

1. Subgraph Analysis

2. Propagation Methods

a) Background

b) Normal Behavior

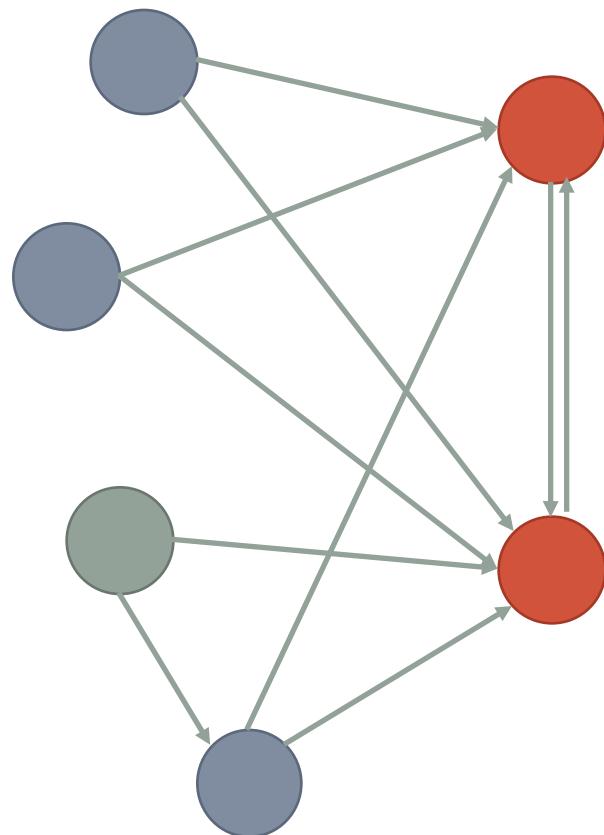
c) Abnormal Behavior

3. Latent Factor Models

Given a graph, how can we
find the “important” nodes?

Given the **web**, how can we
find **authoritative** webpages?

Authoritative nodes and hubs: HITS

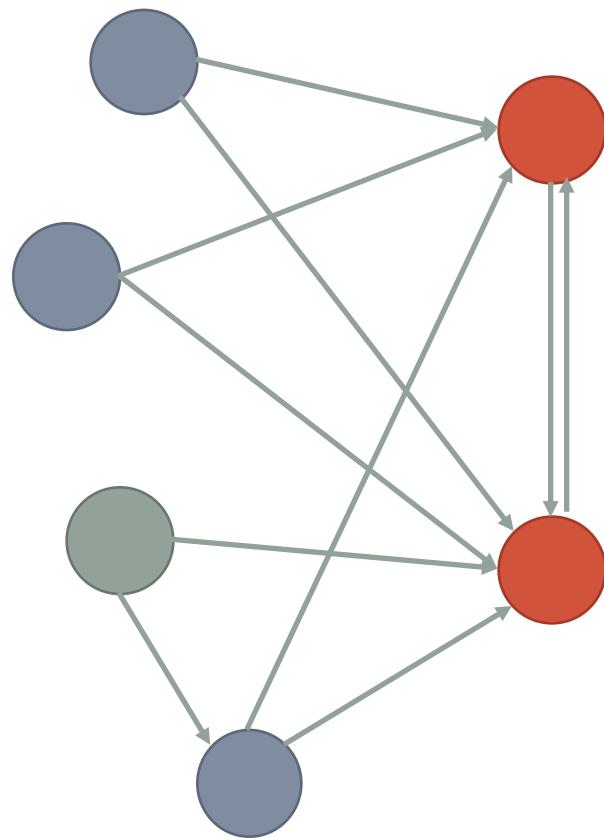


Authoritative nodes are pointed to by hubs

Hubs point to authoritative nodes

Authoritative Sources in a Hyperlinked Environment
Jon M. Kleinberg
JACM 1999

Authoritative nodes and hubs: HITS

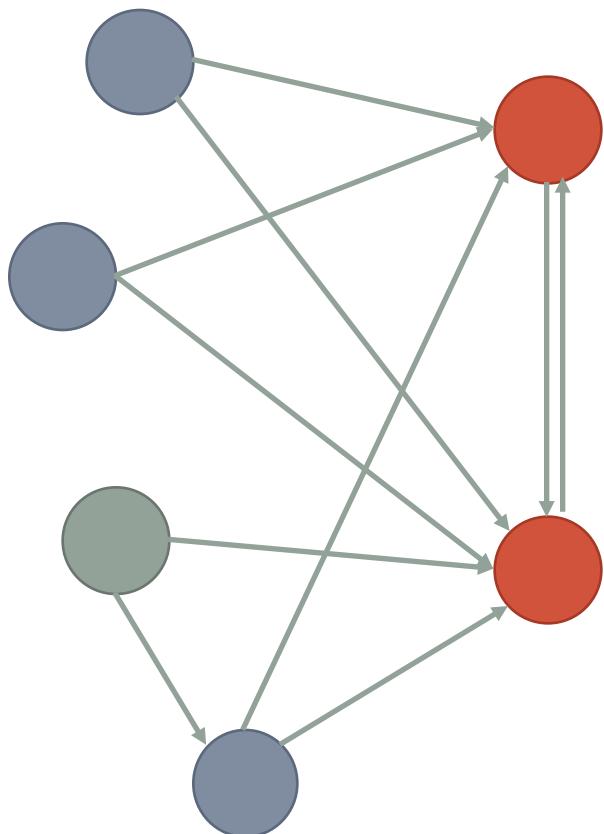


Authoritative nodes are pointed to by hubs

Hubs point to authoritative nodes

Seems circular but still solvable!

Authoritative nodes and hubs: HITS

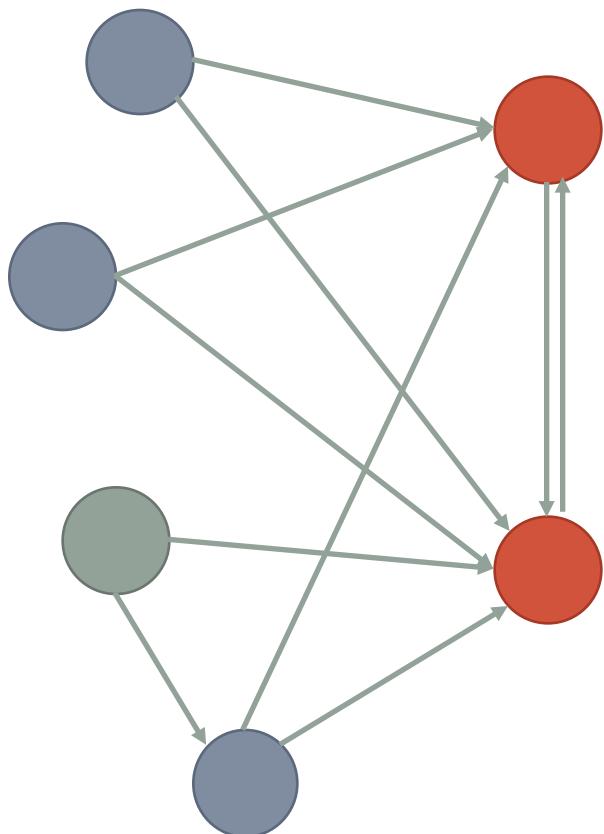


$$\text{Authoritativeness}(q) = \sum_{(p,q) \in E} \text{Hubness}(p)$$
$$\text{Hubness}(p) = \sum_{(p,q) \in E} \text{Authoritativeness}(q)$$

Seems circular but still solvable!

*We also keep authoritativeness and hubness normalized

Authoritative nodes and hubs: HITS

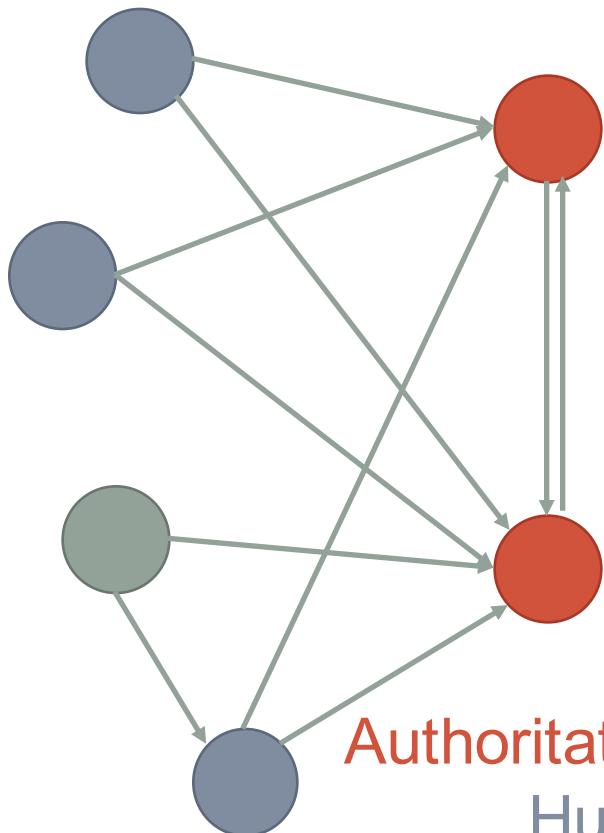


$$\text{Authoritiveness}(q) = \sum_{(p,q) \in E} \text{Hubness}(p)$$
$$\text{Hubness}(p) = \sum_{(p,q) \in E} \text{Authoritiveness}(q)$$

Alternate updating both scores, repeatedly

*We also keep authoritativeness and hubness normalized

Authoritative nodes and hubs: HITS



$$\text{Authoritativeness}(q) = \sum_{(p,q) \in E} \text{Hubness}(p)$$

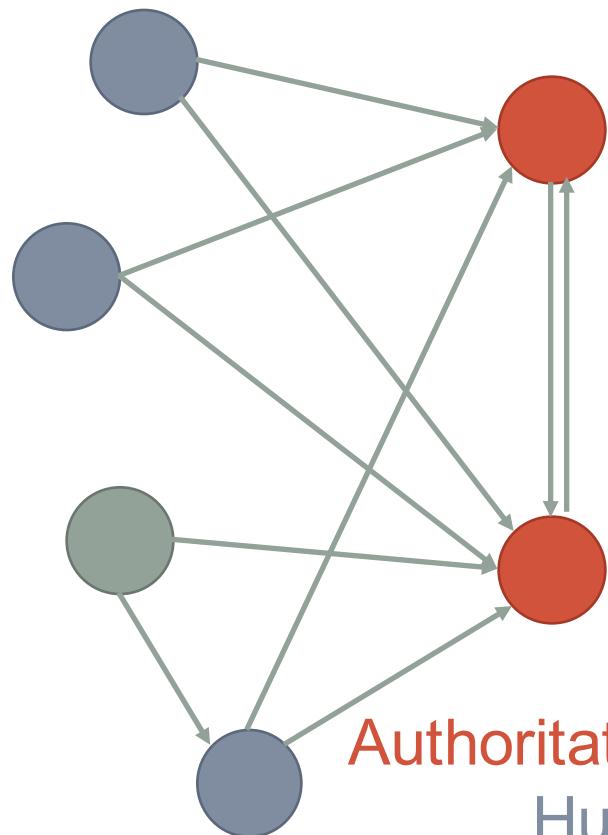
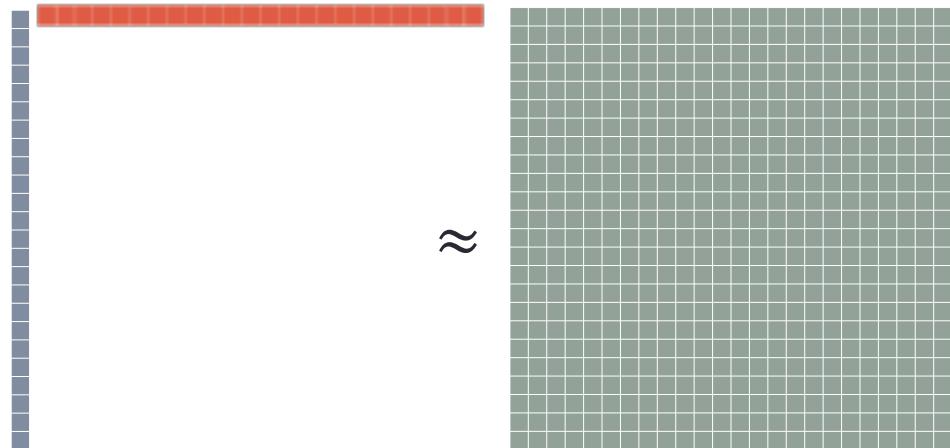
$$\text{Hubness}(p) = \sum_{(p,q) \in E} \text{Authoritativeness}(q)$$

Assume graph adjacent matrix A

Authoritativeness is the first **left singular vector** of A

Hubness is first **right singular vector** of A

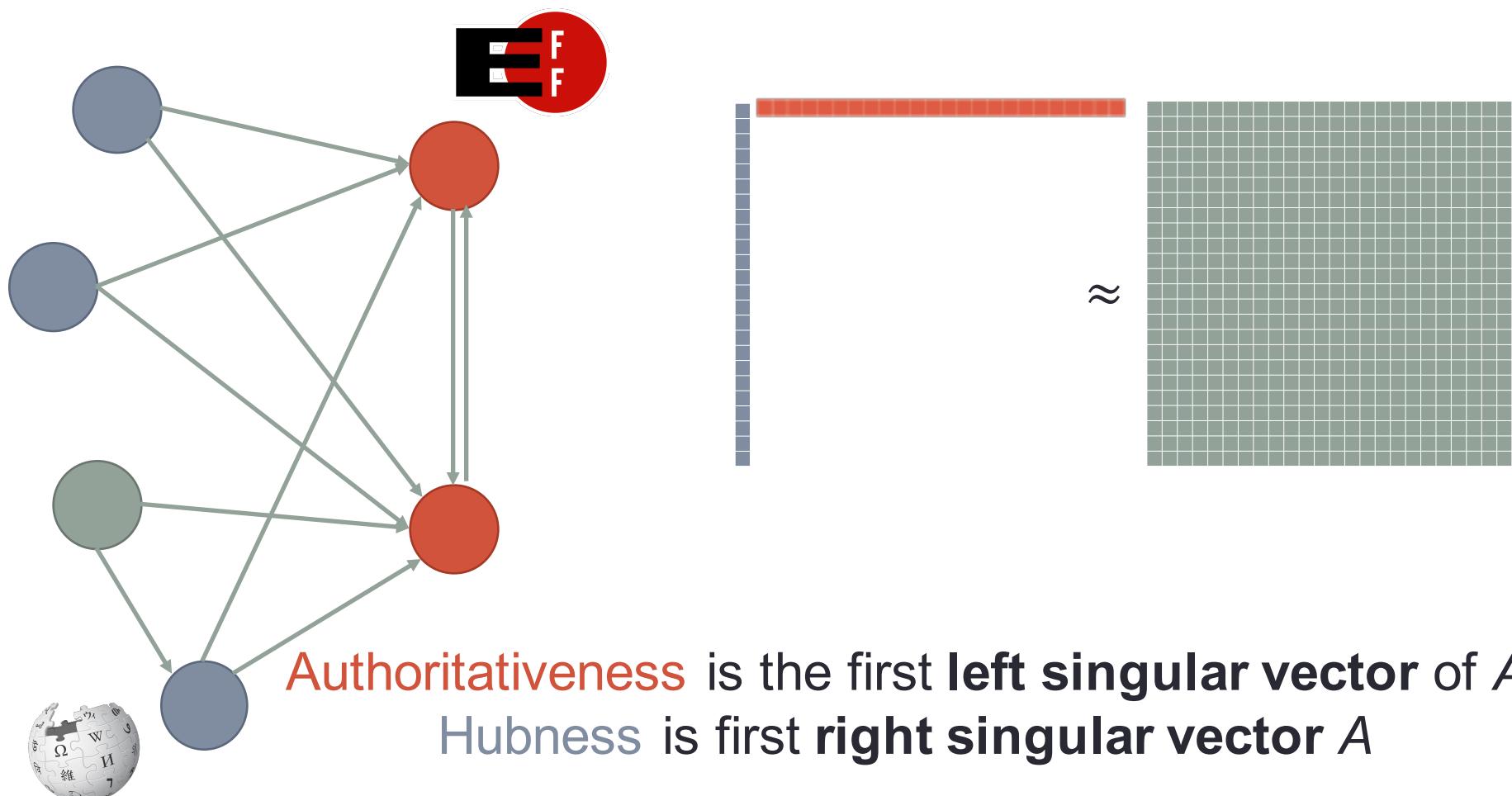
Authoritative nodes and hubs: HITS



Authoritativeness is the first **left singular vector** of A
Hubness is first **right singular vector** of A

Authoritative Sources in a Hyperlinked Environment
Jon M. Kleinberg
JACM 1999

Authoritative nodes and hubs: HITS

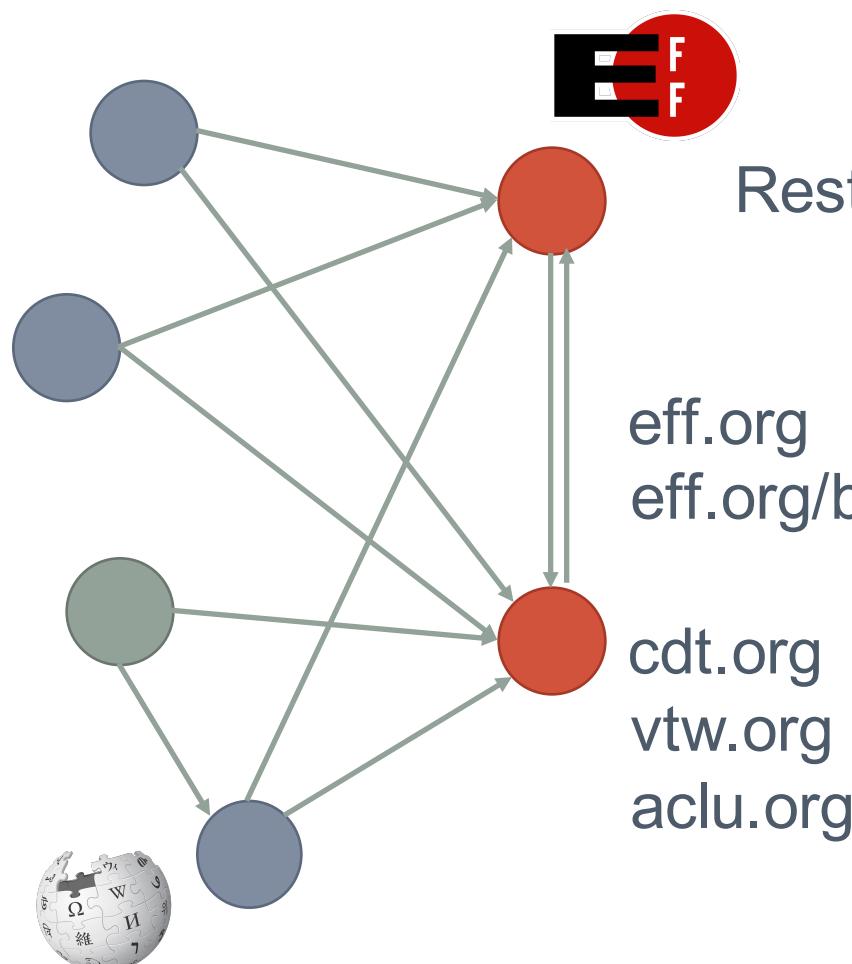


Authoritative Sources in a Hyperlinked Environment

Jon M. Kleinberg

JACM 1999

Authoritative nodes and hubs: HITS



Restrict graph by query “censorship”

Authorities:

Electronic Frontier Foundation

EFF Blue Ribbon

Campaign

Center for Democracy and Tech

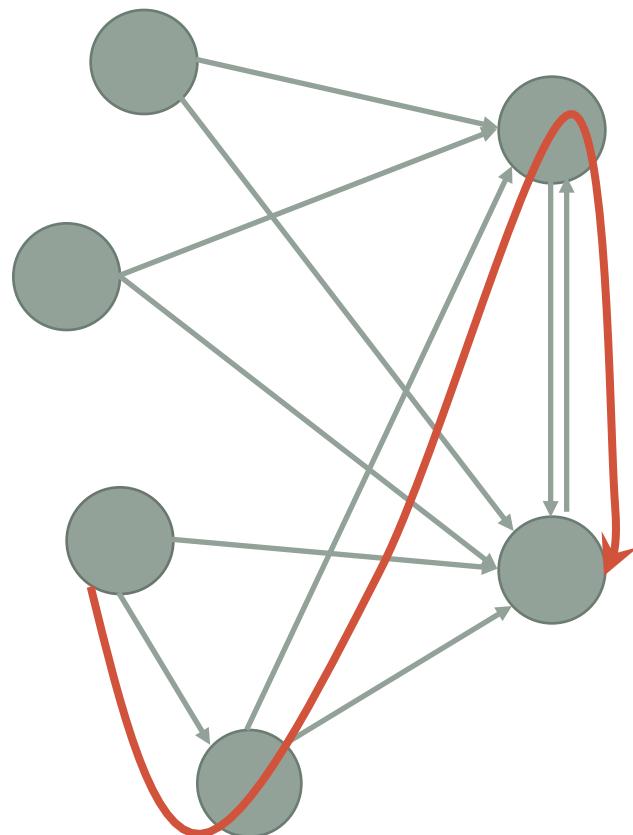
Voters Telecommunication Watch American Civil Liberties Union

Authoritative Sources in a Hyperlinked Environment

Jon M. Kleinberg

JACM 1999

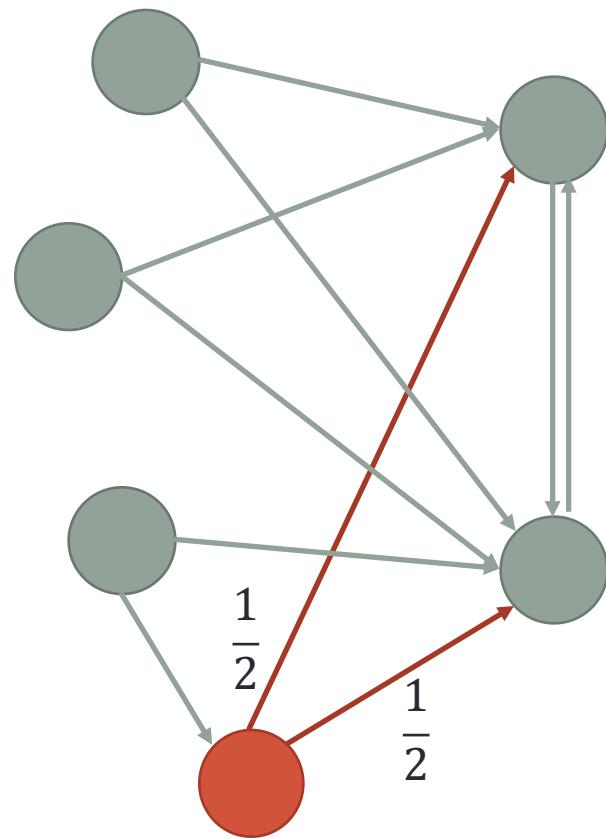
(Simplified) PageRank



Analyze random walk in graph

Anatomy of a Large-Scale Hypertextual Web Search Engine
Lawrence Page, Sergey Brin
WWW 1998

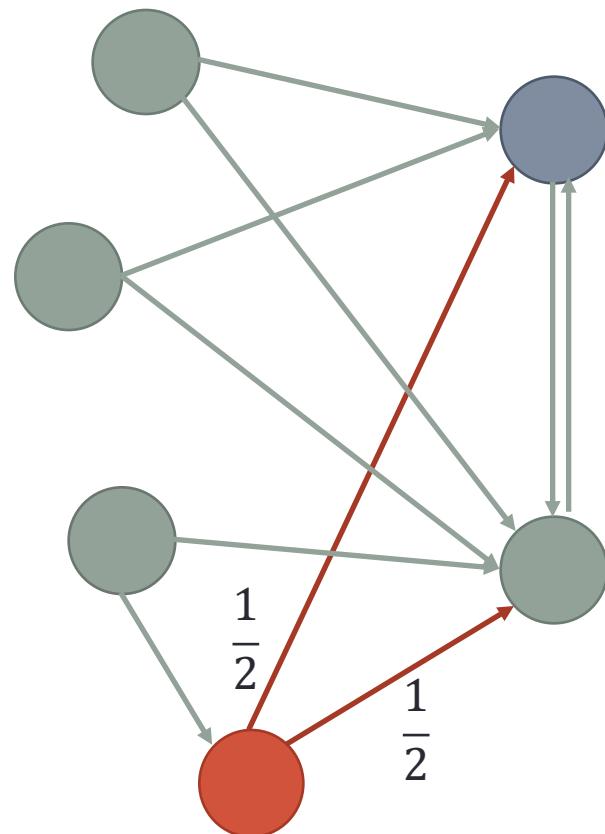
(Simplified) PageRank



Analyze random walk in graph

From a node, take each outgoing edge with equal probability.

