and added edges incrementally to
them. The value of h (see Sec 3.5) was chosen to be 2. At
each step, we also carried out belief propagation over the
entire graph and compared the ratio of the execution times
and the accuracies with the incremental version.

The results are shown in Figure 7. Incremental Net-
Probe can be seen to be not only extremely accurate but
also nearly twice as fast compared to stand-alone NetProbe.
Observe that for larger graphs, the ratio of execution times
favors Incremental NetProbe, since it touches an almost con-
stant number of nodes, independent of the size of the graph.
Therefore, in real-world auction sites, with graphs contain-
ing over a million nodes and edges, Incremental NetProbe
can be expected to result in huge savings of computation,
with negligible loss of accuracy.

5. THE NetProbe SYSTEM DESIGN
In this section, we describe the challenges faced while de-

signing and implementing NetProbe. We also propose a user
interface, which we believe is appropriate for visualizing the
fraudulent networks detected by NetProbe.
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Figure 8: Reviews of 4 example bot members detected in SWM data for (from top to bottom) the same 5 products (all from the
same developer) (see §). Reviews shared among these users are highlighted with a (red) box. Replication of all 5-star reviews
provides evidence for fraudulent activity. Also notice the reviews of each fraudster are written mostly on a single day.
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Figure 9: Average rating of 5 products under attack by a bot
of fraudsters (see §, Fig. 7) drops significantly to ⇡1 (lowest
possible rating) after removing their fake reviews.

Another way to compare the methods is to study the im-
pact of the fraudsters they detect on the average ratings of
products. In particular, we study the average rating of a
product when fraudsters are included versus when they are
excluded. Figure 10 gives the mean absolute change in aver-
age ratings of products after top users are removed by each
method —these are the users with fraud scores greater than
0.5 for sIA and wv-RC, and with honesty scores less than
0 for aHITS. The figure shows that the rating changes are
more significant for the high-rating products ([3-5]) for the
removed fraudsters by sIA, while changes are more signif-
icant for low-rating ([1-2]) products for fraudsters removed
by wv-RC. In fact when top fraudsters by sIA are removed,
the average rating of high-rated products drop by more than
1 point on average. The removed random users, on the other
hand, do not have as significant effects on the ratings.

Figure 10: FRAUDEAGLE top-scorers matter. Absolute
change in average ratings of all products, after removing the
reviews of top fraudsters detected by each method, along
with change when as many random users are removed (av-
eraged over 10 runs).

Computational complexity
Lemma 1 Proposed FRAUDEAGLE is scalable to large
data, with computational complexity linear in network size.

Proof 1 In step 1 of FRAUDEAGLE, sIA performs message
passing over the edges in a repeated fashion (see Outline 1
Line 12-21), with time complexity O(|E|d2t), where |E| is
the number of edges in the network, d is the maximum do-
main size of a variable (i.e. number of classes, which is often
small), and t is the number of iterations until convergence.
In our setting, domain sizes of both users and products is
d = |L

U
| = |L

P
| = 2, and t ⌧ |E| is often small (t = 37

on SWM data). Therefore, the time complexity is linear in
the number of edges, i.e. network size.
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ABSTRACT
Online reviews capture the testimonials of “real” people and
help shape the decisions of other consumers. Due to the
financial gains associated with positive reviews, however,
opinion spam has become a widespread problem, with of-
ten paid spam reviewers writing fake reviews to unjustly
promote or demote certain products or businesses. Existing
approaches to opinion spam have successfully but separately
utilized linguistic clues of deception, behavioral footprints,
or relational ties between agents in a review system.

In this work, we propose a new holistic approach called
SpEagle that utilizes clues from all metadata (text, times-
tamp, rating) as well as relational data (network), and har-
ness them collectively under a unified framework to spot
suspicious users and reviews, as well as products targeted
by spam. Moreover, our method can e�ciently and seam-
lessly integrate semi-supervision, i.e., a (small) set of labels
if available, without requiring any training or changes in its
underlying algorithm. We demonstrate the e↵ectiveness and
scalability of SpEagle on three real-world review datasets
from Yelp.com with filtered (spam) and recommended (non-
spam) reviews, where it significantly outperforms several
baselines and state-of-the-art methods. To the best of our
knowledge, this is the largest scale quantitative evaluation
performed to date for the opinion spam problem.

1. INTRODUCTION
Online product and business reviews are increasingly valu-

able sources for consumers to make decisions on what to pur-
chase, where to eat, which care provider to see, etc. They
are powerful since they reflect testimonials of “real” peo-
ple, unlike e.g., advertisements. Financial incentives associ-
ated with reviews, however, have created a market of (often
paid) users to fabricate fake reviews to either unjustly hype
(for promotion) or defame (under competition) a product or
business, the activities of whom are called opinion spam [9].