(Simplified) PageRank

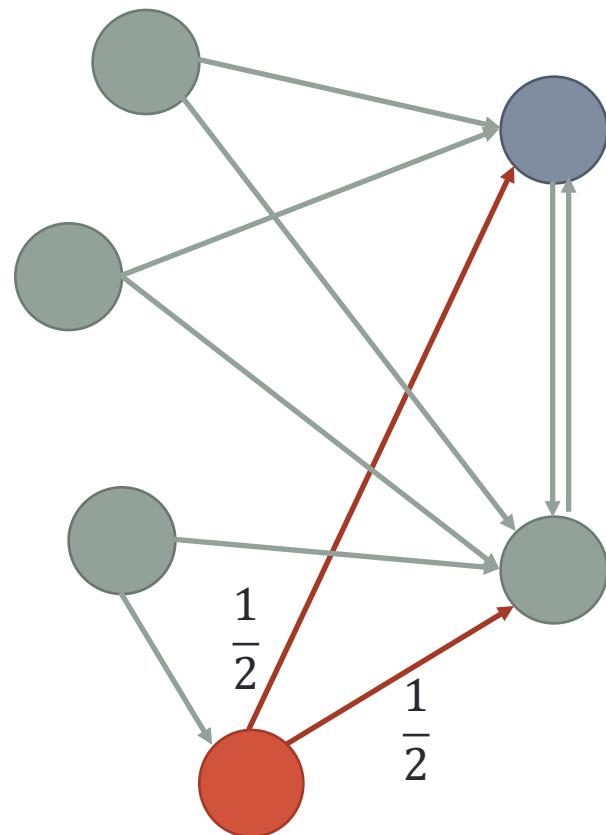


Analyze random walk in graph

From a node, take each outgoing edge with equal probability.

$$\text{Rank}(p) = c \sum_{q|(p,q) \in E} \frac{\text{Rank}(q)}{\text{OutDegree}(q)}$$

(Simplified) PageRank

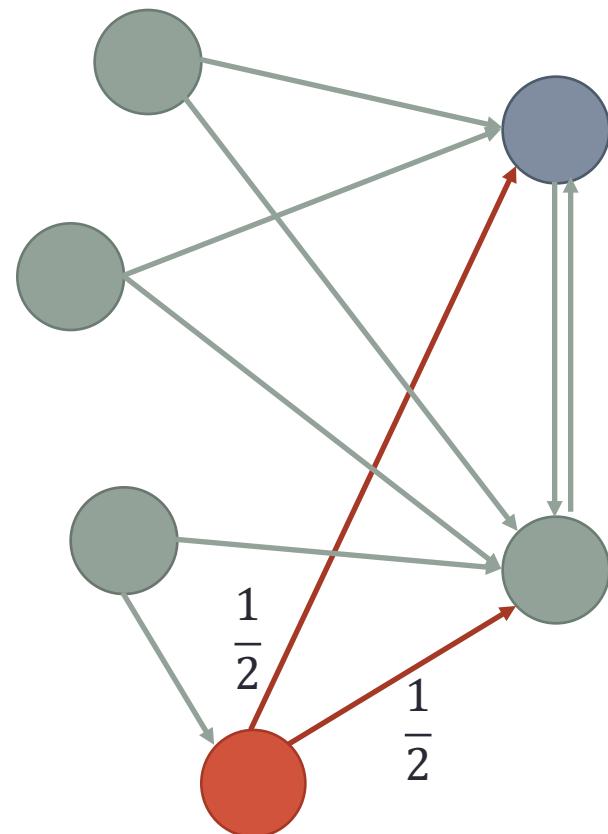


$$\text{Rank}(p) = c \sum_{q | (p,q) \in E} \frac{\text{Rank}(q)}{\text{OutDegree}(q)}$$

A' is a column normalized adjacency matrix

$$A'_{p,q} \begin{cases} \frac{1}{\text{OutDegree}(q)} & \text{if } (p, q) \in E \\ 0 & \text{if } (p, q) \notin E \end{cases}$$

(Simplified) PageRank



$$\text{Rank}(p) = c \sum_{q | (p,q) \in E} \frac{\text{Rank}(q)}{\text{OutDegree}(q)}$$

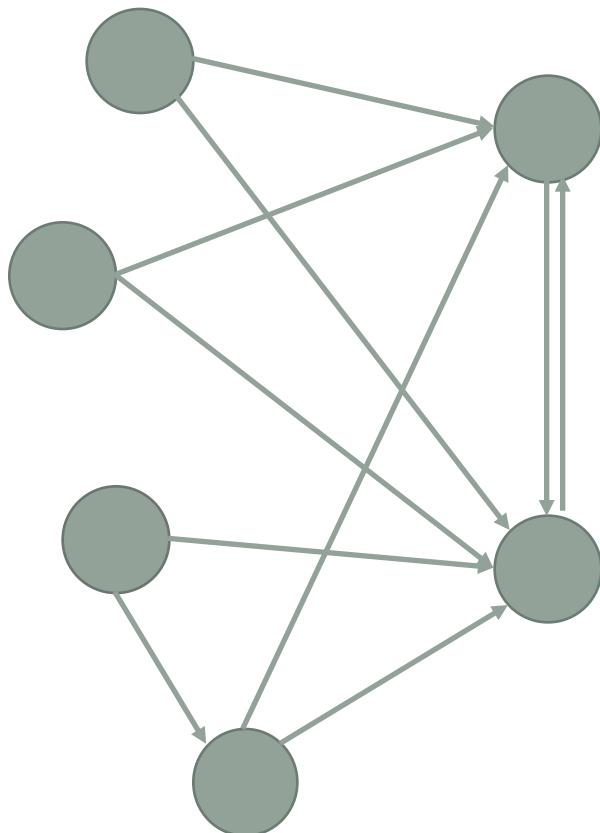
A' is a column normalized adjacency matrix

$$A'_{p,q} \begin{cases} \frac{1}{\text{OutDegree}(q)} & \text{if } (p, q) \in E \\ 0 & \text{if } (p, q) \notin E \end{cases}$$

$$\overrightarrow{\text{Rank}} = c A' \overrightarrow{\text{Rank}}$$

Rank is the first eigenvector of cA'

PageRank



In “random walk,” jump to new node randomly with probability $(1-c)$

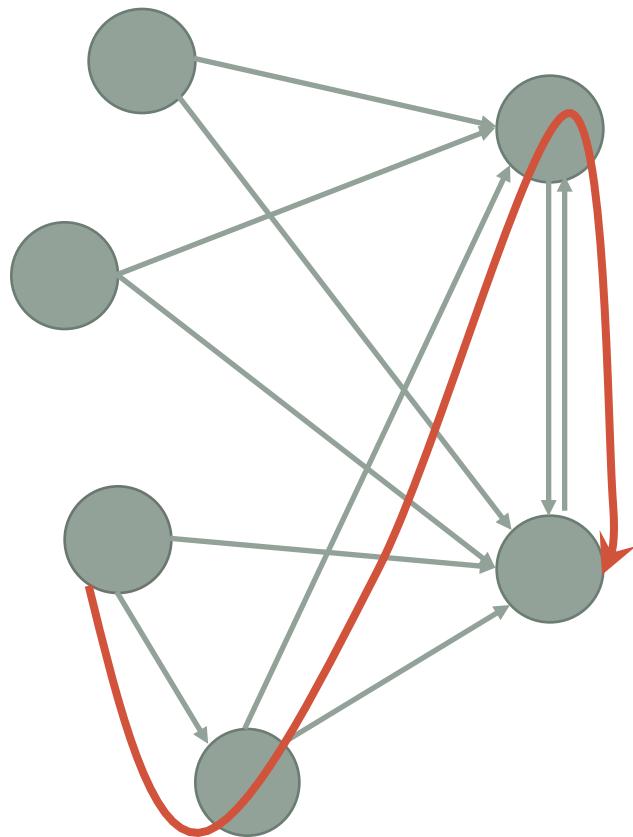
$$\overrightarrow{\text{Rank}} = c A' \overrightarrow{\text{Rank}} + \frac{1 - c}{n} \vec{1}$$

$$= c \quad A' \quad + \frac{1 - c}{n} \quad \begin{bmatrix} 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

The matrix A' is a 5x5 grid representing the transition probability matrix of the graph. The matrix is as follows:

0.5	0.2	0.1	0.1	0.1
0.2	0.5	0.2	0.1	0.1
0.1	0.2	0.5	0.2	0.1
0.1	0.1	0.2	0.5	0.2
0.1	0.1	0.1	0.2	0.5

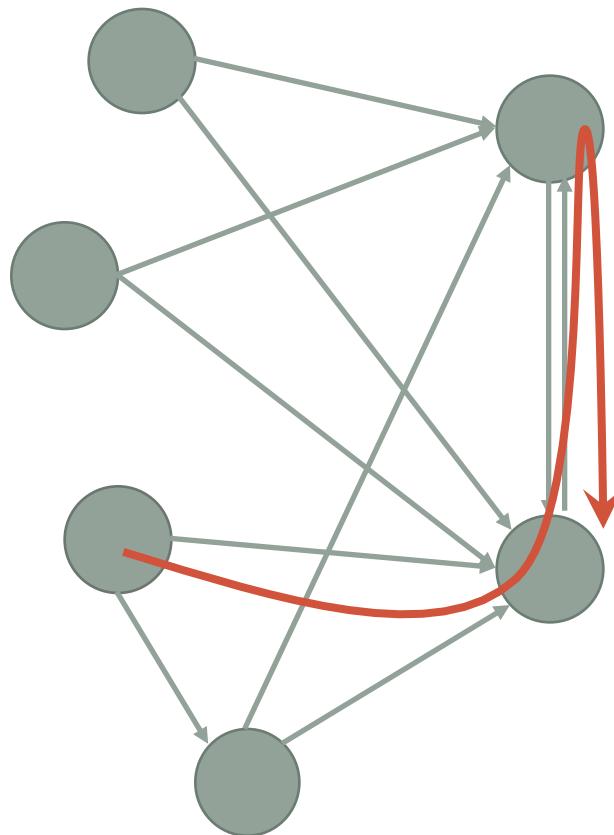
PageRank



In “random walk,” jump to new node randomly with probability $(1-c)$

$$\overrightarrow{\text{Rank}} = cA'\overrightarrow{\text{Rank}} + \frac{1-c}{n}\vec{1}$$

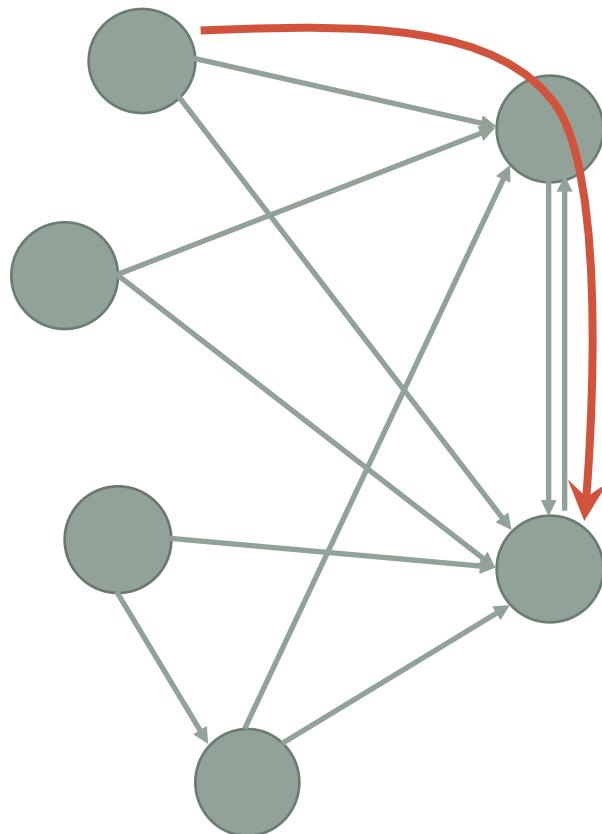
PageRank



In “random walk,” jump to new node randomly with probability $(1-c)$

$$\overrightarrow{\text{Rank}} = c A' \overrightarrow{\text{Rank}} + \frac{1 - c}{n} \vec{1}$$

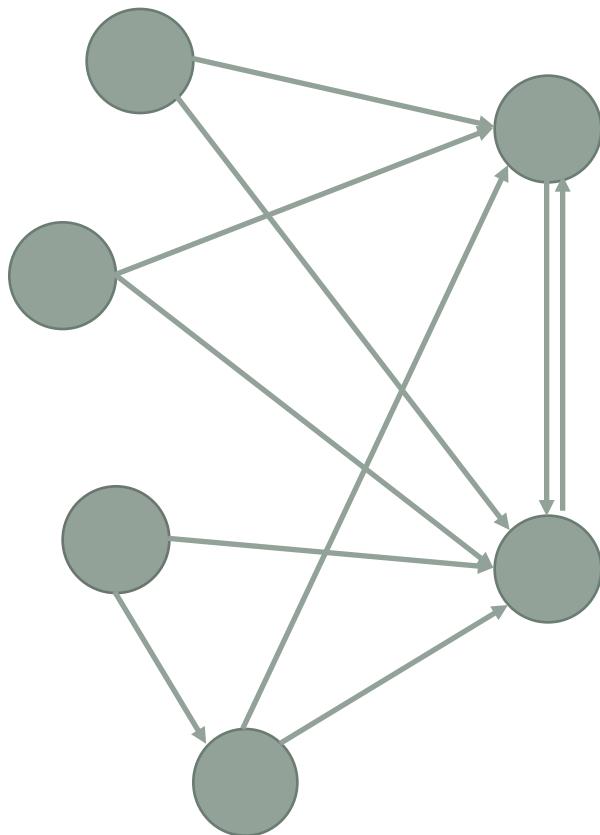
PageRank



In “random walk,” jump to new node randomly with probability $(1-c)$

$$\overrightarrow{\text{Rank}} = c A' \overrightarrow{\text{Rank}} + \frac{1 - c}{n} \vec{1}$$

PageRank



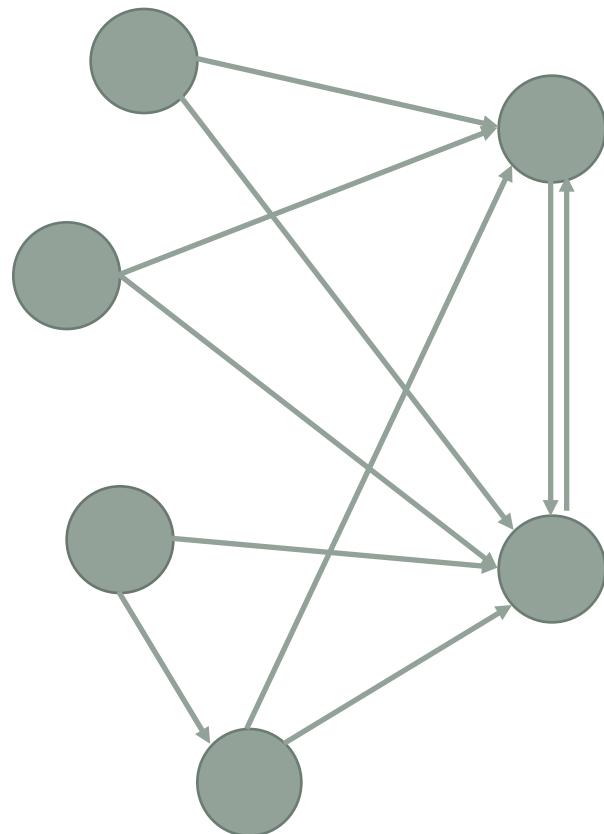
In “random walk,” jump to new node randomly with probability $(1-c)$

$$\overrightarrow{\text{Rank}} = cA'\overrightarrow{\text{Rank}} + \frac{1-c}{n}\vec{1}$$

Rank is the first eigenvector of

$$cA' + \frac{1-c}{n}\vec{1} \cdot \vec{1}^T$$

PageRank



Random Walk with Restarts

$$\overrightarrow{\text{Rank}} = cA'\overrightarrow{\text{Rank}} + \frac{1-c}{n}\vec{1}$$

Rank is the first eigenvector of

$$cA' + \frac{1-c}{n}\vec{1} \cdot \vec{1}^T$$

PageRank

Web Page	PageRank (average is 1.0)
Download Netscape Software	11589.00
http://www.w3.org/	10717.70
Welcome to Netscape	8673.51
Point: It's What You're Searching For	7930.92
Web-Counter Home Page	7254.97
The Blue Ribbon Campaign for Online Free Speech	7010.39
CERN Welcome	6562.49
Yahoo!	6561.80
Welcome to Netscape	6203.47
Wusage 4.1: A Usage Statistics System For Web Servers	5963.27
The World Wide Web Consortium (W3C)	5672.21
Lycos, Inc. Home Page	4683.31
Starting Point	4501.98
Welcome to Magellan!	3866.82
Oracle Corporation	3587.63

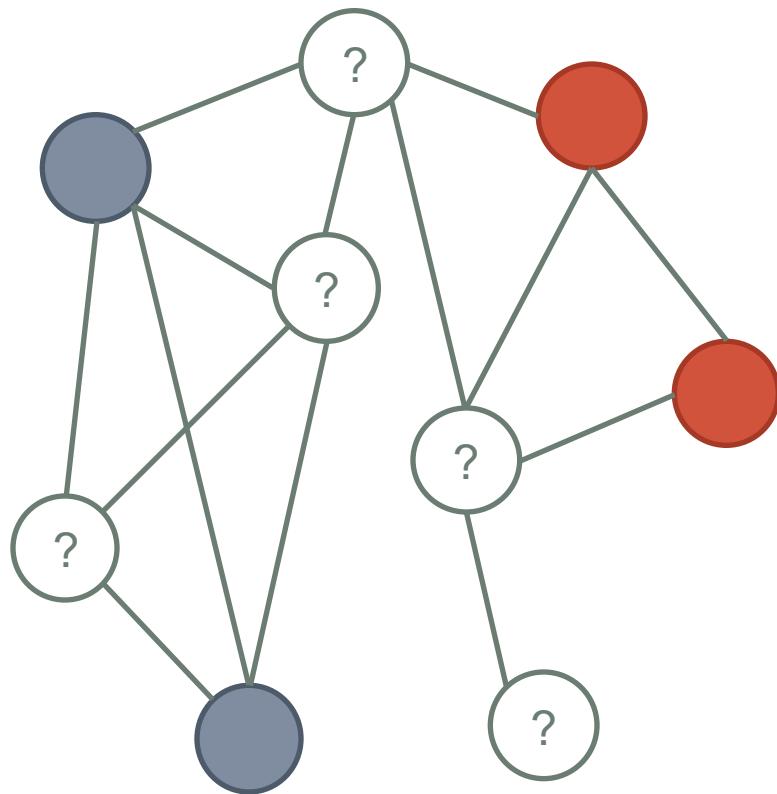
Table 1: Top 15 Page Ranks: July 1996

Anatomy of a Large-Scale Hypertextual Web Search Engine
Lawrence Page, Sergey Brin
WWW 1998

Practitioner's Guide

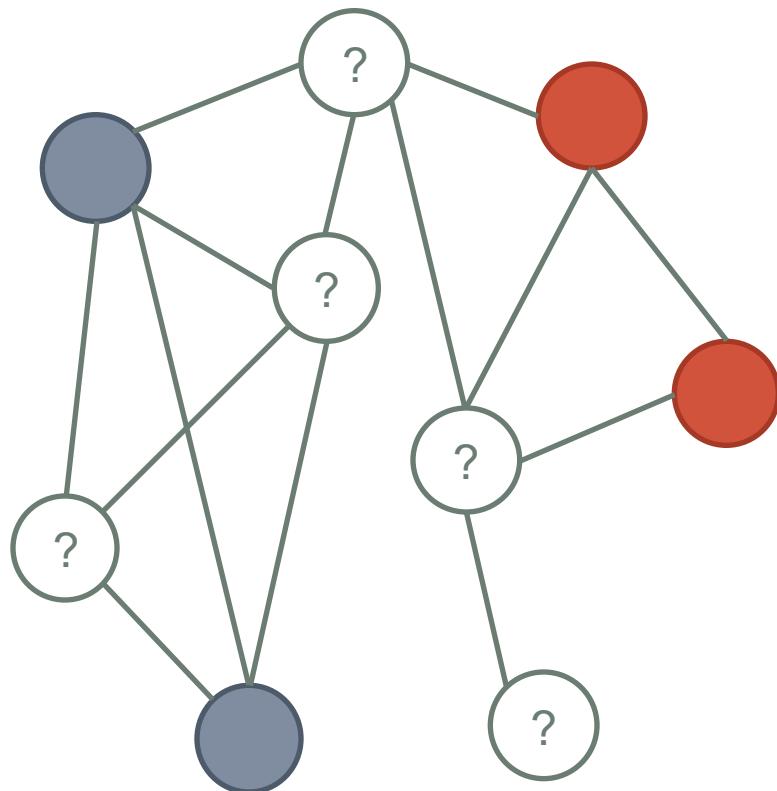
Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
HITS	Directed			
PageRank	Directed			Optional
Label Prop.	Undirected			✓
pMRF BP	Undirected			Preferred
EdgeExplain	Undirected	✓		✓

Semi-supervised Classification



Given a graph and labels for some nodes, can we learn the labels for the other nodes?

Semi-supervised Classification

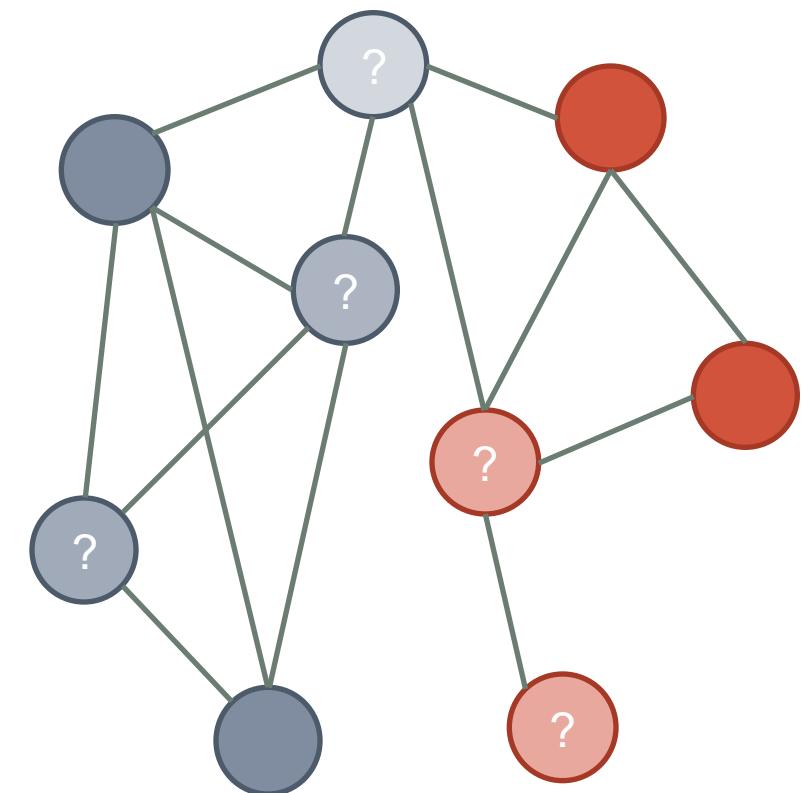


Given a graph and labels for some nodes, can we learn the labels for the other nodes?

Huge research area with many different formulations

(we will present only a few)

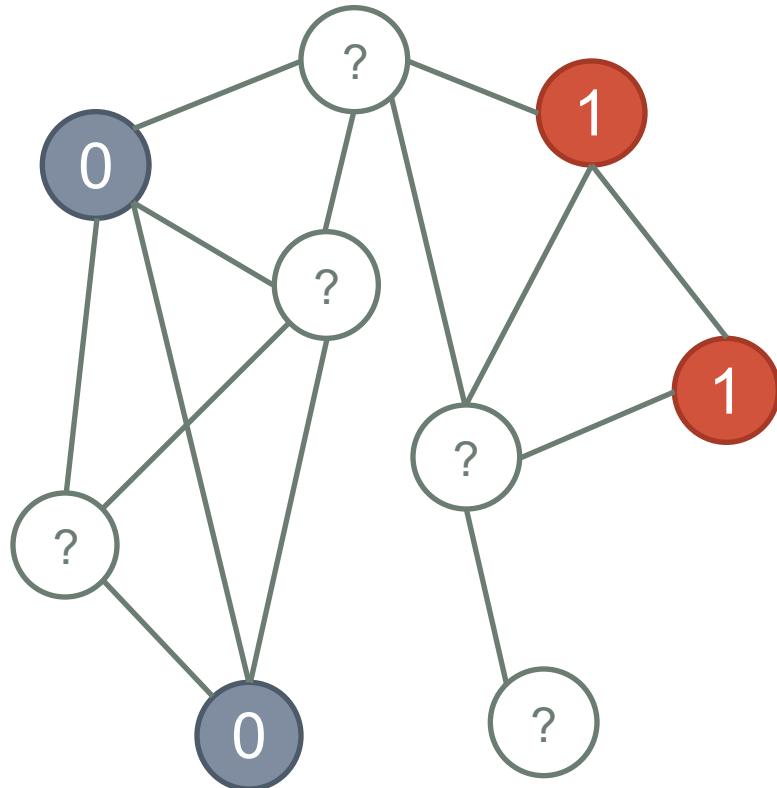
Semi-supervised Classification



Given a graph and labels for some nodes, can we learn the labels for the other nodes?

Generally, learn labels X so neighbors have the same label (homophily)

Semi-supervised Classification



$$\min_f \sum_{i,j} w_{i,j} (f(i) - f(j))^2$$

Edge weight $w_{i,j}$

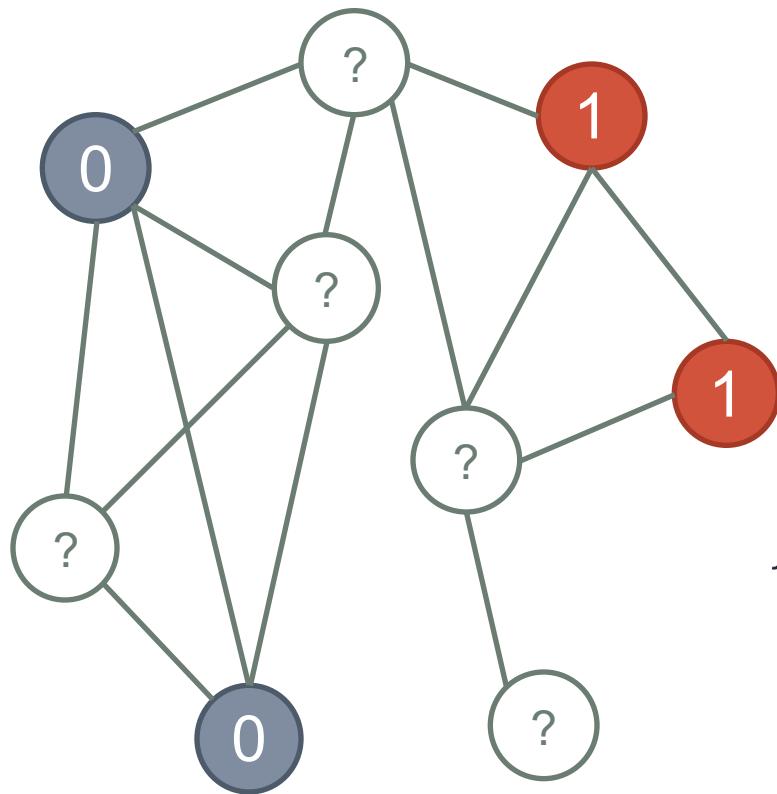
$$f(i) = \frac{1}{\sum_j w_{i,j}} \sum_j w_{i,j} f(j)$$

Can set label threshold for $f(i)$

Under this structure,
closed form solution given in paper

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
Xiaojin Zhu, Zoubin Ghahramani, John Lafferty
ICML 2003

Semi-supervised Classification



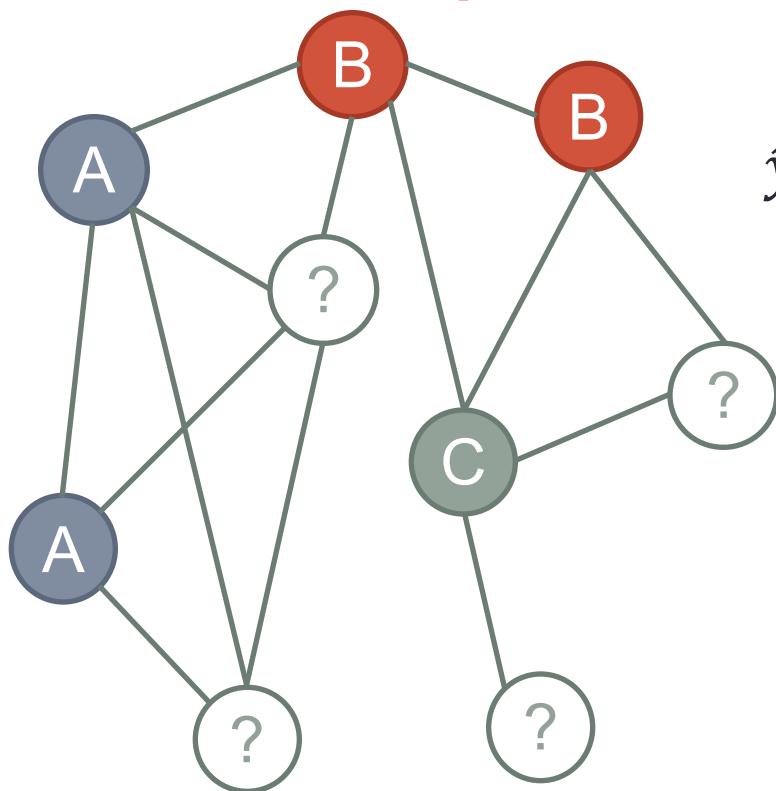
Can view as a random walk:

- Go to neighbor with probability proportional to $w_{i,j}$
- Return node-prior with probability p_v
- Return no guess with probability q_v

$$\hat{f}(i) = p_i f(i) + q_i \frac{1}{2} + \frac{1}{\sum_j w_{i,j}} \sum_j w_{i,j} f(j)$$

New Regularized Algorithms for Transductive Learning
Partha Pratim Talukdar and Koby Crammer
ECML/PKDD 2009

Semi-supervised Classification



$$\hat{y}_v = [p(A), p(B), p(C), p(\text{Don't Know})]$$

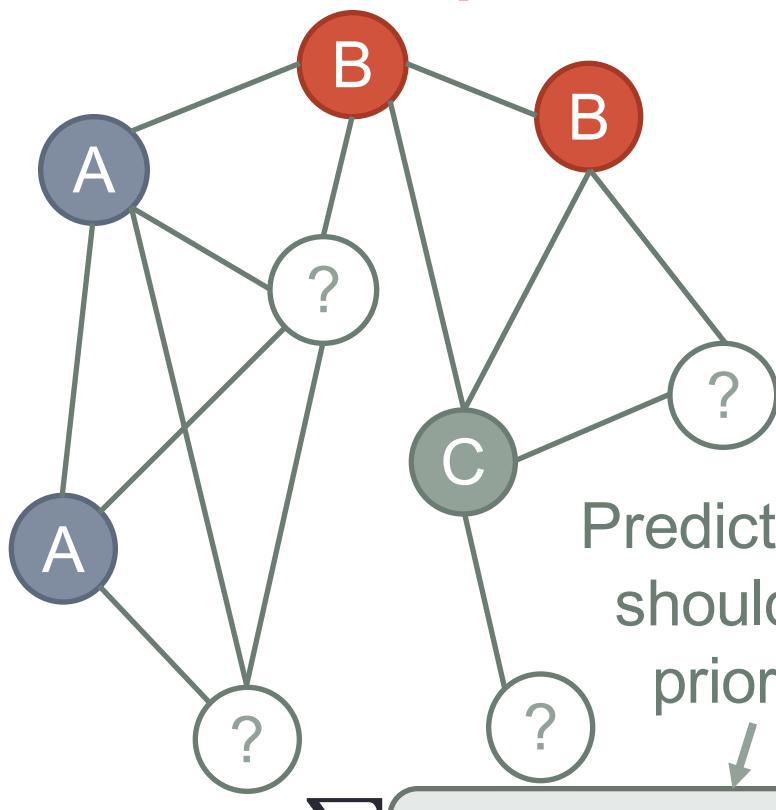
Observe prior labels y_v for some v

$$\text{General prior } r = [0, 0, 0, 1]$$

$$\min_{\hat{y}} \sum_{v,l} p_v (y_{v,l} - \hat{y}_{v,l})^2 + \sum_{u,v} w_{u,v} \|\hat{y}_u - \hat{y}_v\|^2 + \sum_v q_v \|\hat{y}_v - r\|^2$$

New Regularized Algorithms for Transductive Learning
Partha Pratim Talukdar and Koby Crammer
ECML/PKDD 2009

Semi-supervised Classification



$$\hat{y}_v = [p(A), p(B), p(C), p(\text{Don't Know})]$$

Observe prior labels y_v for some v

$$\text{General prior } r = [0,0,0,1]$$

Predicted labels
should match
prior labels

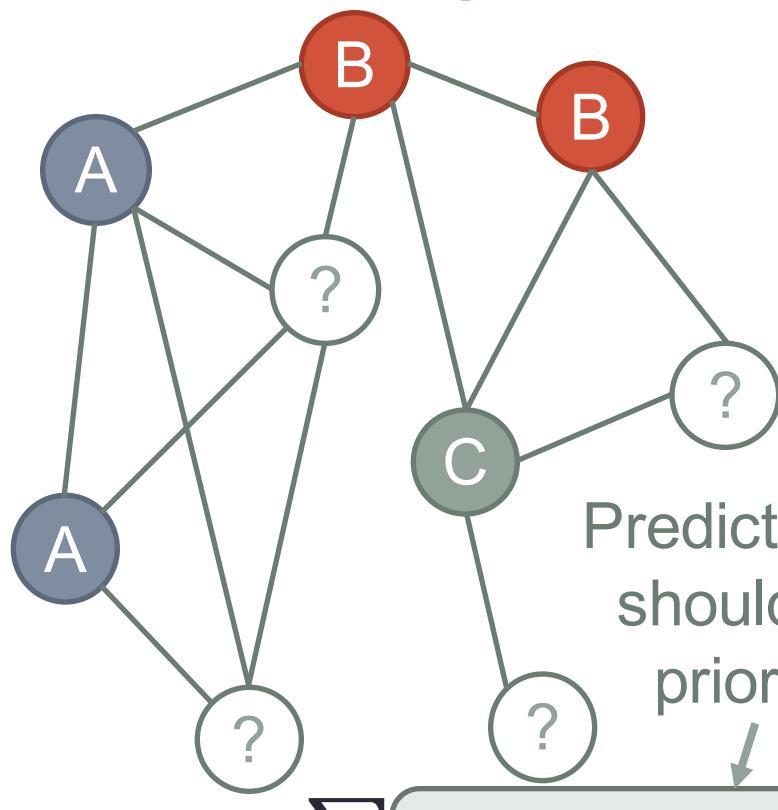
Neighbors
should have
similar labels

Regularization

$$\min_{\hat{y}} \sum_{v,l} p_v (y_{v,l} - \hat{y}_{v,l})^2 + \sum_{u,v} w_{u,v} \|\hat{y}_u - \hat{y}_v\|^2 + \sum_v q_v \|\hat{y}_v - r\|^2$$

New Regularized Algorithms for Transductive Learning
Partha Pratim Talukdar and Koby Crammer
ECML/PKDD 2009

Semi-supervised Classification



Can learn \hat{y} through message passing of gradients

Predicted labels
should match
prior labels

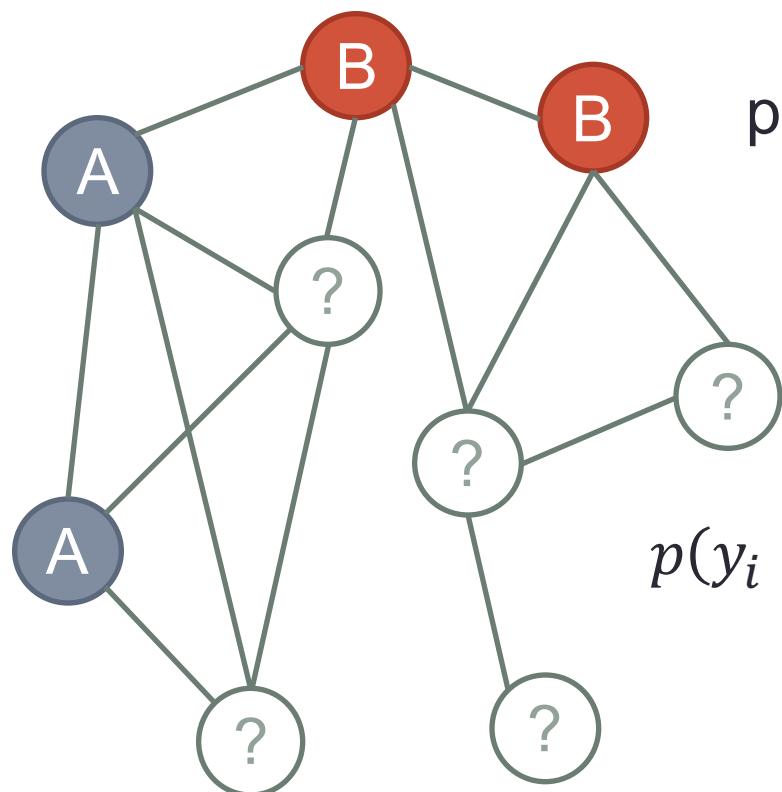
Neighbors
should have
similar labels

Regularization

$$\min_{\hat{y}} \sum_{v,l} p_v (y_{v,l} - \hat{y}_{v,l})^2 + \sum_{u,v} w_{u,v} \|\hat{y}_u - \hat{y}_v\|^2 + \sum_v q_v \|\hat{y}_v - r\|^2$$

New Regularized Algorithms for Transductive Learning
Partha Pratim Talukdar and Koby Crammer
ECML/PKDD 2009

Semi-supervised Classifications: pMRF

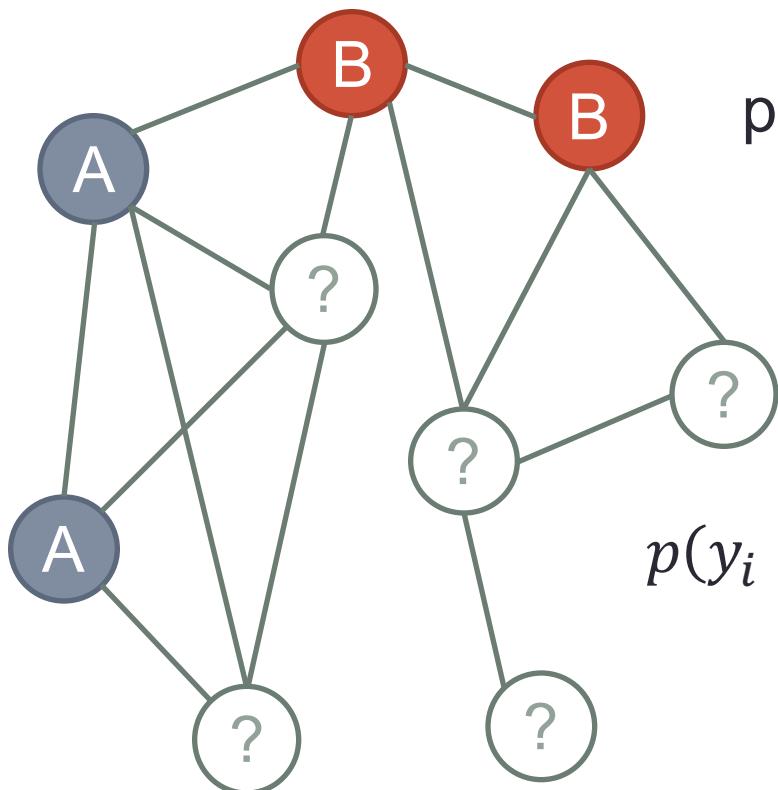


Probabilistic interpretation with pairwise Markov random fields (pMRF)

Observe labels for nodes \mathcal{L} and infer labels for nodes in \mathcal{U}

$$p(y_i \forall i \in \mathcal{U}) = \frac{1}{Z} \prod_i \phi_i(y_i) \prod_{(i,j) \in E} \psi_{i,j}(y_i, y_j)$$

Semi-supervised Classifications: pMRF



Probabilistic interpretation with pairwise Markov random fields (pMRF)

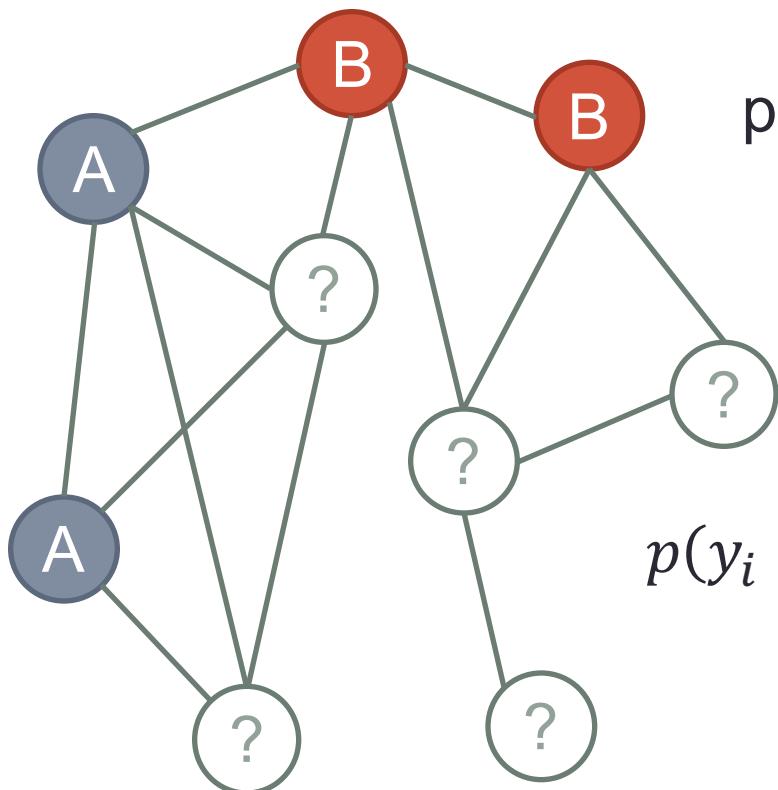
Observe labels for nodes \mathcal{L} and infer labels for nodes in \mathcal{U}

$$p(y_i \forall i \in \mathcal{U}) = \frac{1}{Z} \prod_i \phi_i(y_i) \prod_{(i,j) \in E} \psi_{i,j}(y_i, y_j)$$

Prior belief for node i

Compatibility potentials between neighbors

Semi-supervised Classifications: pMRF



Probabilistic interpretation with pairwise Markov random fields (pMRF)

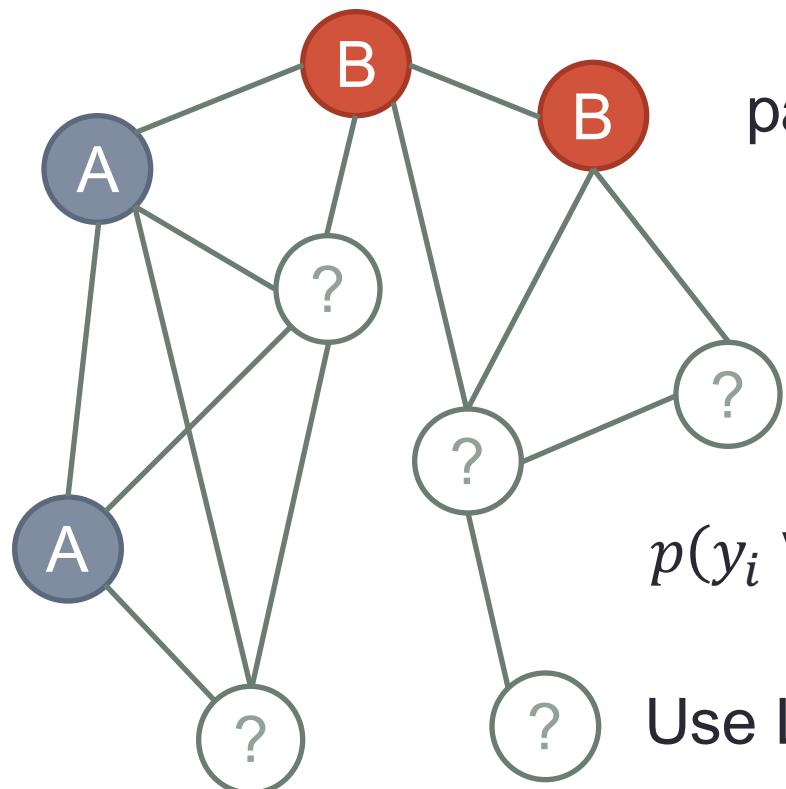
Observe labels for nodes \mathcal{L} and infer labels for nodes in \mathcal{U}

$$p(y_i \forall i \in \mathcal{U}) = \frac{1}{Z} \prod_i \phi_i(y_i) \prod_{(i,j) \in E} \psi_{i,j}(y_i, y_j)$$

		y_j	
		A	B
y_i	A	0.8	0.2
	B	0.2	0.8

↑
Compatibility potentials between neighbors

Semi-supervised Classifications: pMRF



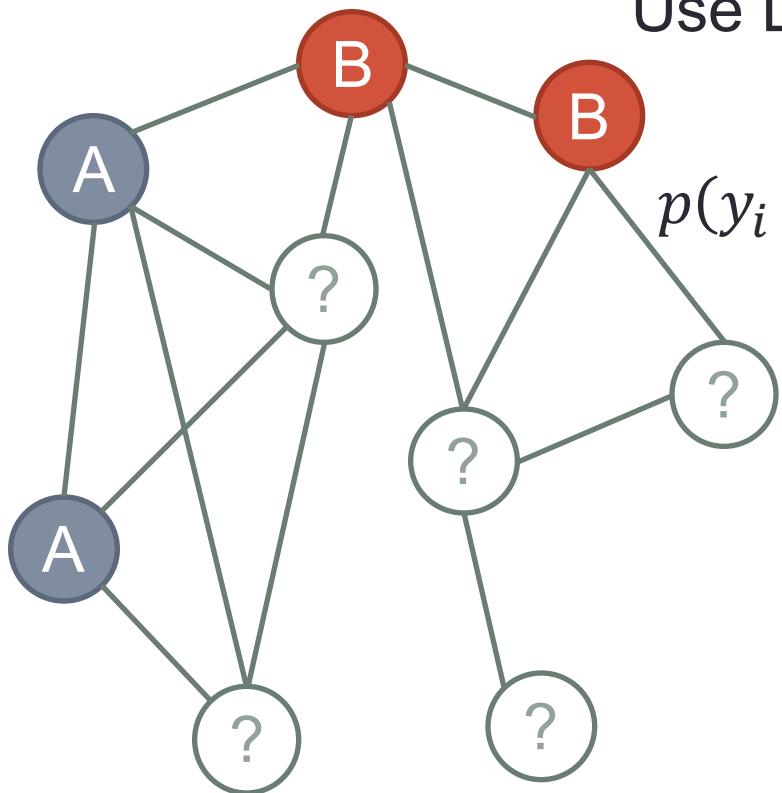
Probabilistic interpretation with pairwise Markov random fields (pMRF)

Observe labels for nodes \mathcal{L} and infer labels for nodes in \mathcal{U}

$$p(y_i \forall i \in \mathcal{U}) = \frac{1}{Z} \prod_i \phi_i(y_i) \prod_{(i,j) \in E} \psi_{i,j}(y_i, y_j)$$

Use Loopy Belief Propagation [Pearl, 1982] to estimate most likely state.

Semi-supervised Classifications: pMRF

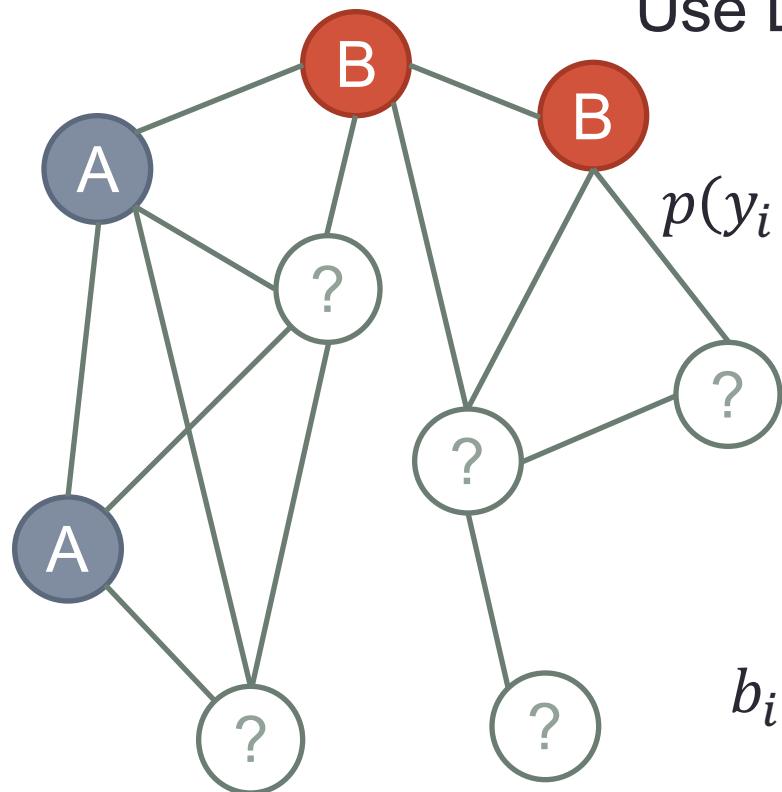


Use Loopy Belief Propagation [Pearl, 1982]
to estimate most likely state.

$$p(y_i \forall i \in \mathcal{U}) = \frac{1}{Z} \prod_i \phi_i(y_i) \prod_{(i,j) \in E} \psi_{i,j}(y_i, y_j)$$

Iteratively send messages
between nodes to learn state.

Semi-supervised Classifications: pMRF



Use Loopy Belief Propagation [Pearl, 1982]
to estimate most likely state.

$$p(y_i \forall i \in \mathcal{U}) = \frac{1}{Z} \prod_i \phi_i(y_i) \prod_{(i,j) \in E} \psi_{i,j}(y_i, y_j)$$

Iteratively send messages
between nodes to learn state.

Node y_i estimated by

$$b_i(y_i) \leftarrow \alpha \phi_i(y_i) \prod_{(i,j) \in E} m_{j \rightarrow i}(y_i)$$

Message from i to j given by

$$m_{i \rightarrow j}(y_j) \leftarrow \sum_{y_i} \phi_i(y_i) \psi_{i,j}(y_i, y_j) \prod_{(i,k) \in E | k \neq j} m_{k \rightarrow i}(y_i)$$

DETAILS!

Unifying Propagation Methods

Method	Homophily	Heterophily	Convergence	Scalability
RWR	✓	✗	✓	✓
SSL	✓	?	✓	✓
BP	✓	✓	?	✓

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra, Tai-You Ke, U Kang, Polo Chau,
Hsing-Kuo Kenneth Pao, Christos Faloutsos
ECML/PKDD 2011

Unifying Propagation Methods

Can approximate all methods by:

Method	matrix	unknown	known
RWR	$[\mathbf{I} - c\mathbf{AD}^{-1}] \times$	\mathbf{x}	$= (1 - c) \mathbf{y}$
SSL	$[\mathbf{I} + \alpha(\mathbf{D} - \mathbf{A})] \times$	\mathbf{x}	$= \mathbf{y}$
Gaussian BP = SSL	$[\mathbf{I} + \alpha(\mathbf{D} - \mathbf{A})] \times$	\mathbf{x}	$= \mathbf{y}$

1. Subgraph Analysis

2. Propagation Methods

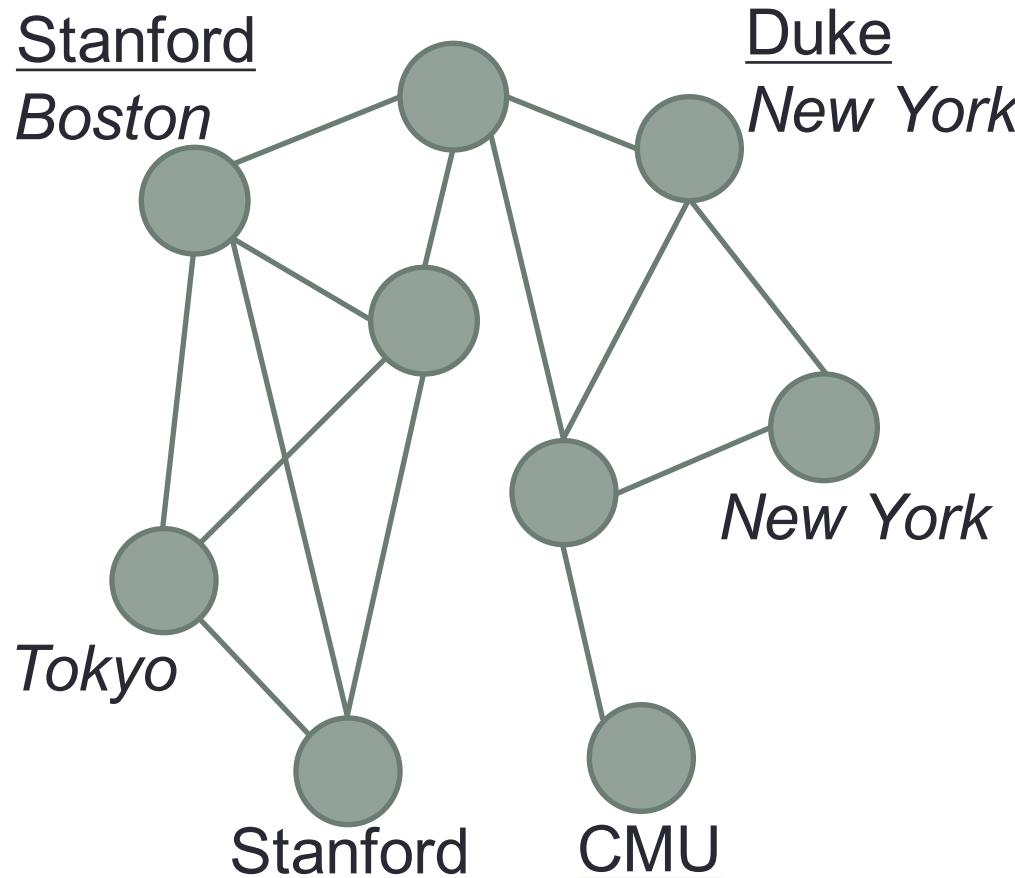
a) Background

b) Normal Behavior

c) Abnormal Behavior

3. Latent Factor Models

Explain friendships to infer user properties



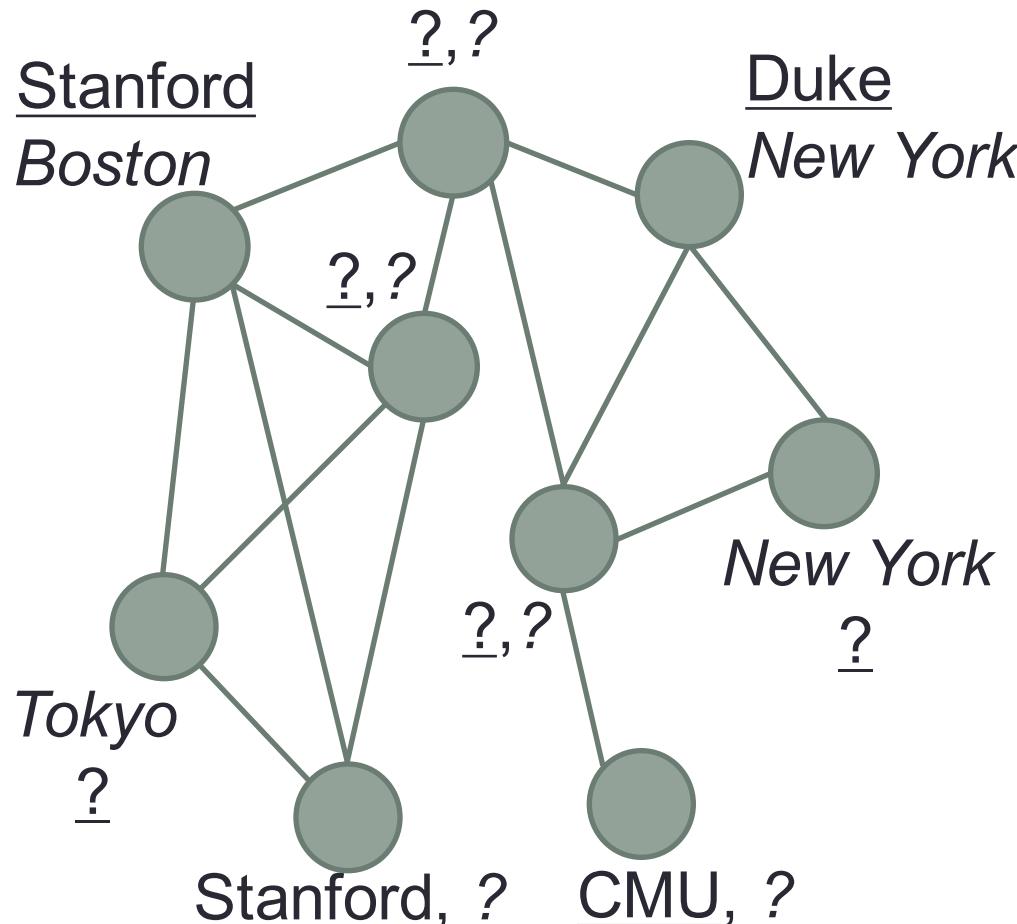
If we have incomplete labels of many types, can we infer the rest of the labels?