The problem is surprisingly prevalent; it is estimated that
more than 20% of Yelp’s reviews are fake [3], with steady
growth [16], while one-third of all consumer reviews on the
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Figure 1: SpEagle collectively utilizes both metadata

(review text, timestamp, rating) and the review network

(plus available labels, if any) under a unified framework

to rank all of users, reviews, and products by spamicity.

Internet are estimated to be fake [24]. While widespread,
it is a hard and mostly open problem. The key challenge
is obtaining large ground truth data to learn from, however
manual labeling of reviews is extremely di�cult by merely
reading them, where humans are only slightly better than
random [22], unlike e.g., labeling email spam. This renders
supervised methods inadmissible to a large extent.
Since the seminal work of Jindal et al. on opinion spam

[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)
These have made considerable progress in understanding

and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.
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(for promotion) or defame (under competition) a product or
business, the activities of whom are called opinion spam [9].

The problem is surprisingly prevalent; it is estimated that
more than 20% of Yelp’s reviews are fake [3], with steady
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Figure 1: SpEagle collectively utilizes both metadata

(review text, timestamp, rating) and the review network

(plus available labels, if any) under a unified framework

to rank all of users, reviews, and products by spamicity.

Internet are estimated to be fake [24]. While widespread,
it is a hard and mostly open problem. The key challenge
is obtaining large ground truth data to learn from, however
manual labeling of reviews is extremely di�cult by merely
reading them, where humans are only slightly better than
random [22], unlike e.g., labeling email spam. This renders
supervised methods inadmissible to a large extent.
Since the seminal work of Jindal et al. on opinion spam

[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)
These have made considerable progress in understanding

and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.
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financial gains associated with positive reviews, however,
opinion spam has become a widespread problem, with of-
ten paid spam reviewers writing fake reviews to unjustly
promote or demote certain products or businesses. Existing
approaches to opinion spam have successfully but separately
utilized linguistic clues of deception, behavioral footprints,
or relational ties between agents in a review system.

In this work, we propose a new holistic approach called
SpEagle that utilizes clues from all metadata (text, times-
tamp, rating) as well as relational data (network), and har-
ness them collectively under a unified framework to spot
suspicious users and reviews, as well as products targeted
by spam. Moreover, our method can e�ciently and seam-
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if available, without requiring any training or changes in its
underlying algorithm. We demonstrate the e↵ectiveness and
scalability of SpEagle on three real-world review datasets
from Yelp.com with filtered (spam) and recommended (non-
spam) reviews, where it significantly outperforms several
baselines and state-of-the-art methods. To the best of our
knowledge, this is the largest scale quantitative evaluation
performed to date for the opinion spam problem.
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[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)
These have made considerable progress in understanding

and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.
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spam) reviews, where it significantly outperforms several
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paid) users to fabricate fake reviews to either unjustly hype
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Internet are estimated to be fake [24]. While widespread,
it is a hard and mostly open problem. The key challenge
is obtaining large ground truth data to learn from, however
manual labeling of reviews is extremely di�cult by merely
reading them, where humans are only slightly better than
random [22], unlike e.g., labeling email spam. This renders
supervised methods inadmissible to a large extent.
Since the seminal work of Jindal et al. on opinion spam

[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)
These have made considerable progress in understanding

and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.
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stamp, rating) as well as relational data (review network),
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spot spam users, fake reviews, as well as targeted products.
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Method Graph  
Type

Node  
Attributes

Edge  
Attributes

Seed  
Labels

HITS Directed

PageRank Directed Optional
Label  Prop. Undirected ✔ ️

pMRF BP Undirected Preferred

EdgeExplain Undirected ✔️ ✔️
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Method Graph  
Type

Node  
Attributes

Edge  
Attributes

Seed  
Labels

HITS Directed

PageRank Directed Optional
Label  Prop. Undirected ✔ ️

pMRF BP Undirected Preferred

EdgeExplain Undirected ✔️ ✔️

All  of  the  node  attributes  are  the  
seed  labels  for  semi-­supervised  

learning   in  EdgeExplain.
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Method Graph  
Type

Node  
Attributes

Edge  
Attributes

Seed  
Labels

CatchSync Directed

TrustRank Directed ✔️

Distrust Rank Directed ✔️

SibylRank Directed ✔️

NetProbe Directed

FraudEagle Bipartite ✔️

SpEagle Tripartite ✔️
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