Idea:
Adjacent nodes only need to agree on **one** label

Joint Inference of Multiple Label Types in Large Networks

Deepayan Chakrabarti, Stanislav Funiak,
Jonathan Chang, Sofus A. Macskassy
ICML 2014

Explain friendships to infer user properties



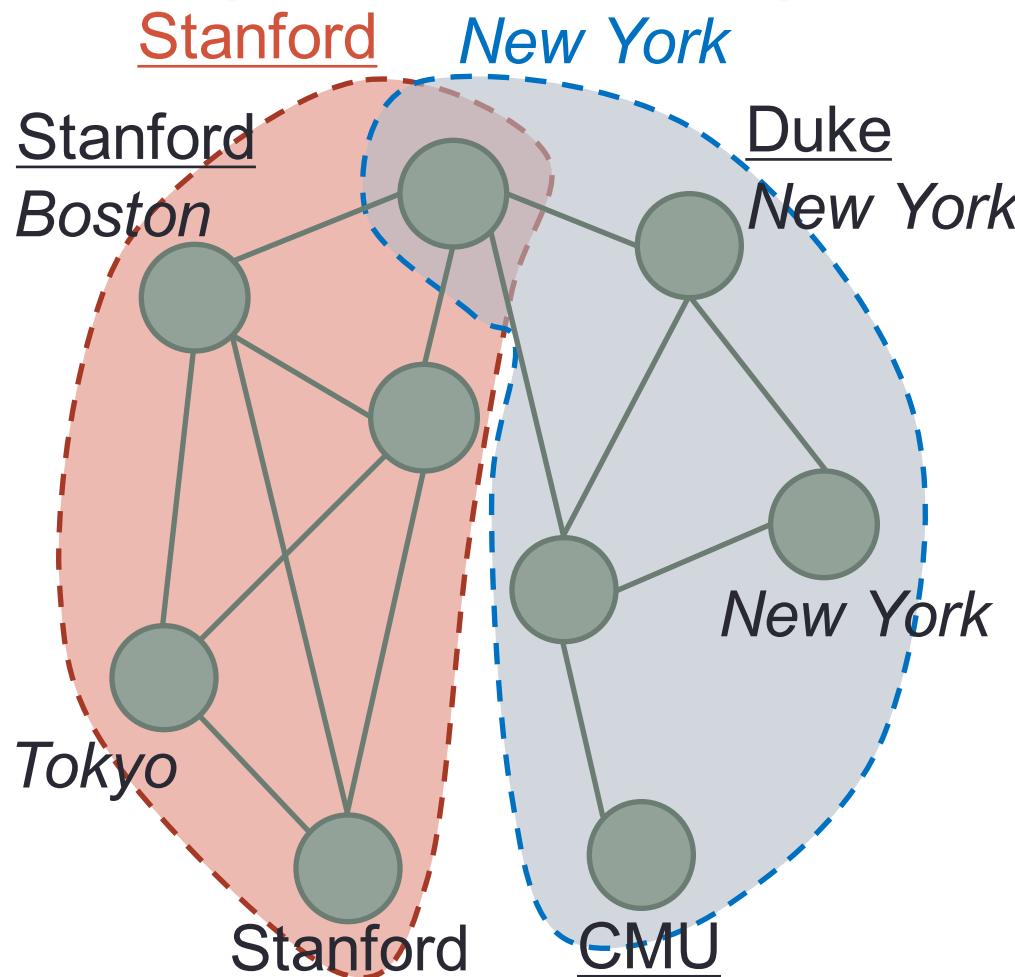
If we have incomplete labels of many types, can we infer the rest of the labels?

Idea:
Adjacent nodes only need
to be agree on **one** label

Joint Inference of Multiple Label Types in Large Networks

Deepayan Chakrabarti, Stanislav Funiak,
Jonathan Chang, Sofus A. Macskassy
ICML 2014

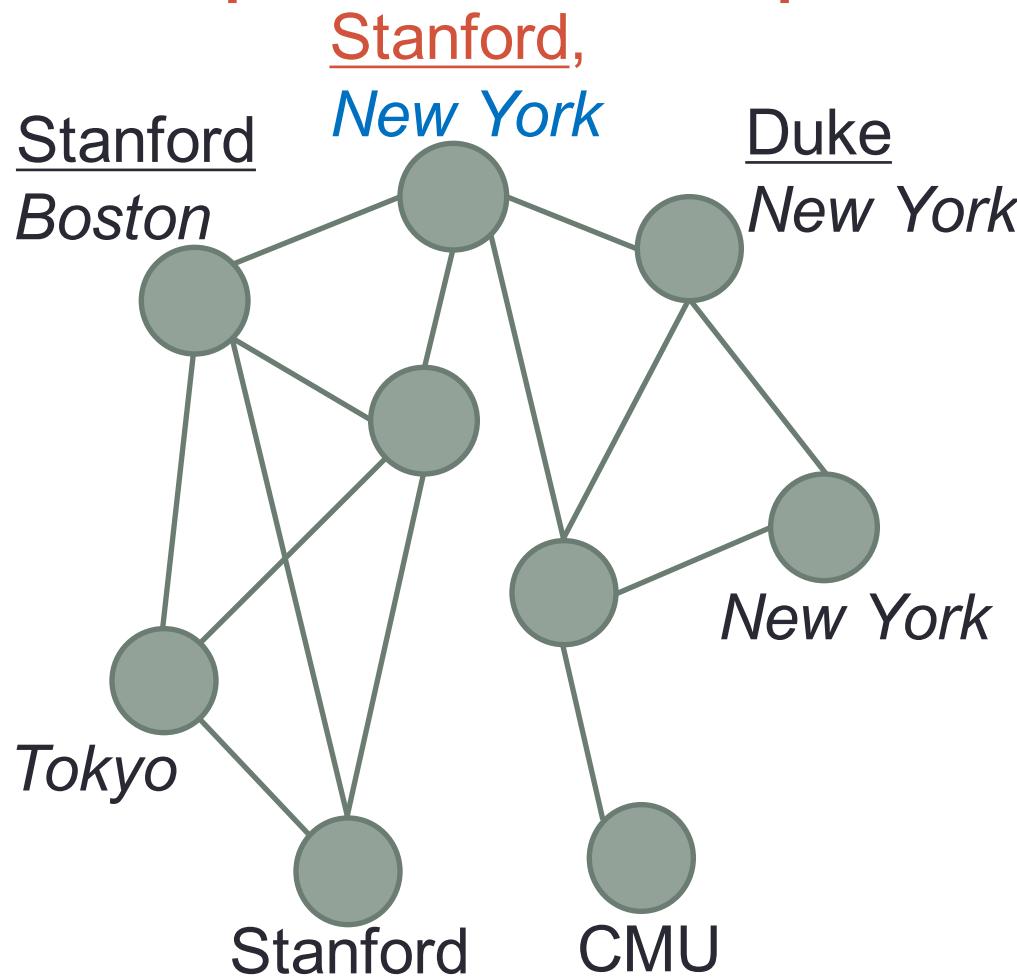
Explain friendships to infer user properties



If we have incomplete labels of many types, can we infer the rest of the labels?

Idea:
Adjacent nodes only need to agree on **one** label

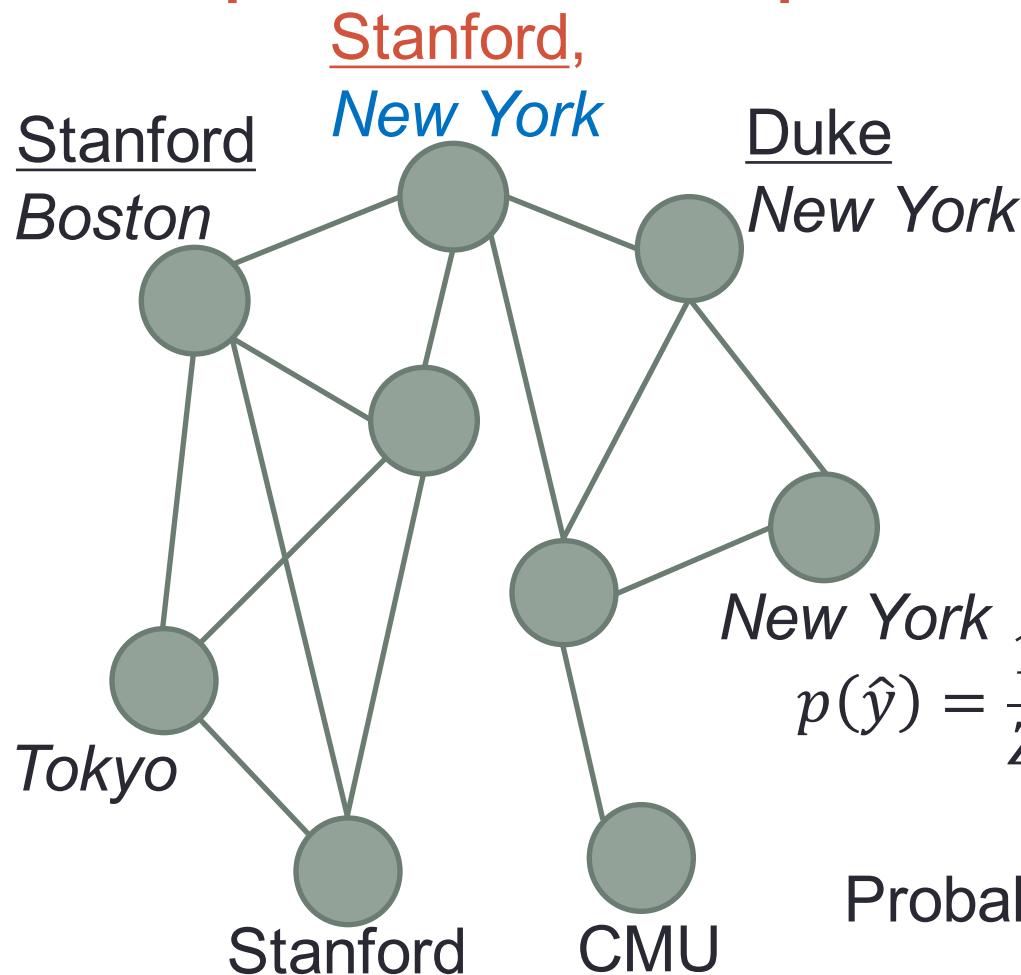
Explain friendships to infer user properties



If we have incomplete labels of many types, can we infer the rest of the labels?

Idea:
Adjacent nodes only need to agree on **one** label

Explain friendships to infer user properties



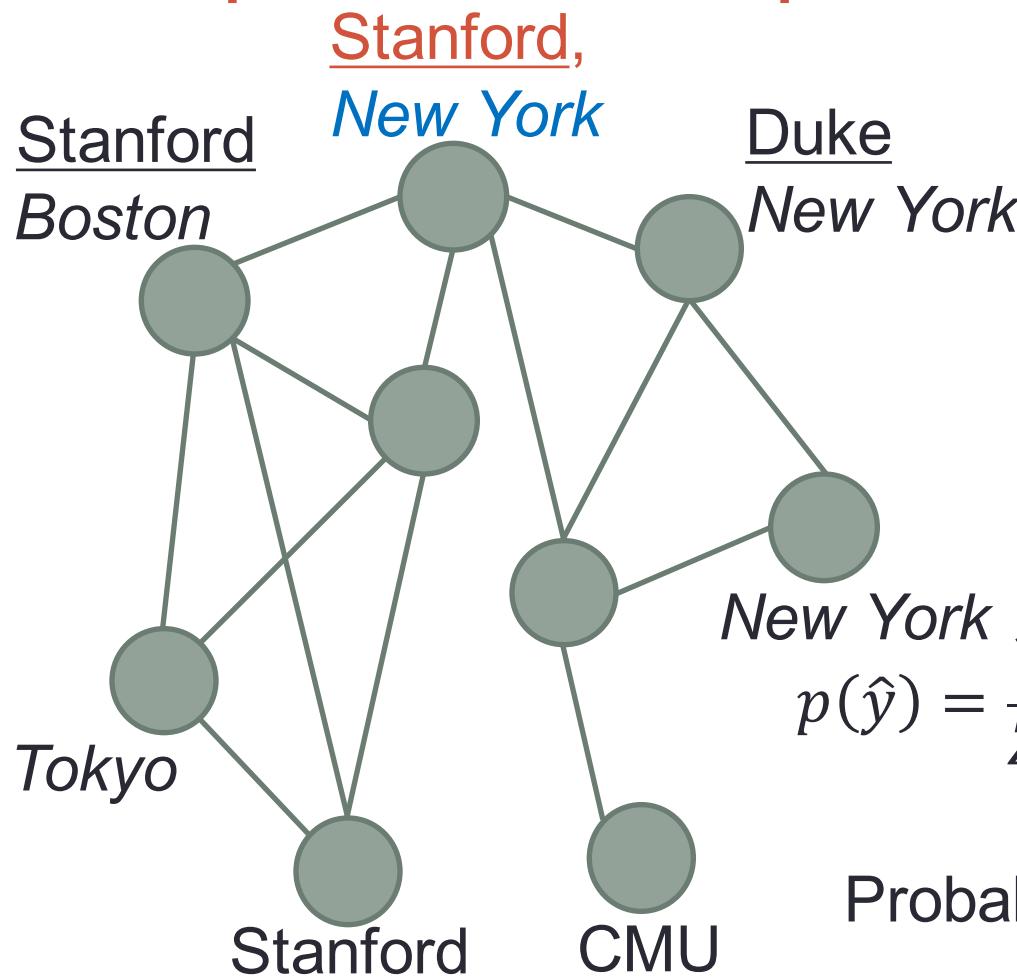
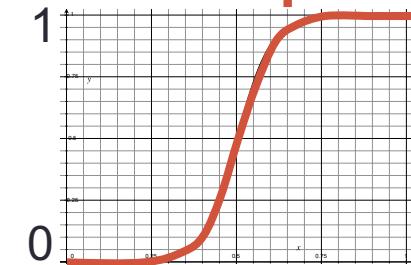
For each user u and property type t , we can observe 1 label from set $L(t)$, as given by vector $y_{u,t}$

$$p(\hat{y}) = \frac{1}{Z} \prod_{(u,v) \in E} \sigma \left(c + \alpha \sum_{\text{Type } t} \hat{y}_{u,t} \cdot \hat{y}_{v,t} \right)$$

Probability vectors:

$$\sum_{l \in L(t)} \hat{y}_{u,t,l} = 1$$

Explain friendships to infer user properties



Sigmoid function so no additional benefit beyond being similar on **one** type

$$p(\hat{y}) = \frac{1}{Z} \prod_{(u,v) \in E} \sigma \left(c + \alpha \sum_{\text{Type } t} \hat{y}_{u,t} \cdot \hat{y}_{v,t} \right)$$

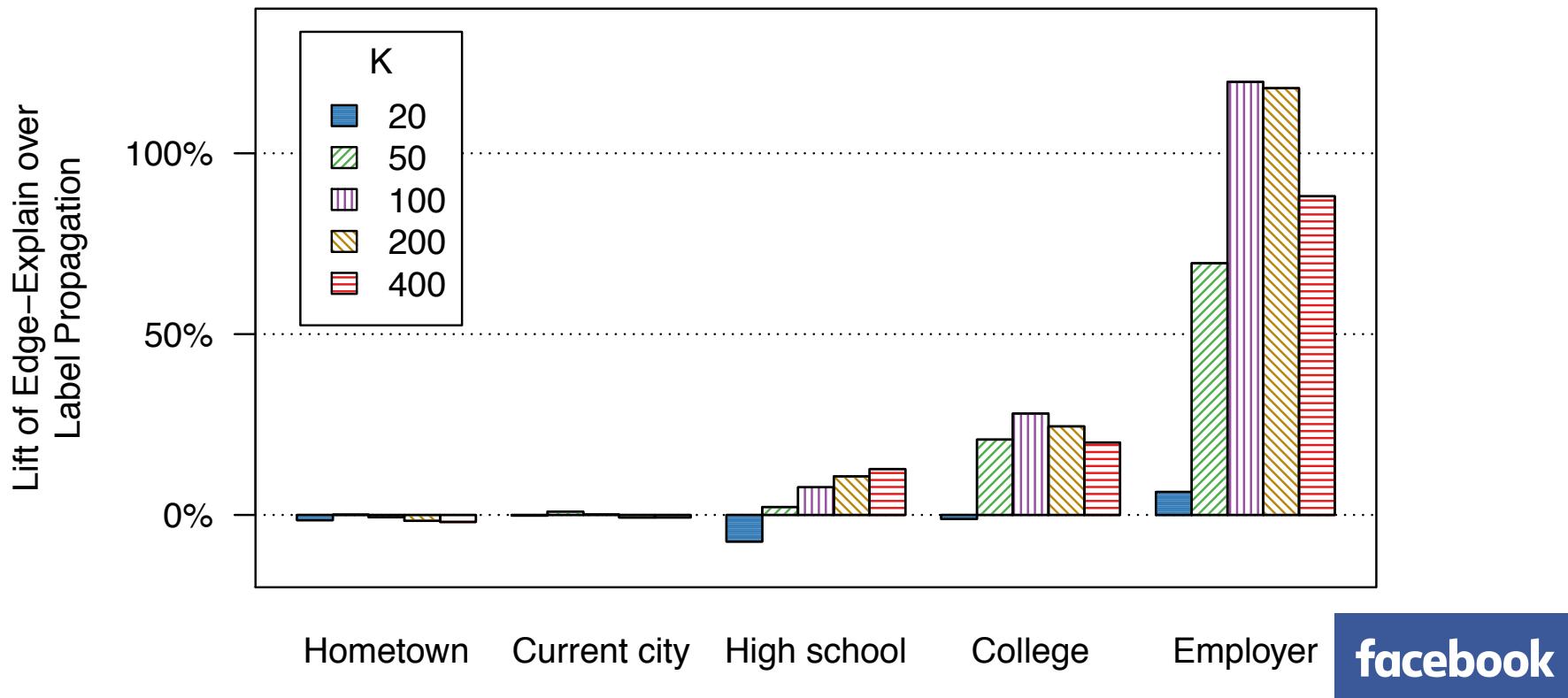
Probability vectors:

$$\sum_{l \in L(t)} \hat{y}_{u,t,l} = 1$$

Joint Inference of Multiple Label Types in Large Networks
 Deepayan Chakrabarti, Stanislav Funiak,
 Jonathan Chang, Sofus A. Macskassy
 ICML 2014

Explain friendships to infer user properties

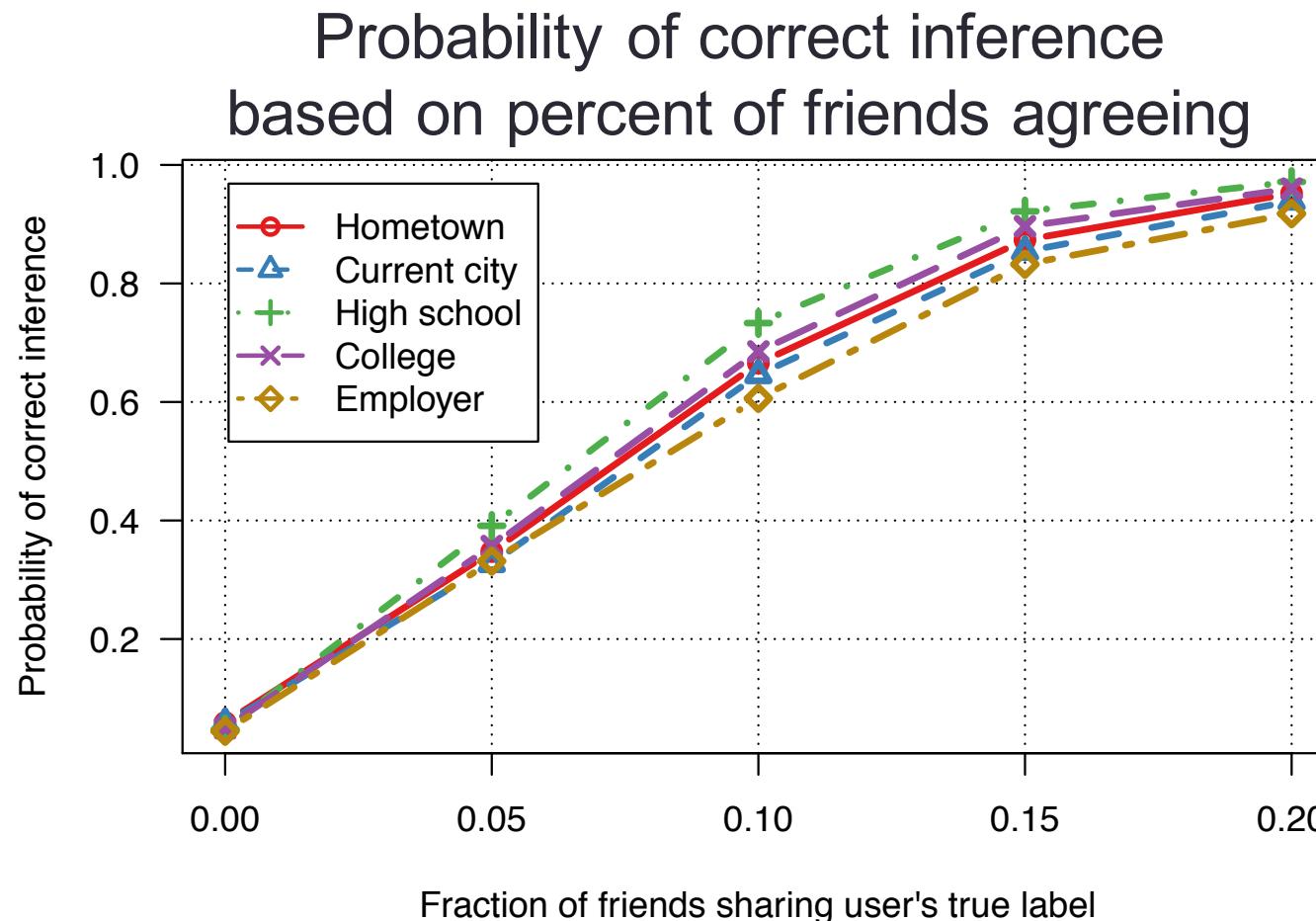
Recall (at 1) relative to Label Propagation



Joint Inference of Multiple Label Types in Large Networks
Deepayan Chakrabarti, Stanislav Funiak,
Jonathan Chang, Sofus A. Macskassy
ICML 2014

facebook

Explain friendships to infer user properties



facebook

Joint Inference of Multiple Label Types in Large Networks
Deepayan Chakrabarti, Stanislav Funiak,
Jonathan Chang, Sofus A. Macskassy
ICML 2014

1. Subgraph Analysis

2. Propagation Methods

a) Background

b) Normal Behavior

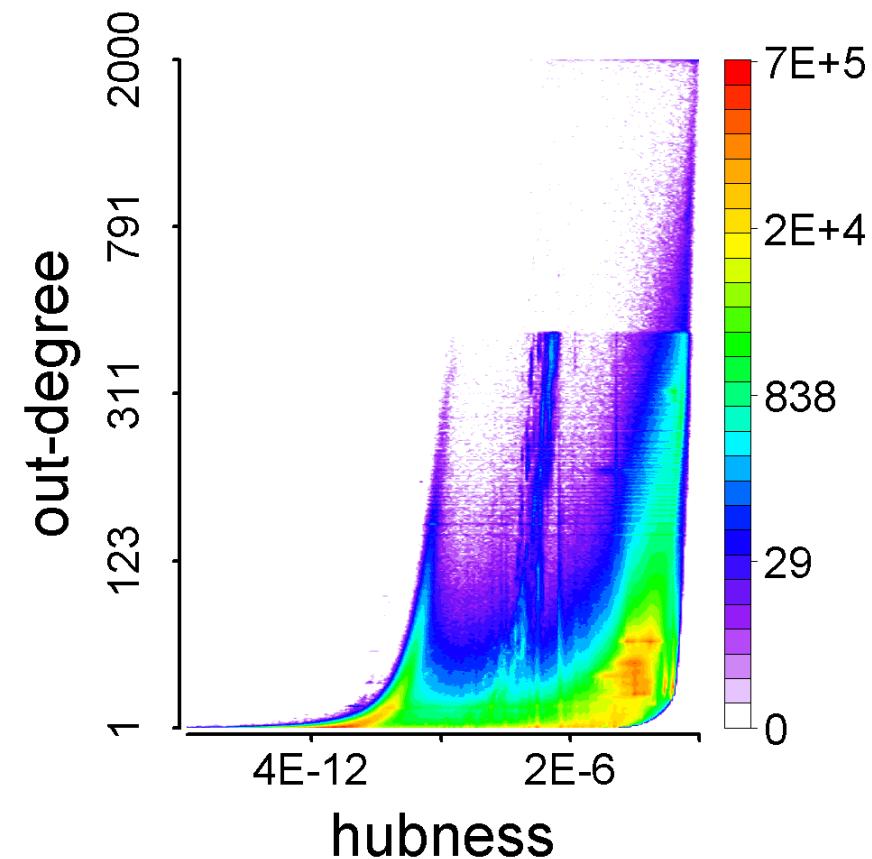
c) Abnormal Behavior

3. Latent Factor Models

Find Fraud in HITS

Model a user's following behavior:

- Out-degree
- Hubness



CatchSync: Catching Synchronized Behavior in Large Directed Graphs

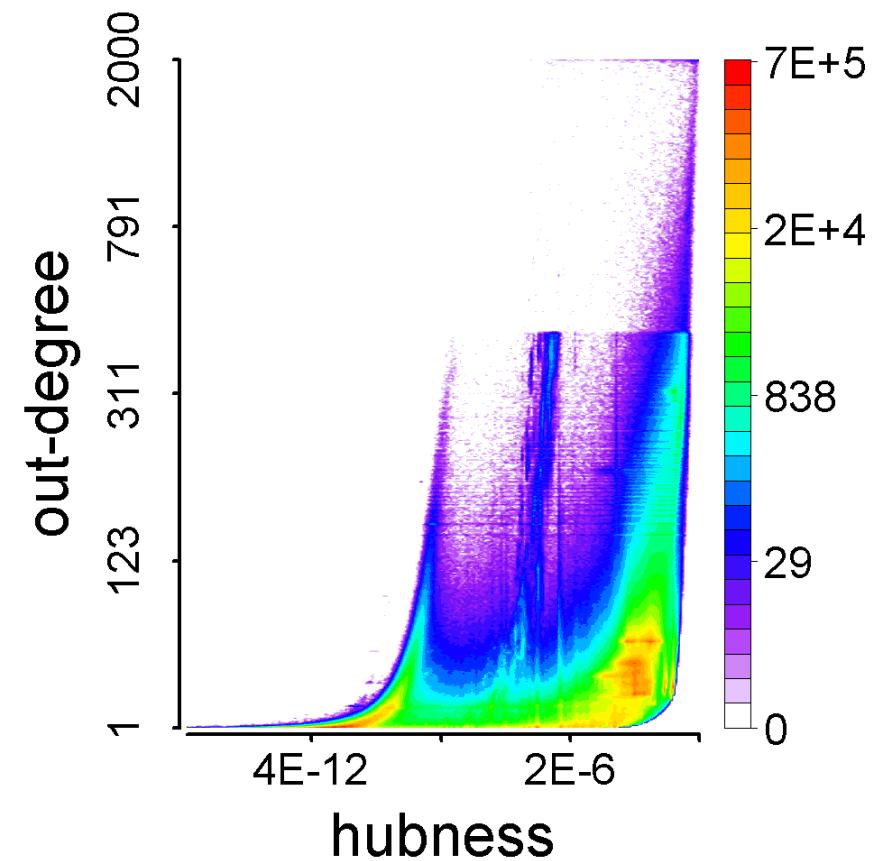
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS

Model a user's following behavior:

- Out-degree
- Hubness

Surprising to have high out-degree but low hubness



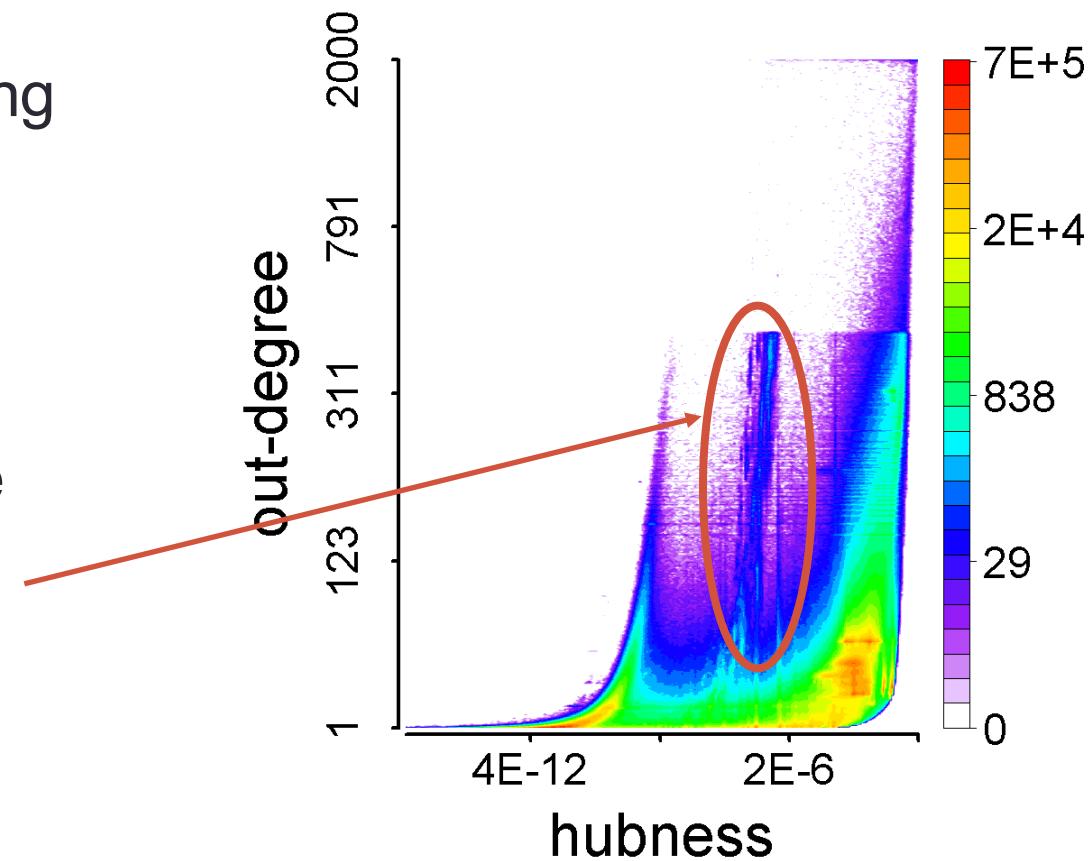
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS

Model a user's following behavior:

- Out-degree
- Hubness

Surprising to have high out-degree but low hubness



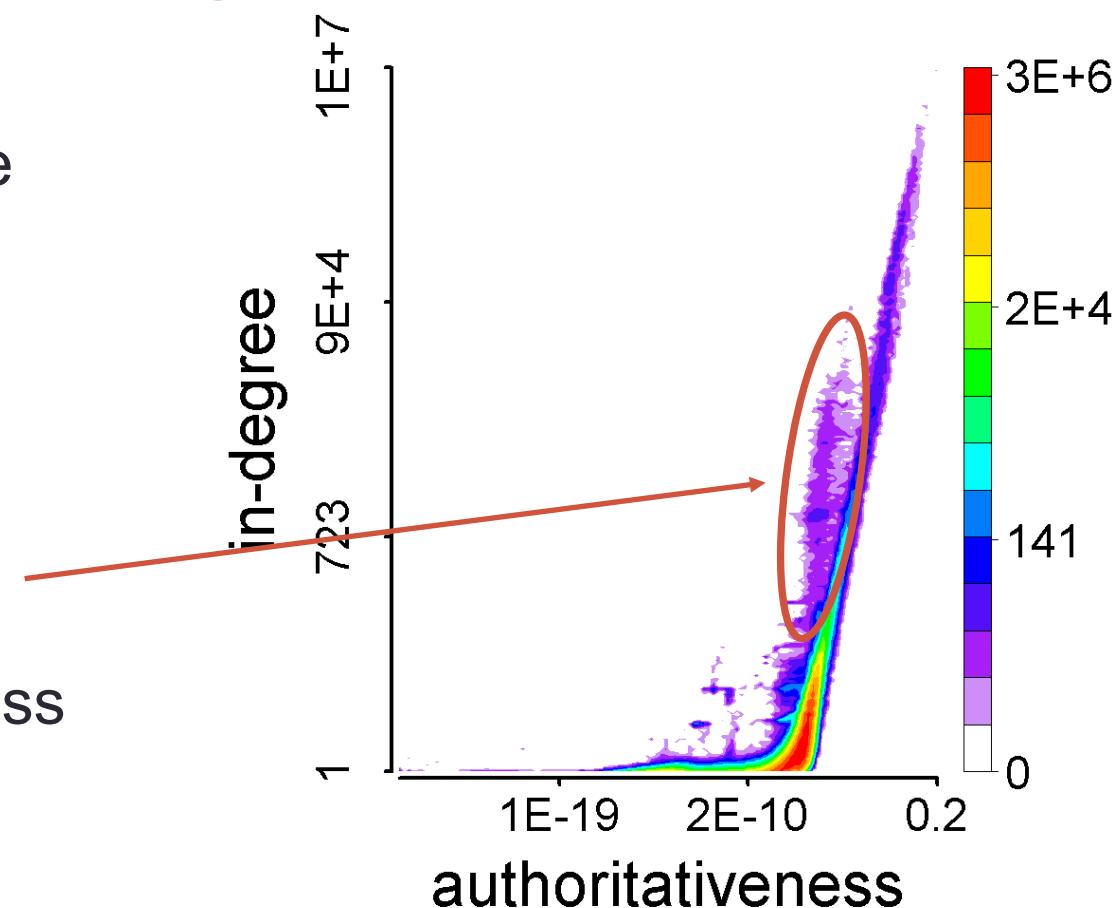
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS

Model a user's followee behavior:

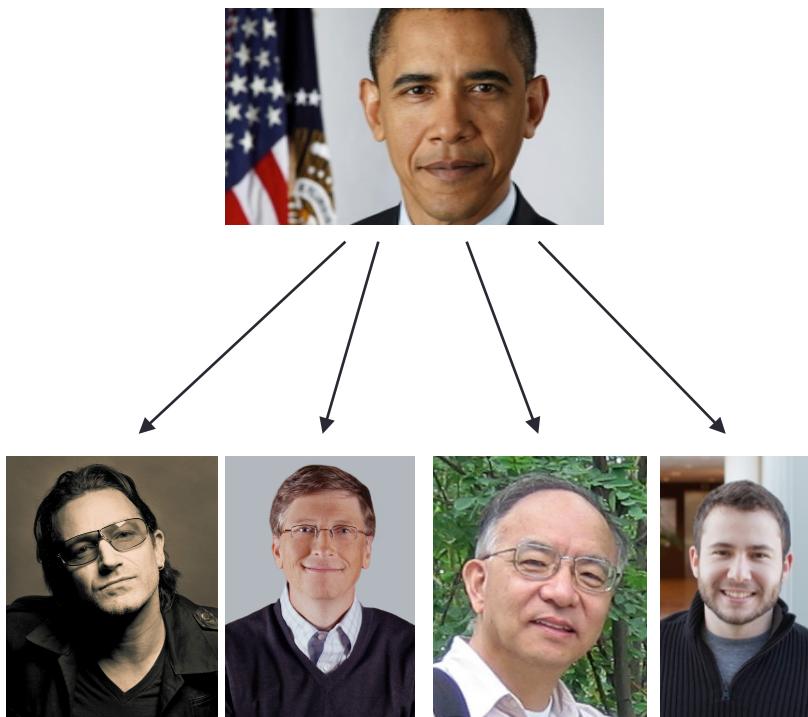
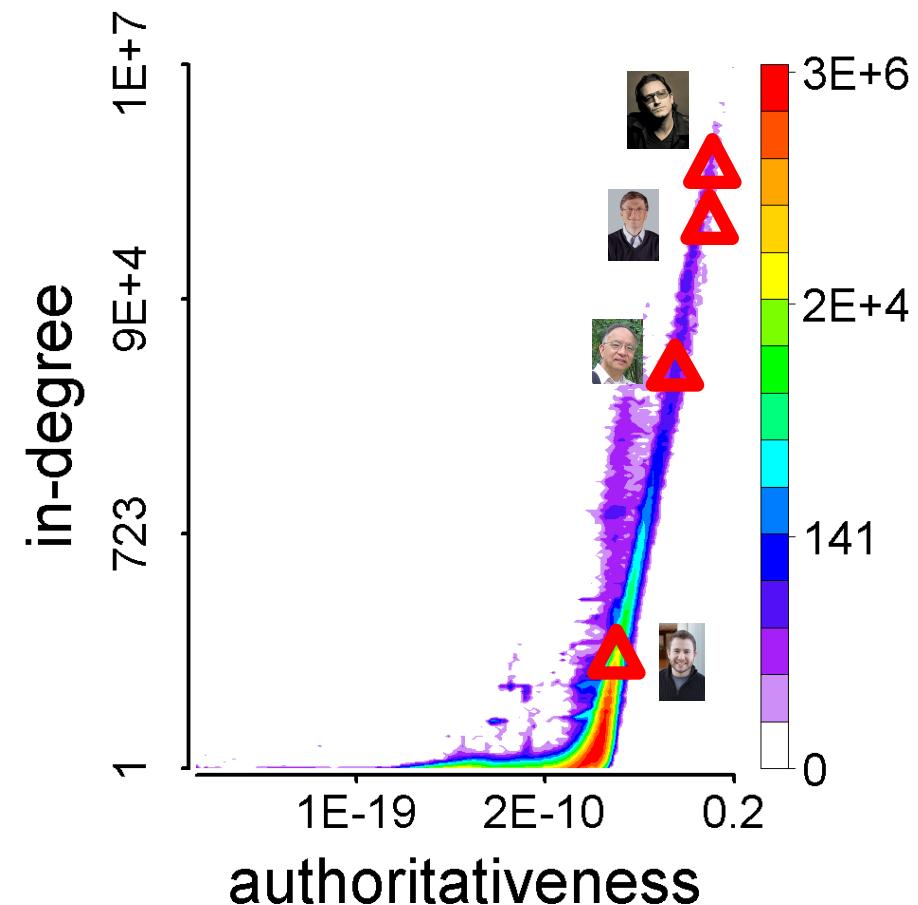
- In-degree
- Authoritativeness

Surprising to have
high in-degree
but low authoritativeness



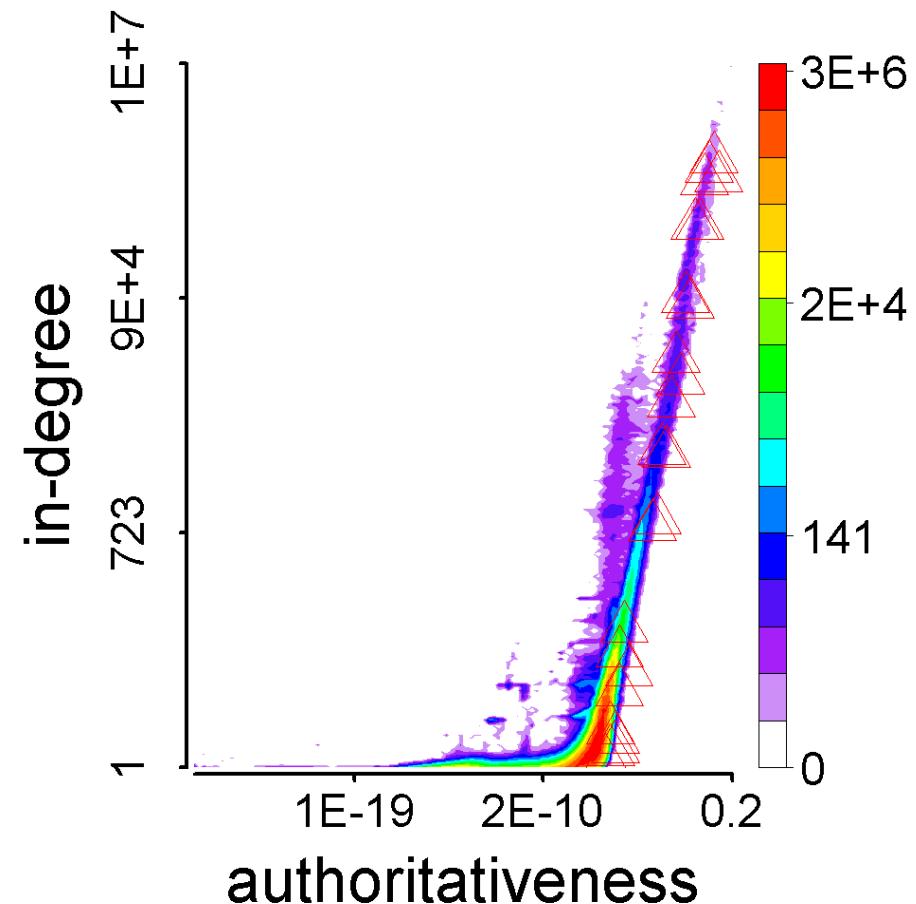
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS



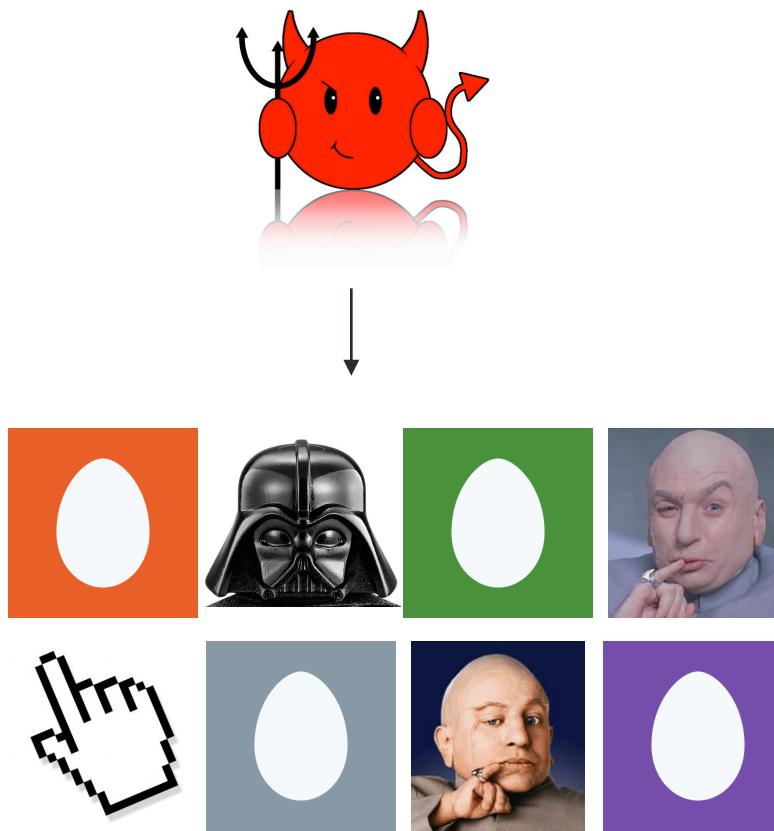
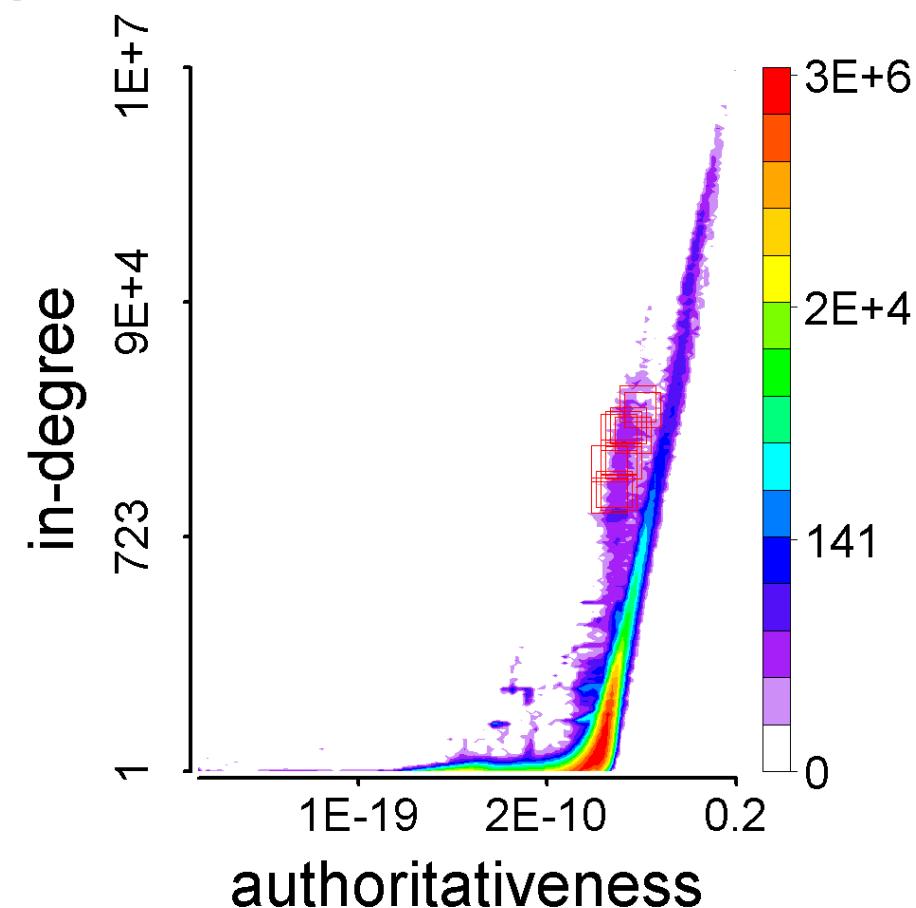
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS



CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS

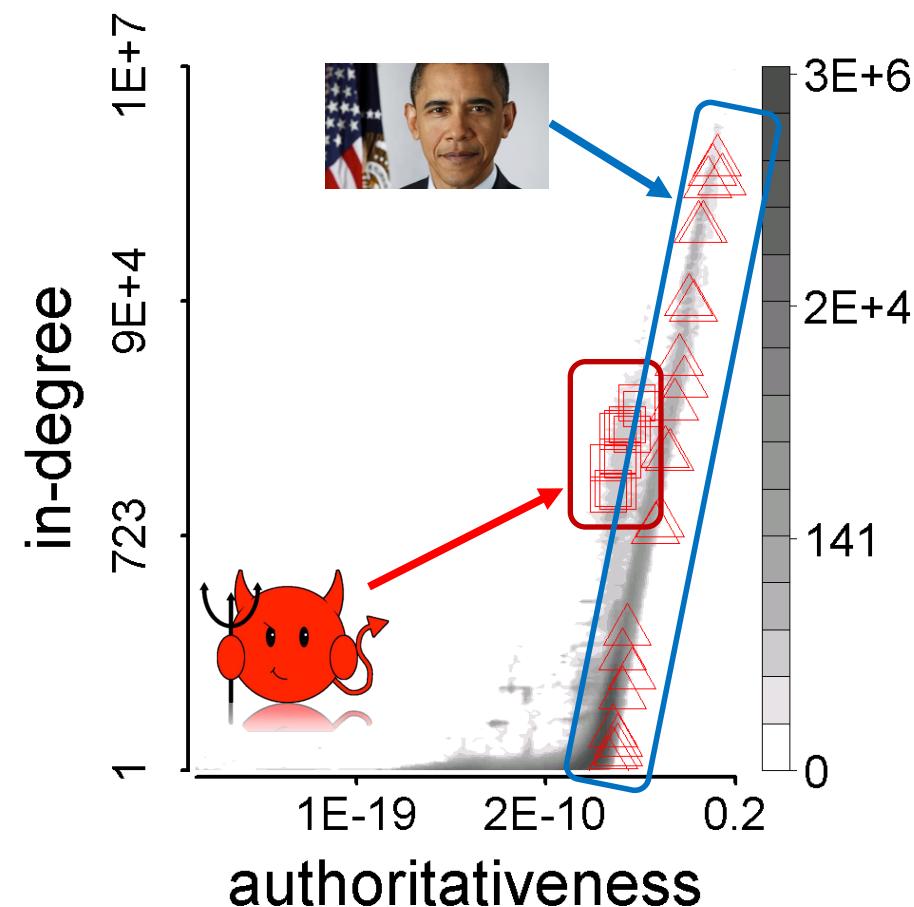


CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS

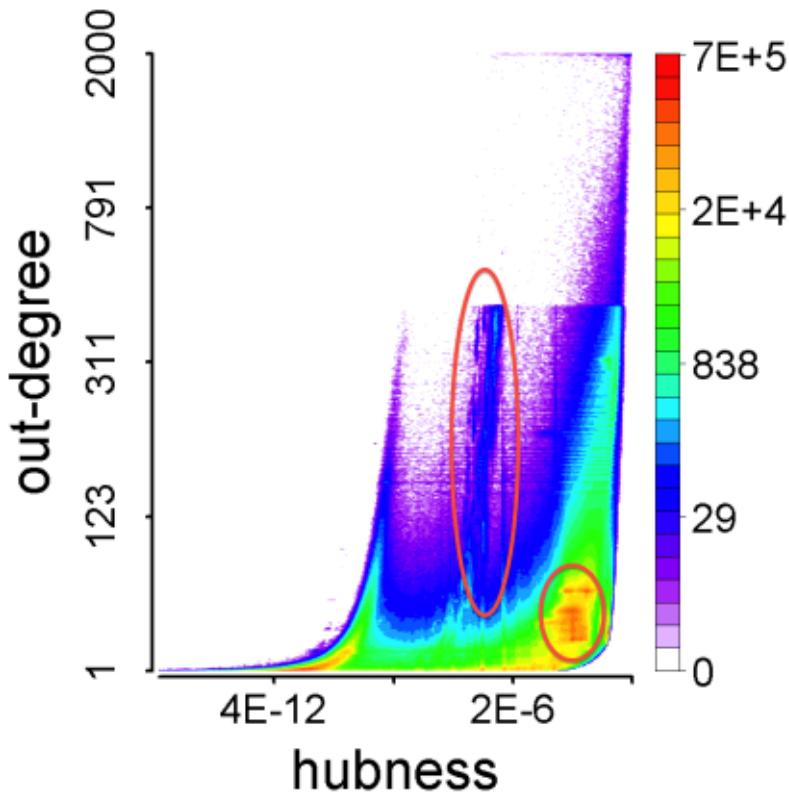
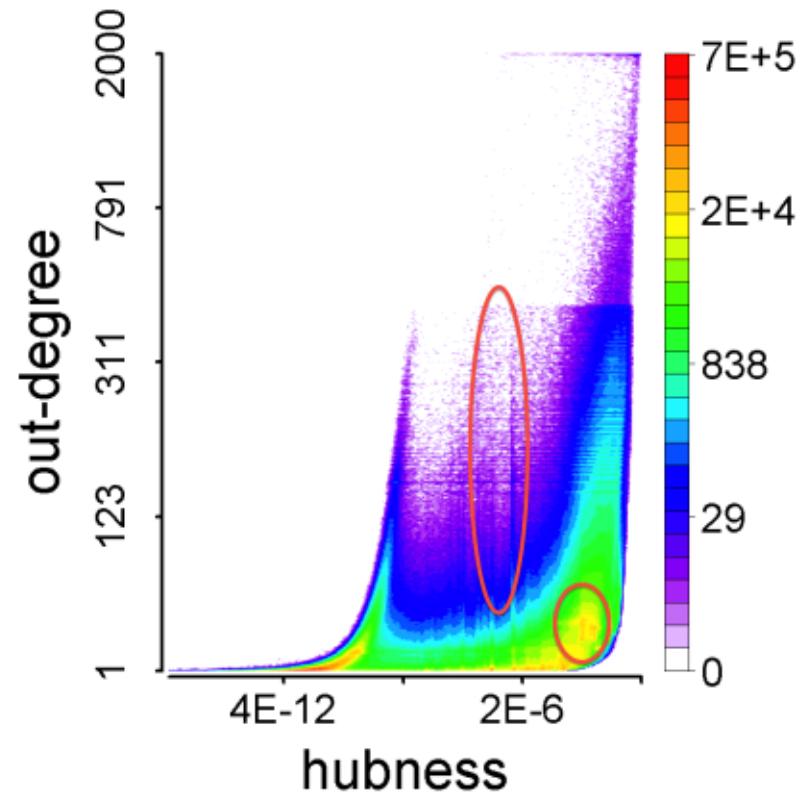
Suspicious Behavior:

- Synchronized
- Abnormal



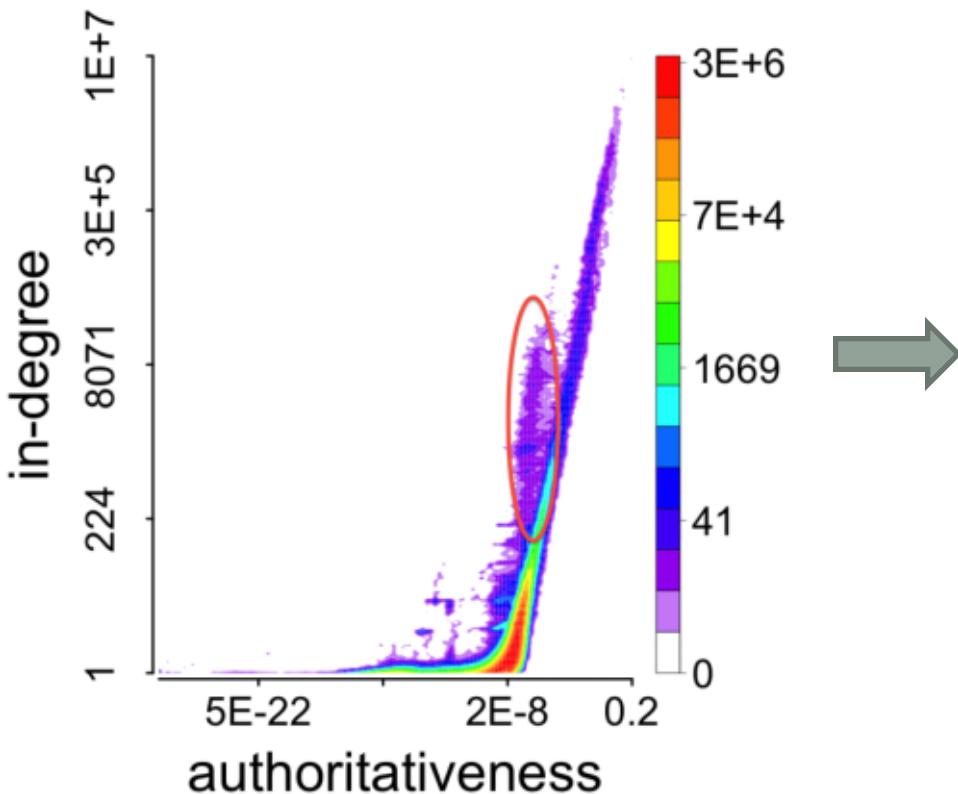
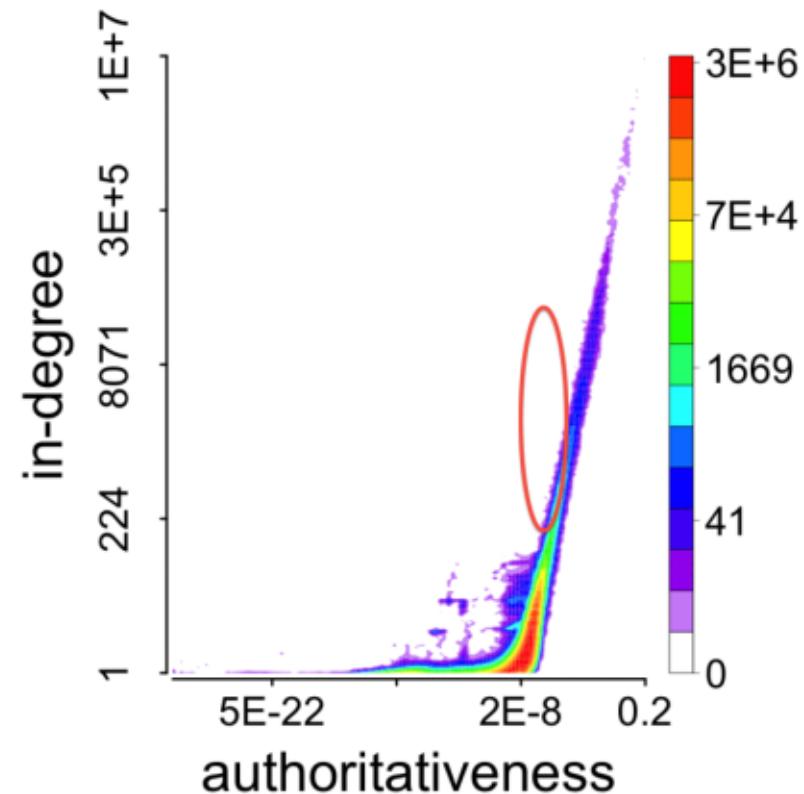
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS



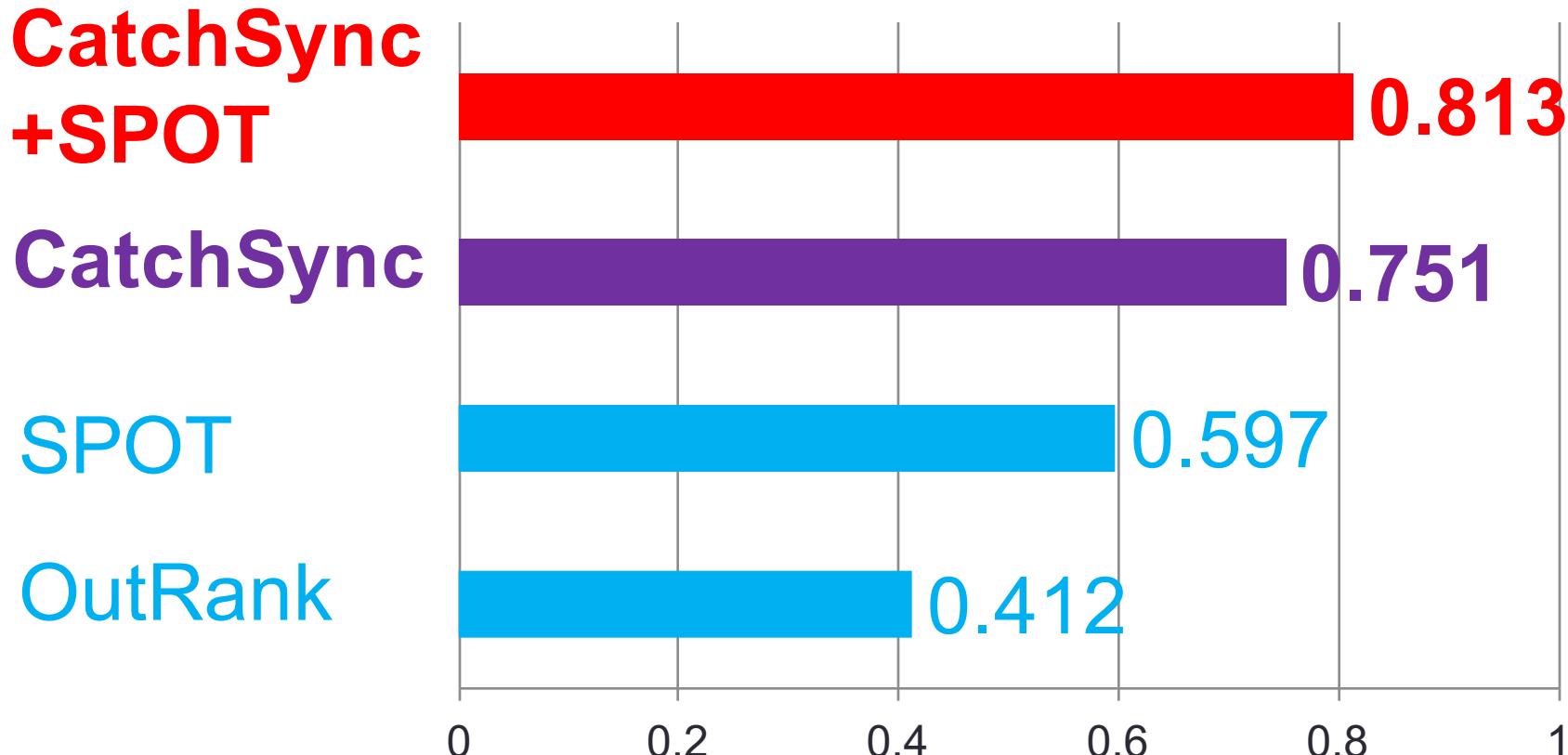
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS



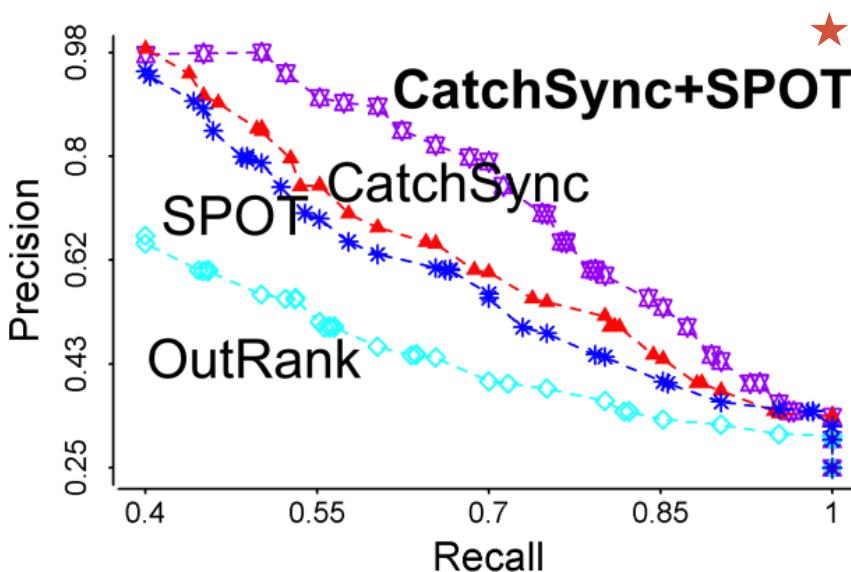
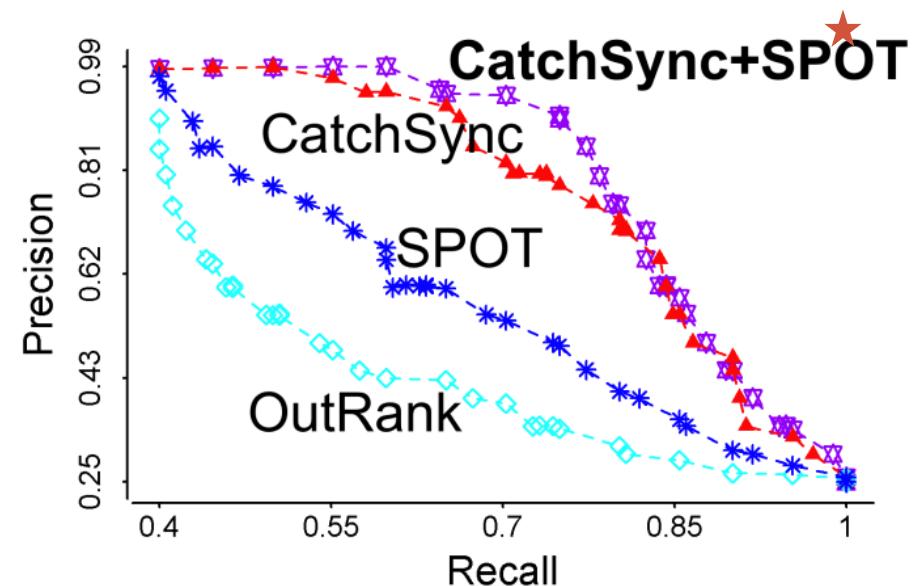
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS



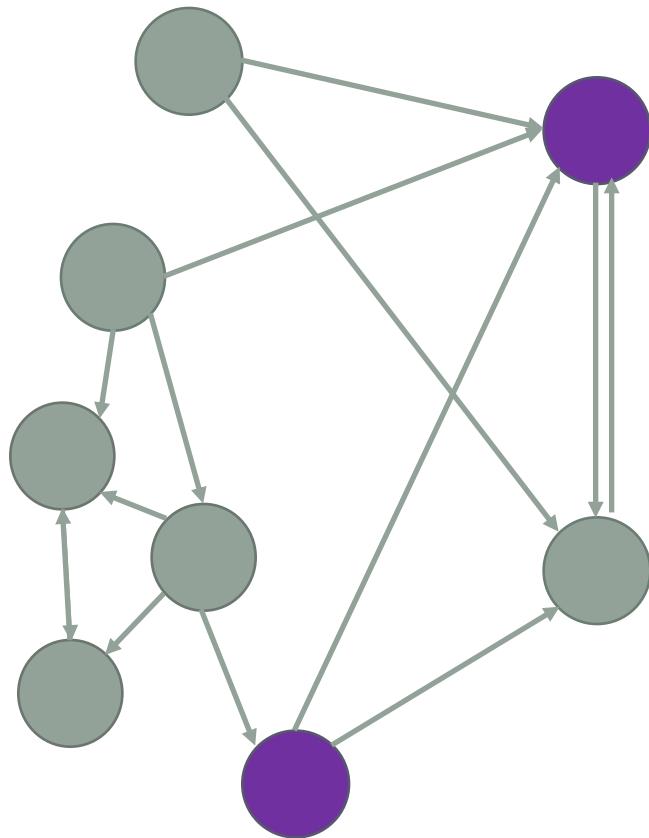
CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

Find Fraud in HITS



CatchSync: Catching Synchronized Behavior in Large Directed Graphs
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang
KDD, 2014

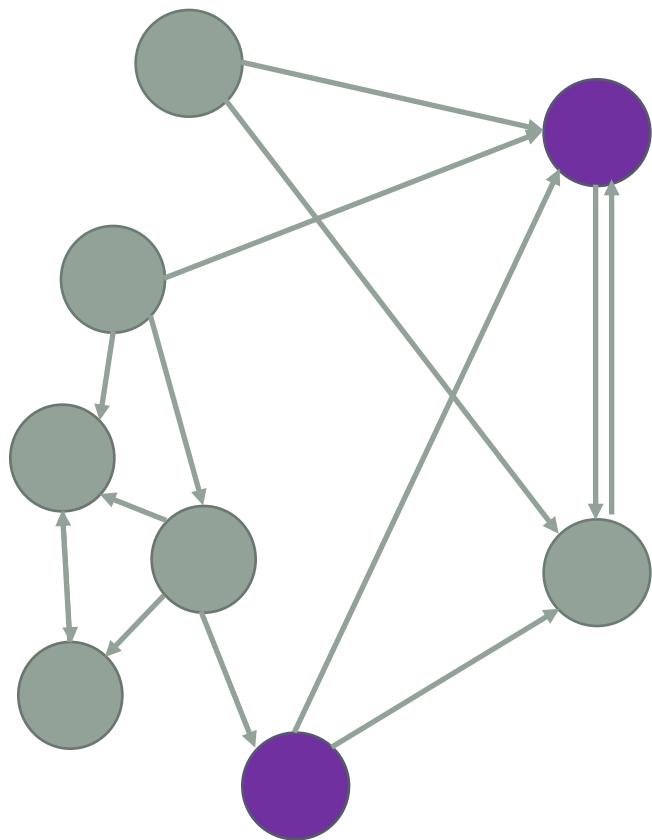
TrustRank



Given a small **seed set** of trustworthy pages, can we score how trustworthy all pages are?

Combating Web Spam with TrustRank
Zoltán Gyöngyi, Hector Garcia-Molina, Jan Pedersen
VLDB 2004

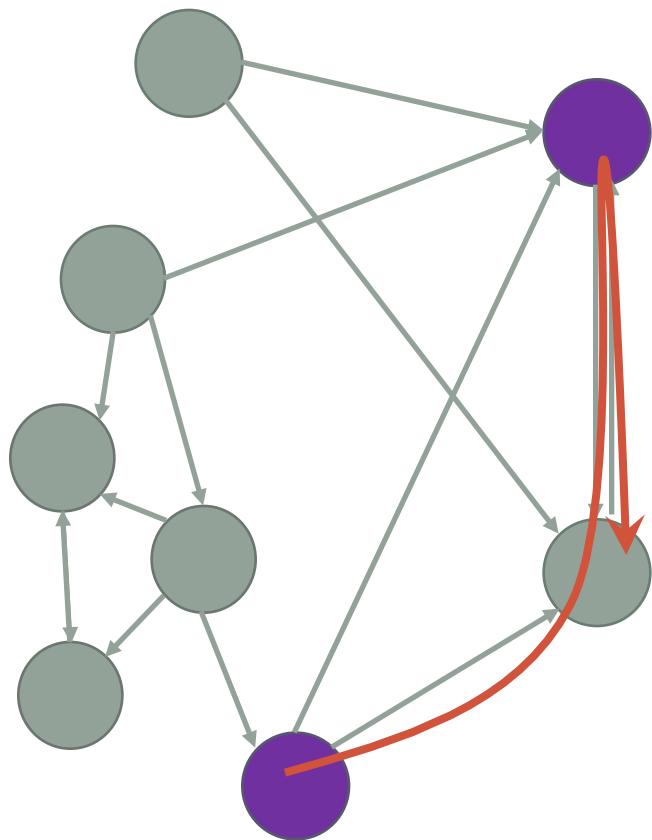
TrustRank



Given a small **seed set** of trustworthy pages, can we score how trustworthy all pages are?

In PageRank random walk, jump to seed trustworthy nodes

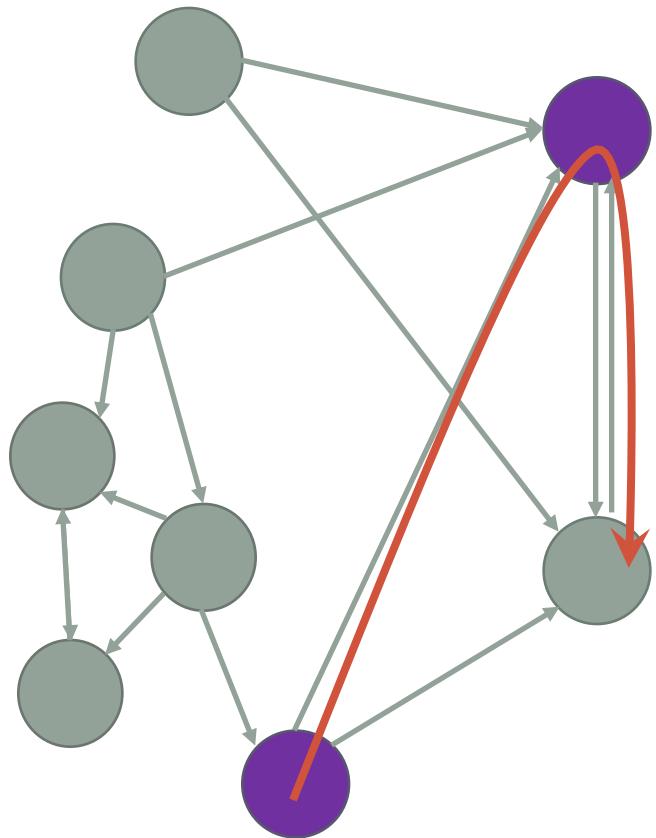
TrustRank



Given a small **seed set** of trustworthy pages, can we score how trustworthy all pages are?

In PageRank random walk, jump to seed trustworthy nodes

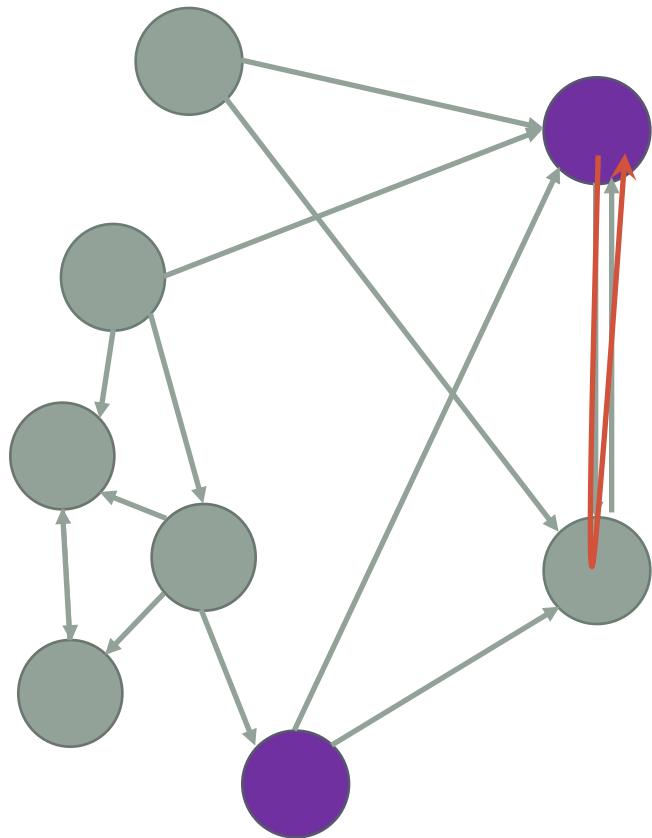
TrustRank



Given a small **seed set** of trustworthy pages, can we score how trustworthy all pages are?

In PageRank random walk, jump to seed trustworthy nodes

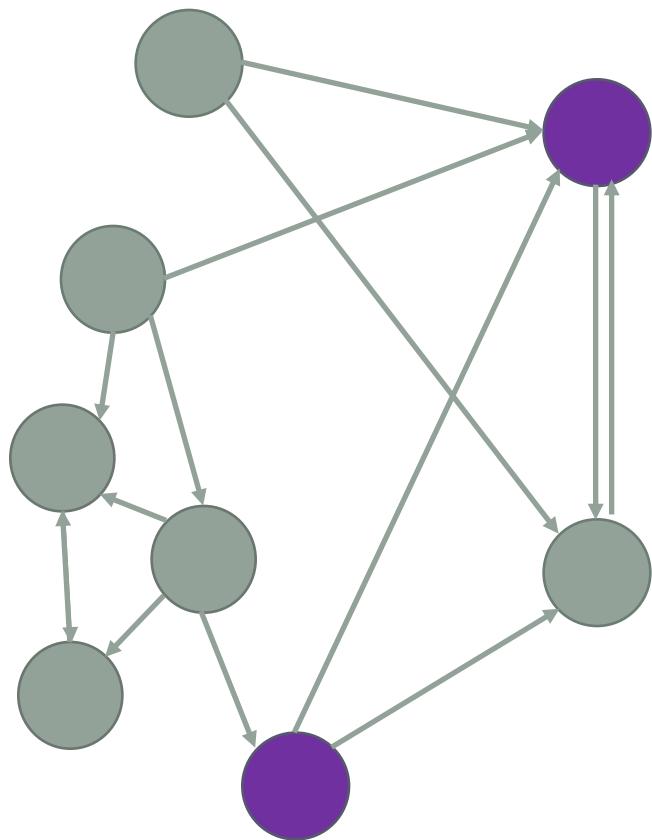
TrustRank



Given a small **seed set** of trustworthy pages, can we score how trustworthy all pages are?

In PageRank random walk, jump to seed trustworthy nodes

TrustRank



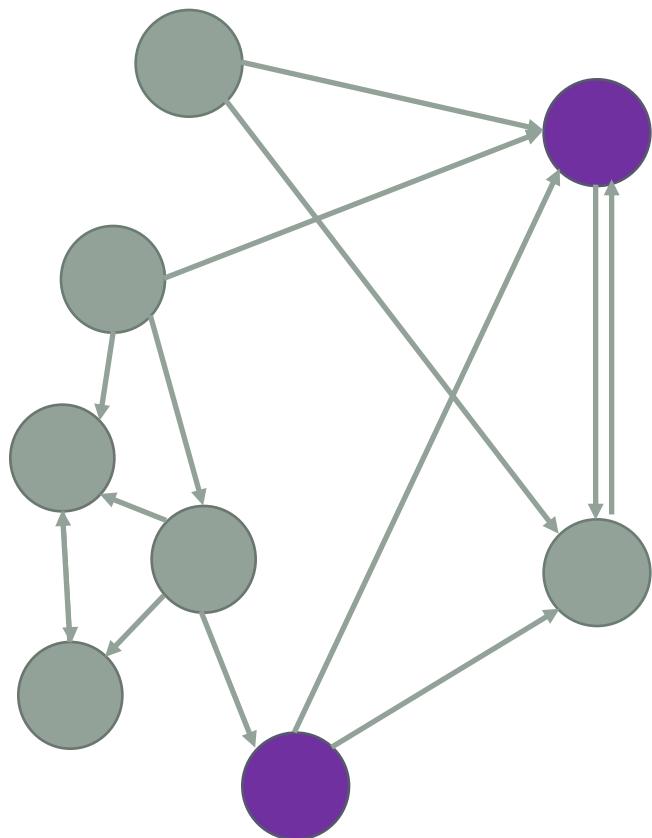
Given a small **seed set** of trustworthy pages, can we score how trustworthy all pages are?

In PageRank random walk, jump to seed trustworthy nodes

Seed Trustworthy vector \vec{t}

$$\xrightarrow{\text{TrustRank}} = cA' \xrightarrow{\text{TrustRank}} + \frac{1-c}{|\vec{t}|} \vec{t}$$

TrustRank



Given a small **seed set** of trustworthy pages, can we score how trustworthy all pages are?

In PageRank random walk, jump to seed trustworthy nodes

Seed Trustworthy vector \vec{t}

$$\xrightarrow{\text{TrustRank}} = cA' \xrightarrow{\text{TrustRank}} + \frac{1-c}{|\vec{t}|} \vec{t}$$

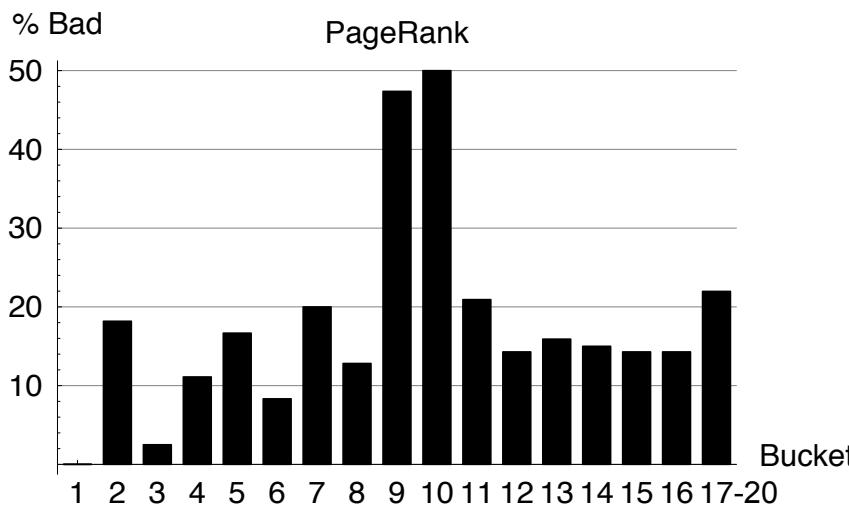
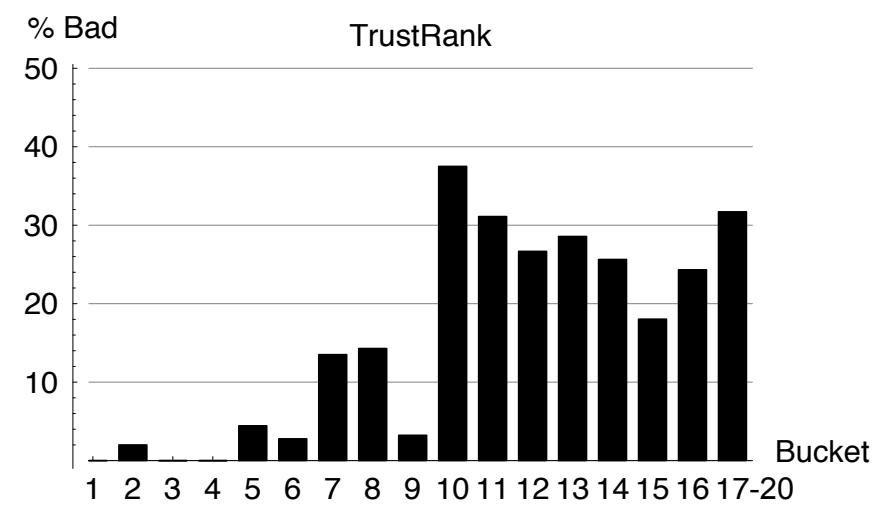
“Guilt” (Trust) by Association

Combating Web Spam with TrustRank

Zoltán Gyöngyi, Hector Garcia-Molina, Jan Pedersen

VLDB 2004

TrustRank



Bad pages by “Bucket”

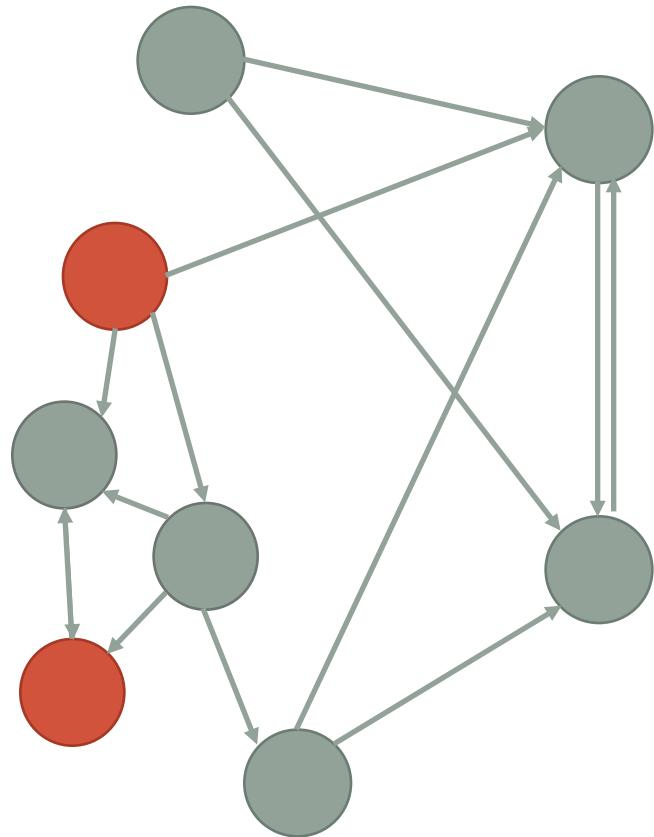
Combating Web Spam with TrustRank

Zoltán Gyöngyi, Hector Garcia-Molina, Jan Pedersen

VLDB 2004

Distrust Rank

Given a small **seed set**
of spam pages,
can we find other spammy pages?

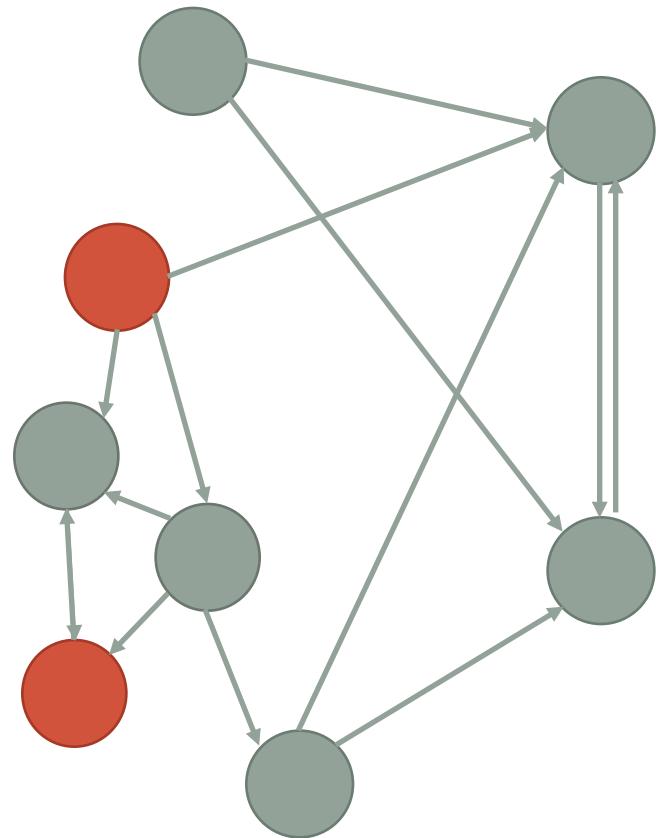


Propagating Trust and Distrust to Demote Web Spam
Baoning Wu, Vinay Goel, Brian D. Davison
WWW 2006

Distrust Rank

Given a small **seed set**
of spam pages,
can we find other spammy pages?

Spam pages are pointed to by
spam pages

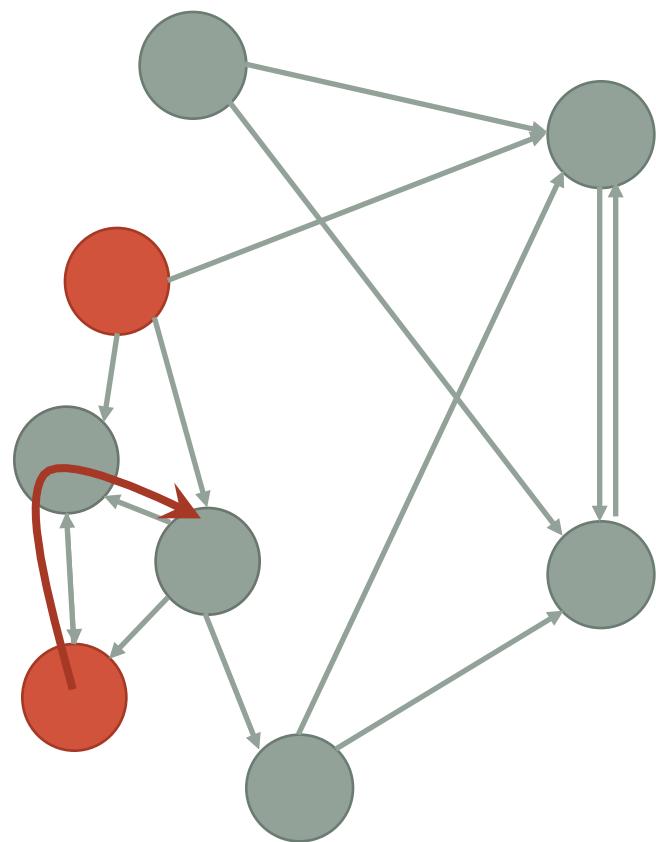


Distrust Rank

Given a small **seed set** of spam pages, can we find other spammy pages?

Spam pages are pointed to by spam pages

Random walk backward in graph

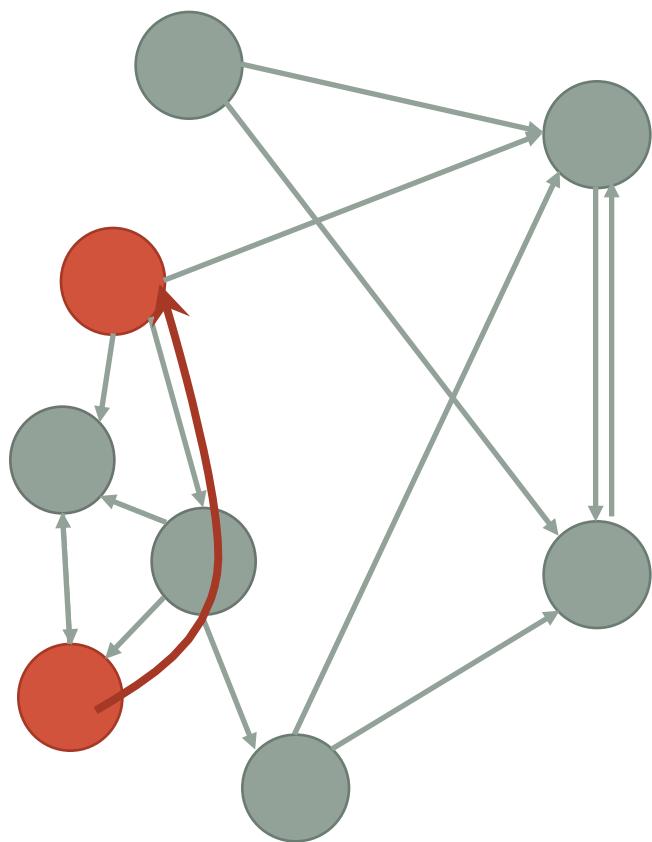


Distrust Rank

Given a small **seed set** of spam pages, can we find other spammy pages?

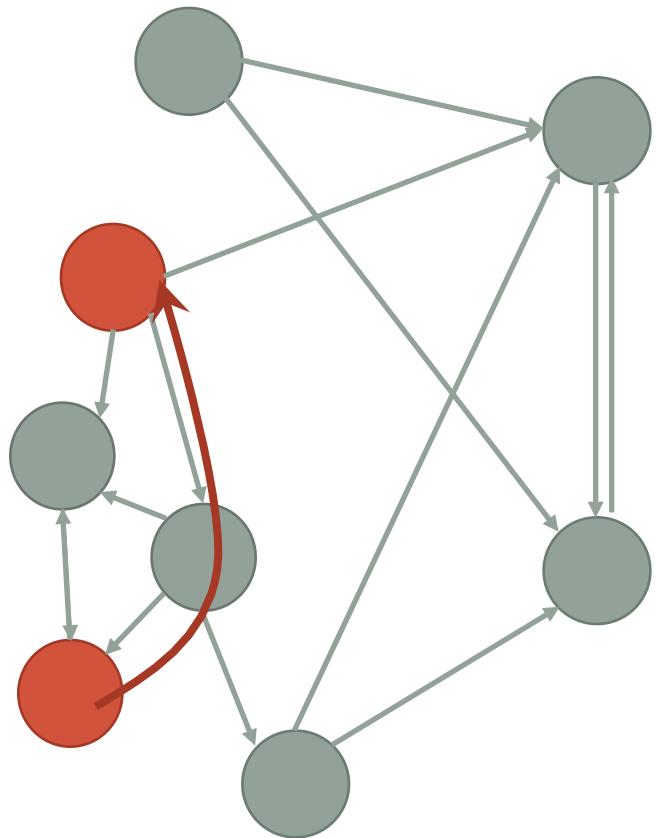
Spam pages are pointed to by spam pages

Random walk backward in graph



Distrust Rank

Random walk backward in graph

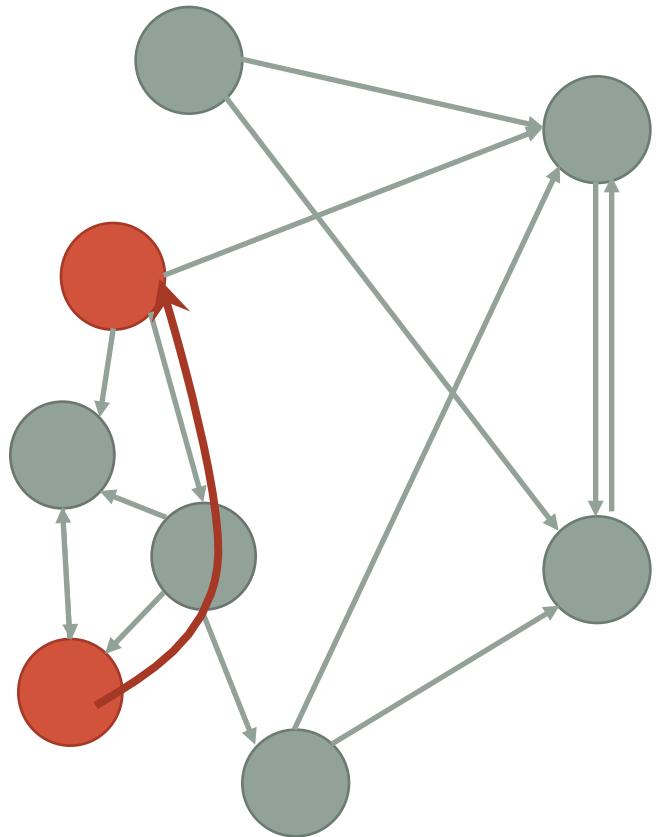


Reverse Normalized Adjacency
Matrix M

$$M_{p,q} \begin{cases} \frac{1}{\text{InDegree}(q)} & \text{if } (p, q) \in E \\ 0 & \text{if } (p, q) \notin E \end{cases}$$

Distrust Rank

Random walk backward in graph



Reverse Normalized Adjacency
Matrix M

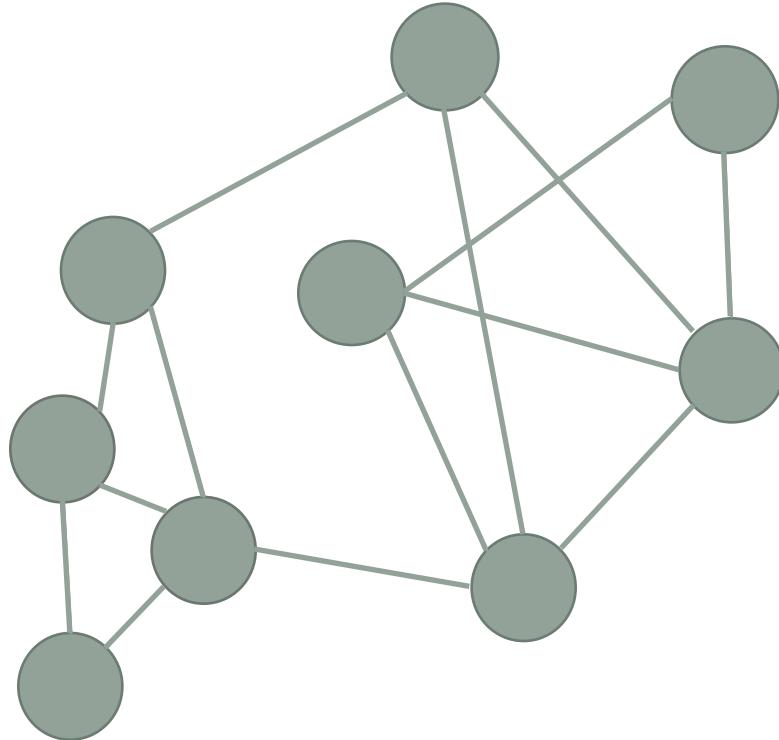
$$M_{p,q} \begin{cases} \frac{1}{\text{InDegree}(q)} & \text{if } (p, q) \in E \\ 0 & \text{if } (p, q) \notin E \end{cases}$$

Seed spam pages in vector \vec{s}

$$\overrightarrow{\text{DistrustRank}} = cM\overrightarrow{\text{DistrustRank}} + \frac{1-c}{|\vec{s}|}\vec{s}$$

SibylRank

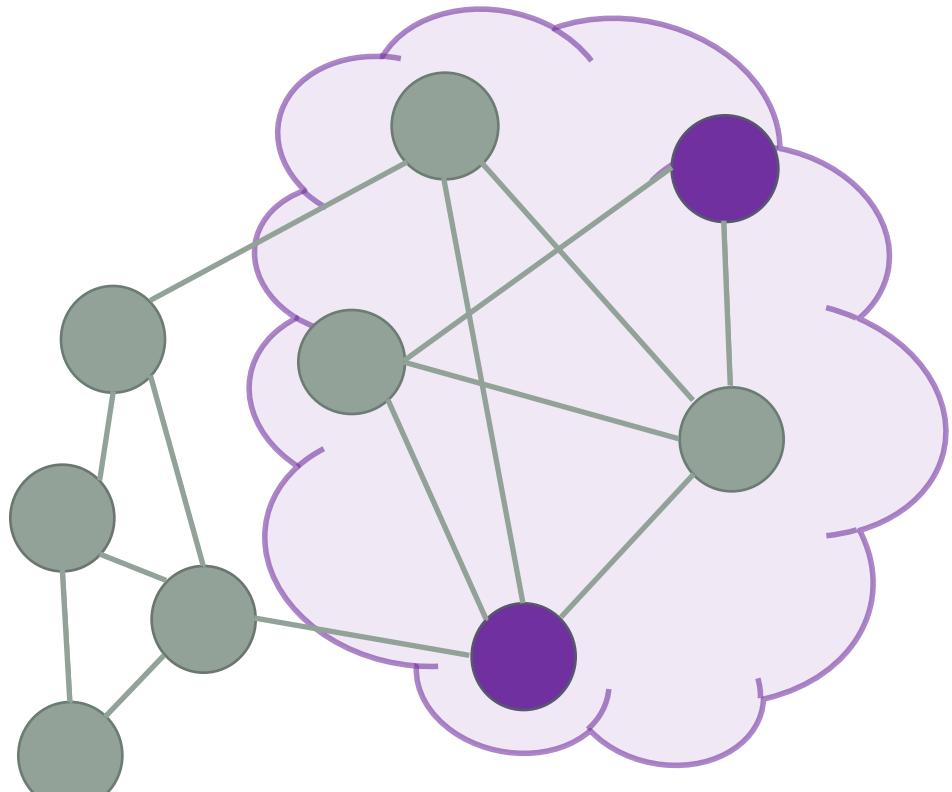
Given a small **seed set** of normal
social network accounts,
can we find fake accounts?



Aiding the Detection of Fake Accounts in Large Scale Social Online Services

Qiang Cao, Michael Sirivianos,
Xiaowei Yang, Tiago Pregueiro
NSDI 2012

SibylRank

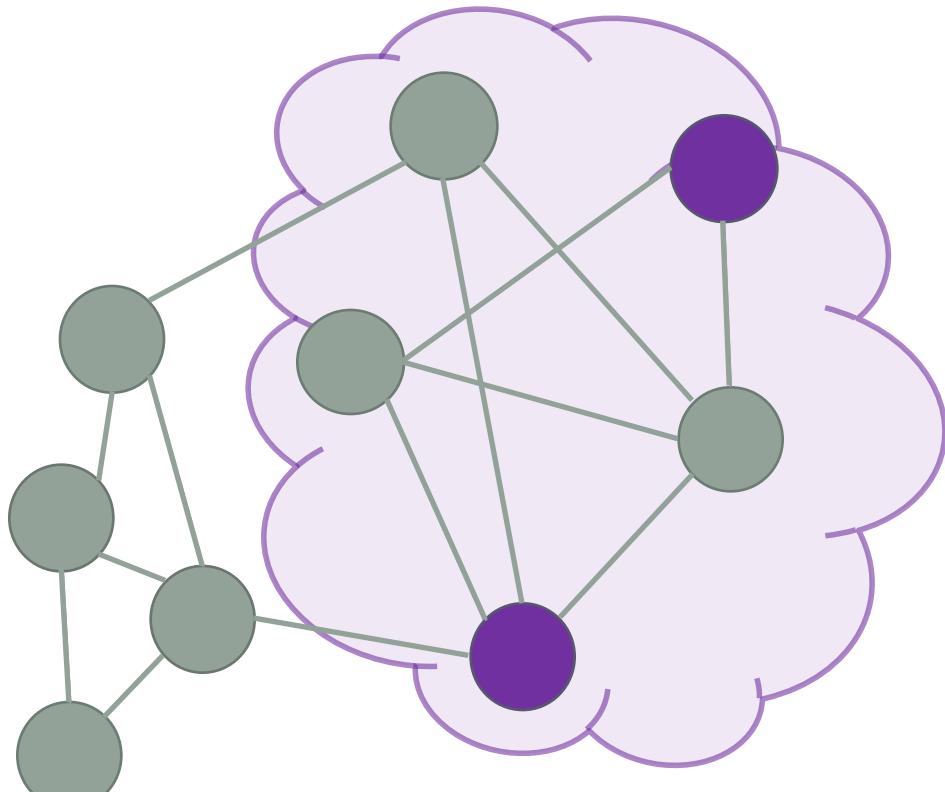


Given a small **seed set** of normal *social network accounts*, can we find fake accounts?

Honest Users

Aiding the Detection of Fake Accounts in Large Scale Social Online Services
Qiang Cao, Michael Sirivianos,
Xiaowei Yang, Tiago Pregueiro
NSDI 2012

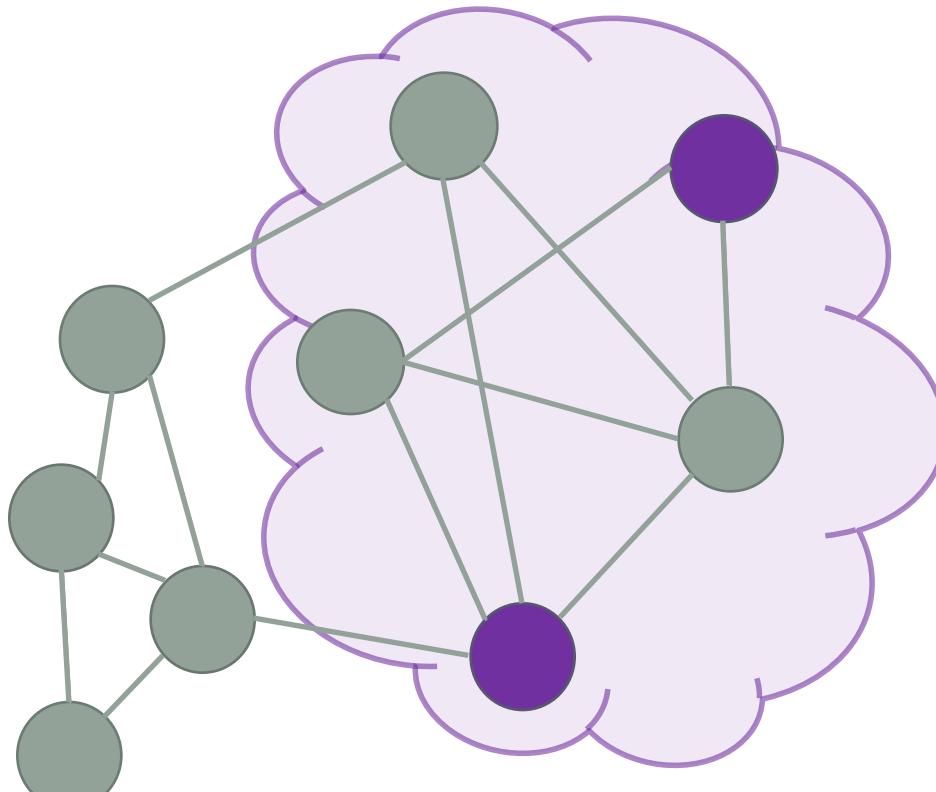
SibylRank



Given a small **seed set** of normal *social network accounts*, can we find fake accounts?

Observation: It is difficult for fake users to connect to honest users.

SibylRank

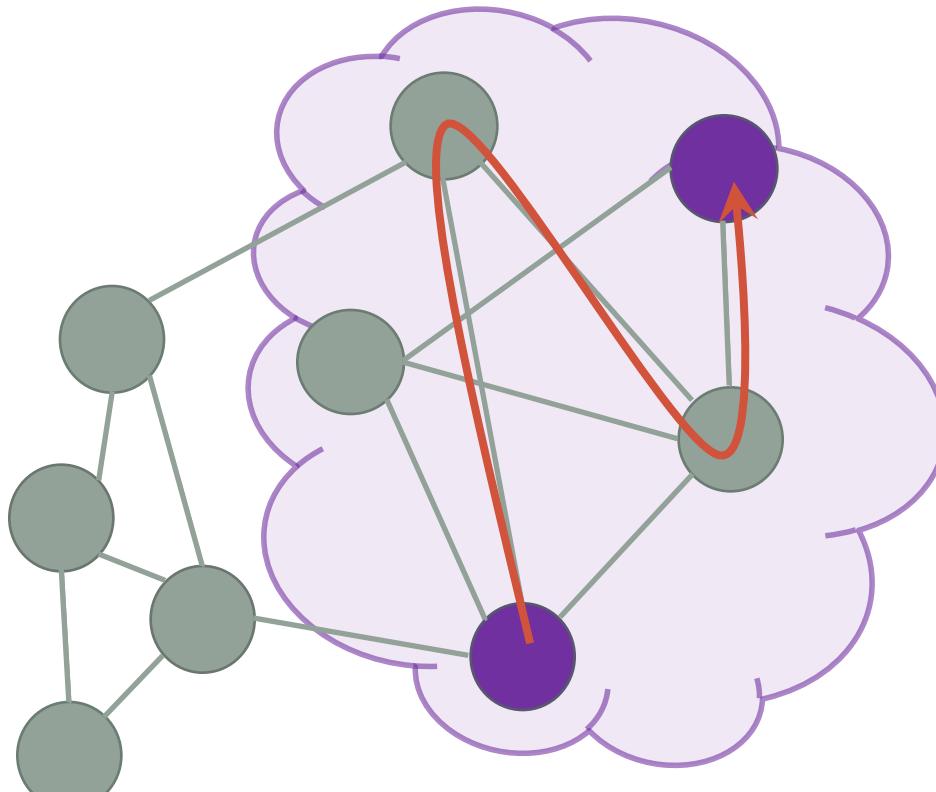


Given a small **seed set** of normal *social network accounts*, can we find fake accounts?

Observation: It is difficult for fake users to connect to honest users.

Solution: Use Early-Termination Random Walks

SibylRank



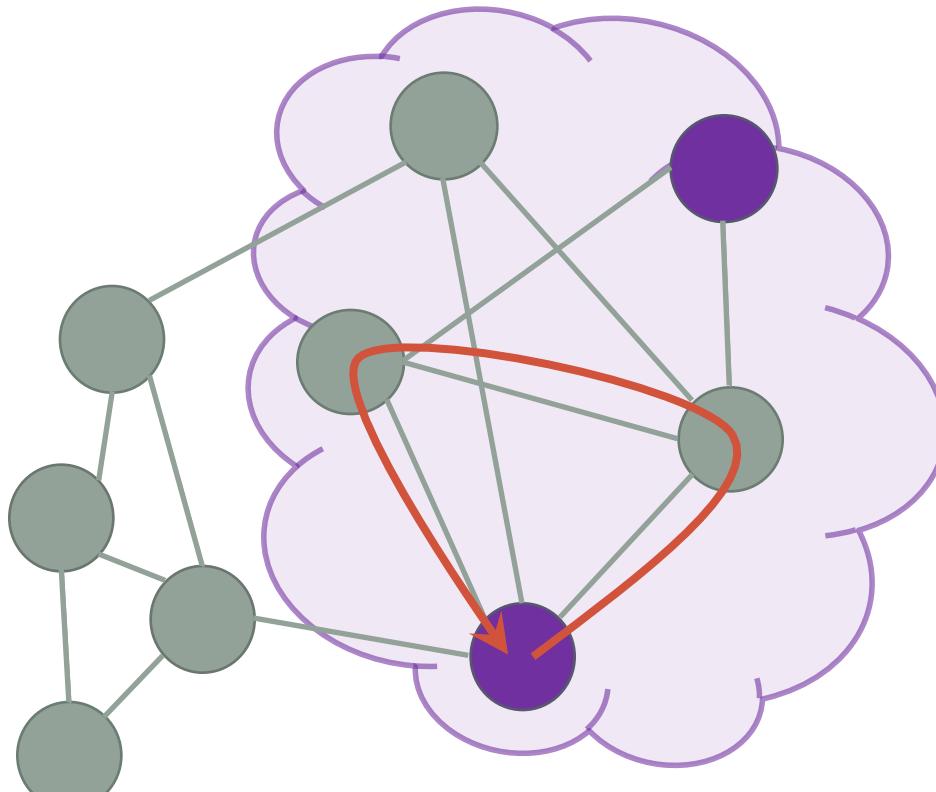
Honest Users

Given a small **seed set** of normal *social network accounts*, can we find fake accounts?

Observation: It is difficult for fake users to connect to honest users.

Solution: Use Early-Termination Random Walks

SibylRank



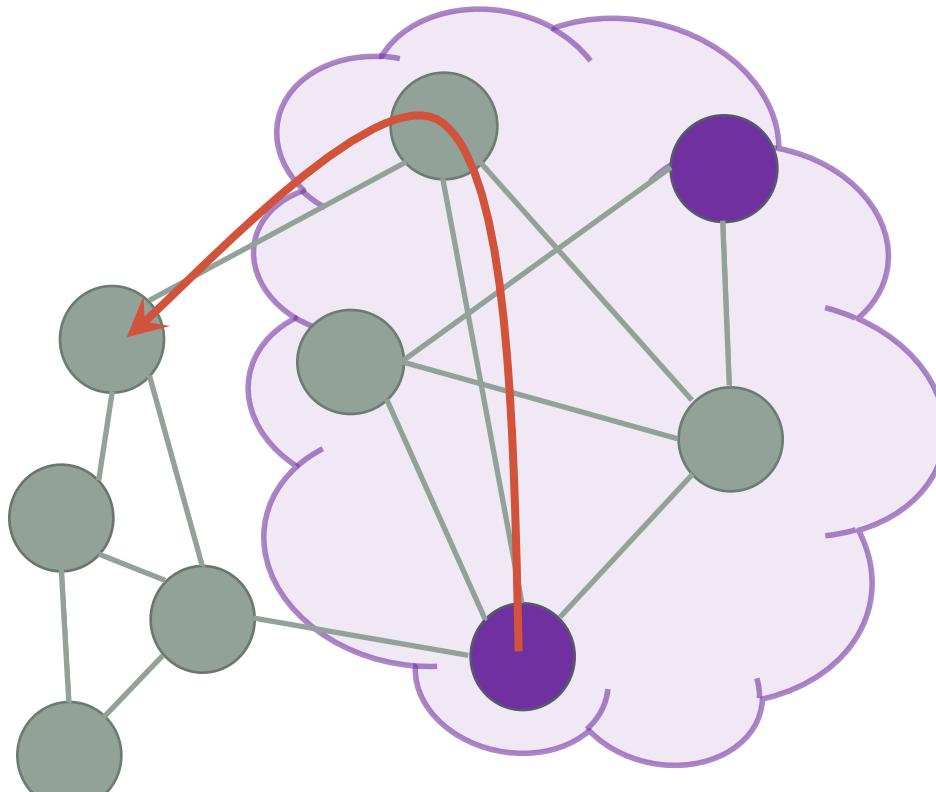
Honest Users

Given a small **seed set** of normal *social network accounts*, can we find fake accounts?

Observation: It is difficult for fake users to connect to honest users.

Solution: Use Early-Termination Random Walks

SibylRank



Honest Users

Given a small **seed set** of normal *social network accounts*, can we find fake accounts?

Observation: It is difficult for fake users to connect to honest users.

Solution: Use Early-Termination Random Walks

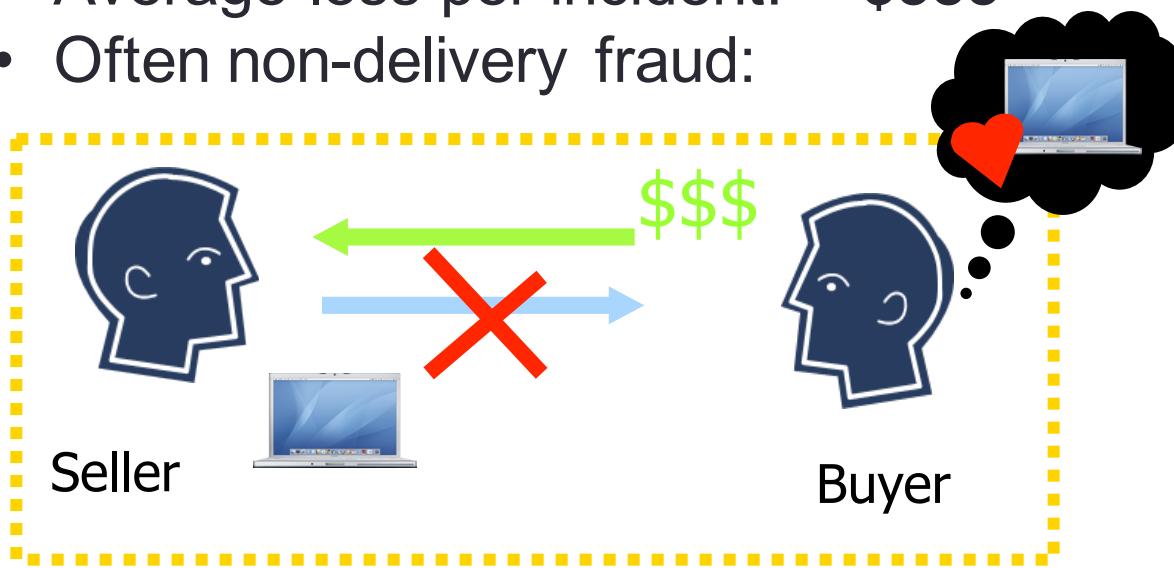
Rarely make it to sybil accounts

Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
CatchSync	Directed			
TrustRank	Directed			✓
Distrust Rank	Directed			✓
SibylRank	Directed			✓
NetProbe	Directed			
FraudEagle	Bipartite		✓	
SpEagle	Tripartite	✓		

Fraud in Online Auctions

- Auction sites: Attractive target for fraud
- 63% of complaints to Federal Internet Crime Complaint Center in U.S. in 2006
- Average loss per incident: = **\$385**
- Often non-delivery fraud:



NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

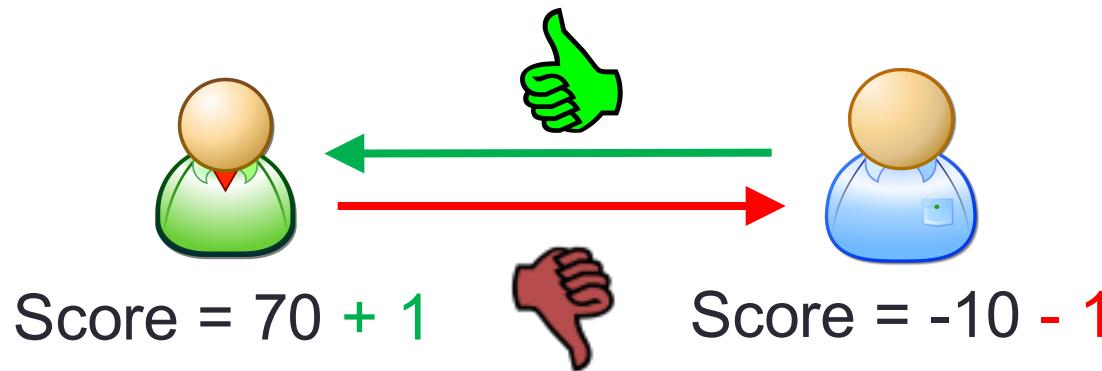
Individual features, e.g. geography, are too easy to fake!

Given a graph of user interactions,
what does fraud look like and how can we catch it?

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

Each user gets a reputation score based on peer feedback:

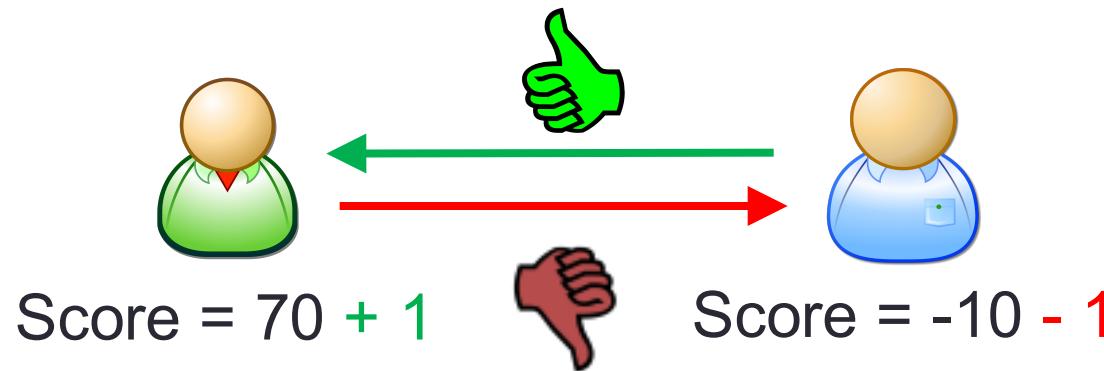


ebay

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

Each user gets a reputation score based on peer feedback:



Fraudsters need to keep a high reputation score

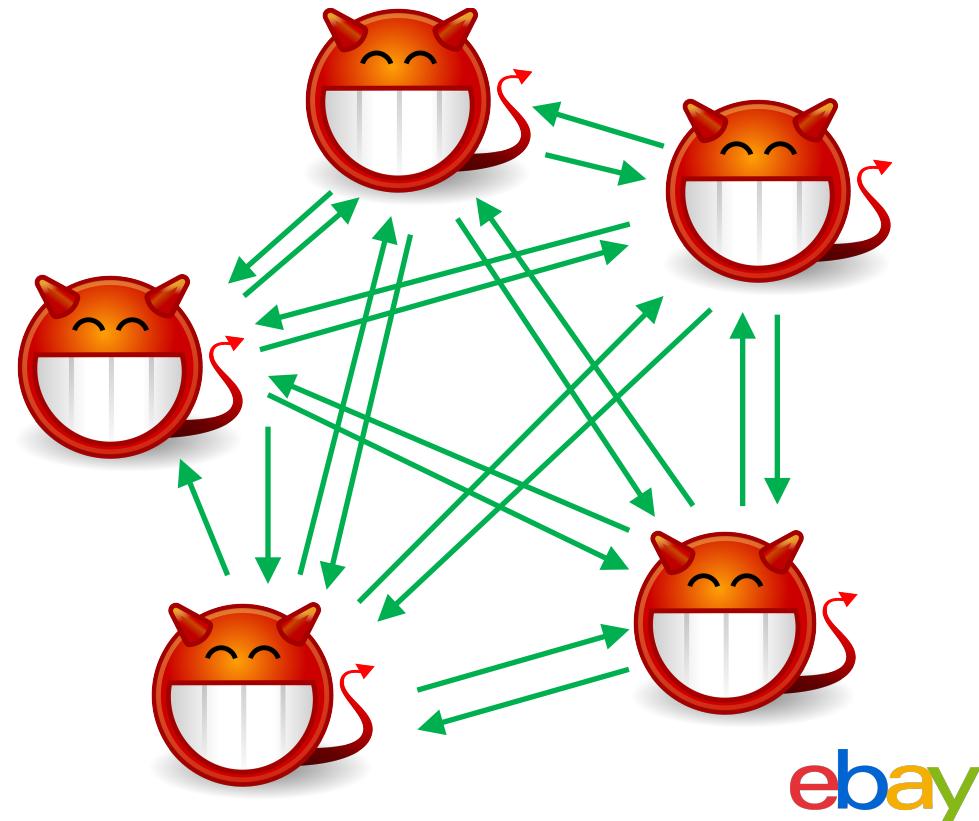
How do they **game** the system?

ebay

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

Do they all just give each other positive reviews?

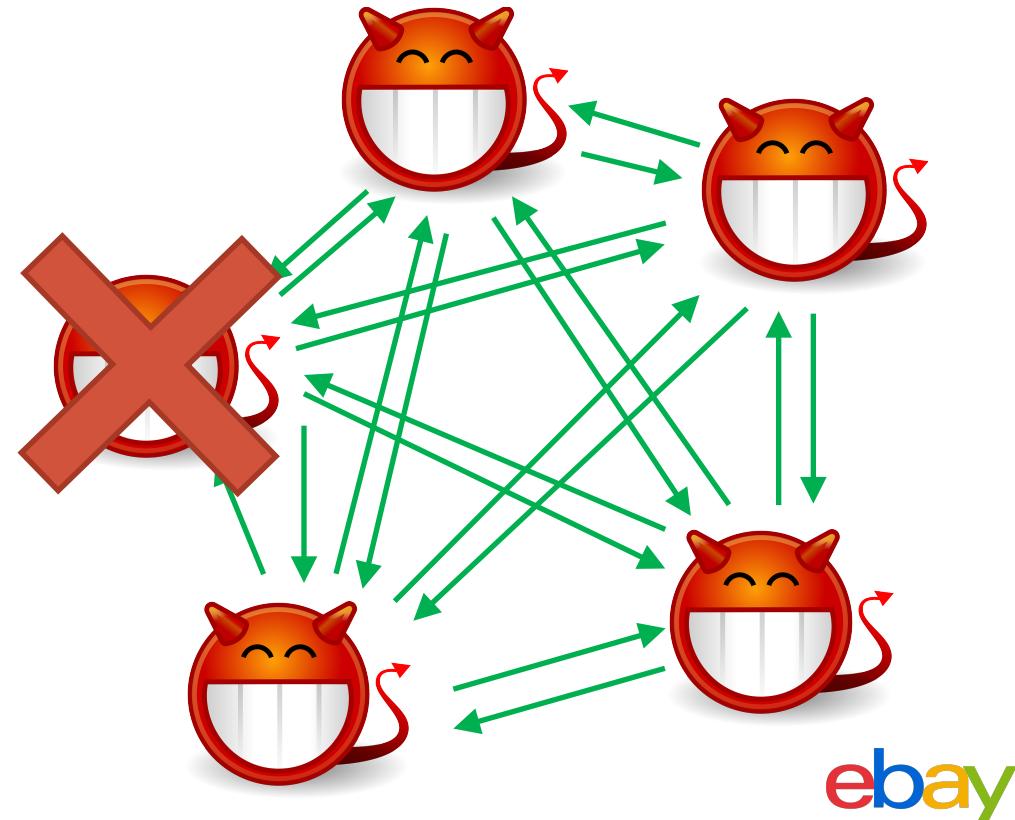


NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

Do they all just give each other positive reviews?

No, because if one is caught they are all revealed.

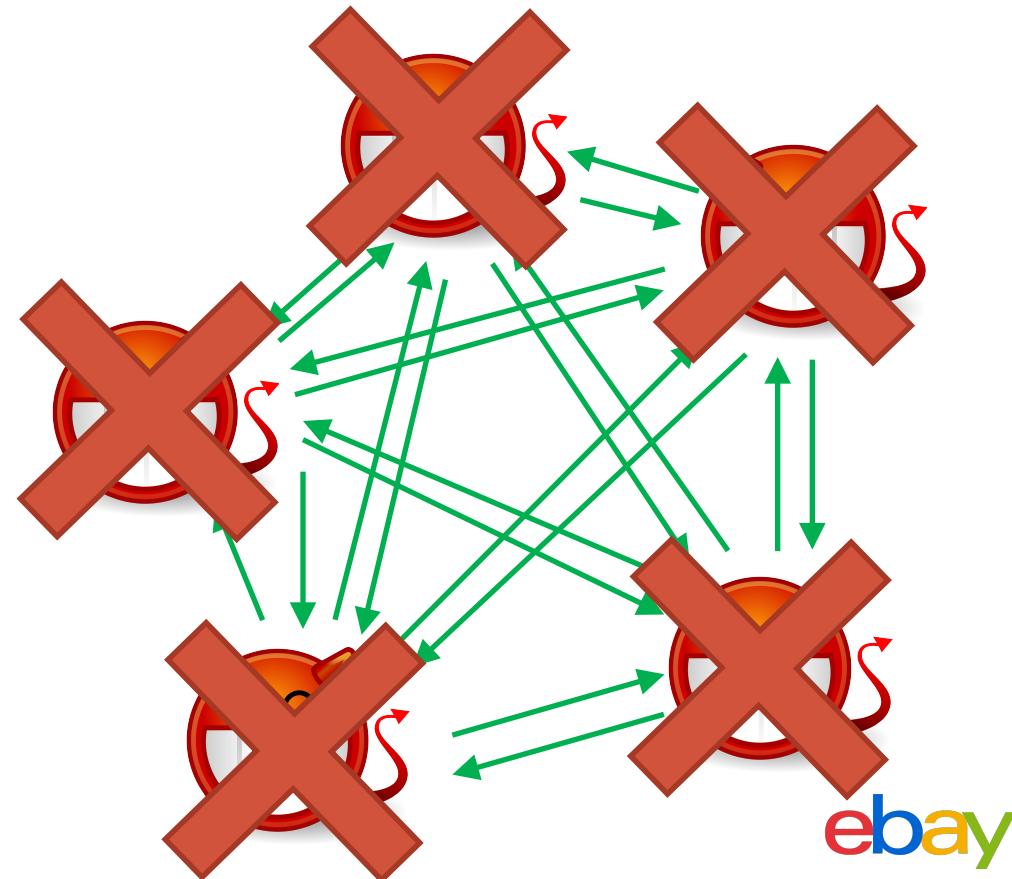


NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

Do they all just give each other positive reviews?

No, because if one is caught they are all revealed.



NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

Fraudsters form near-bipartite core of 2 roles:

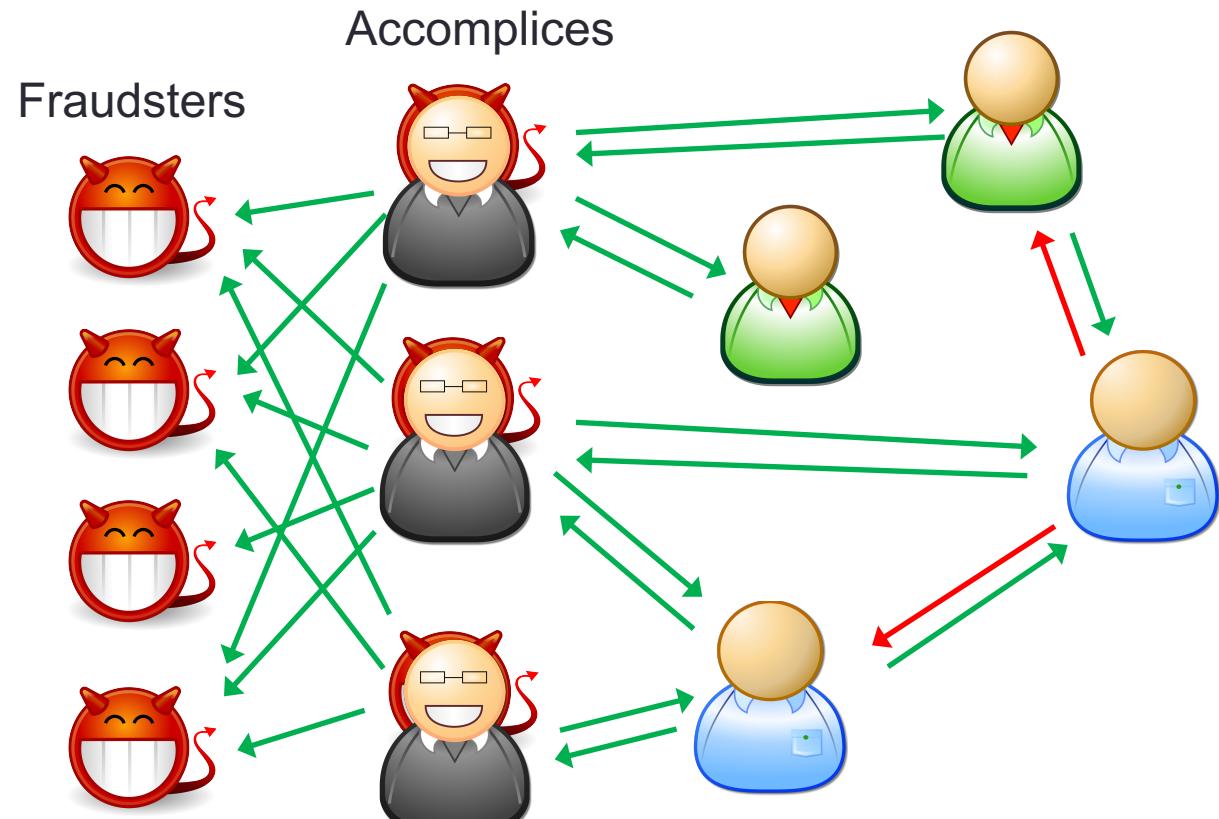
1. **Accomplices**:

Trade with honest, looks normal

2. **Fraudsters**:

Trade with accomplices

Fraud with honest



NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

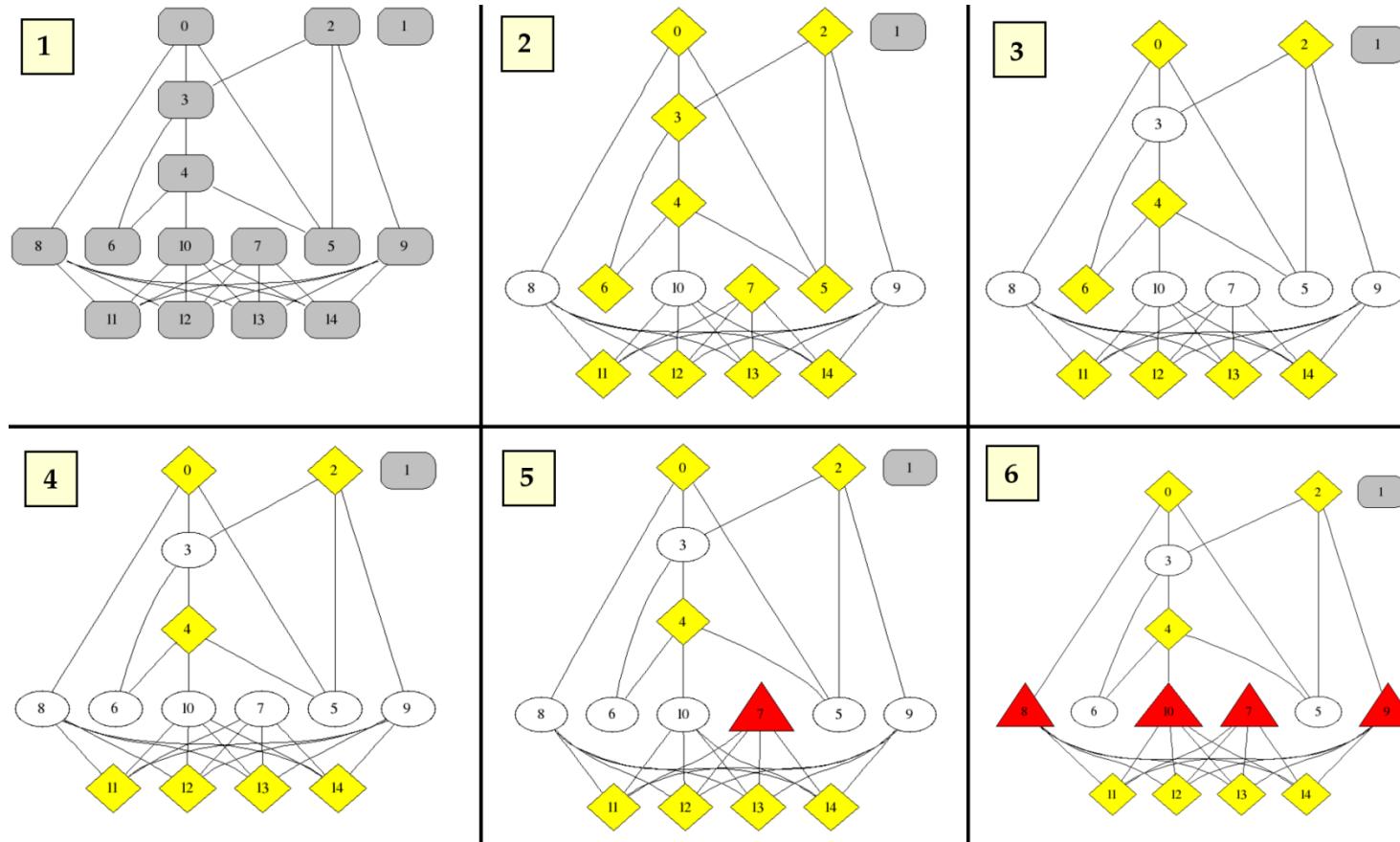
Use Belief Propagation!

		Node State		
		Fraud	Accomplice	Honest
Neighbor State	Fraud	ϵ	$1 - 2\epsilon$	ϵ
	Accomplice	0.5	2ϵ	$0.5 - 2\epsilon$
	Honest	ϵ	$(1 - \epsilon)/2$	$(1 - \epsilon)/2$

Captures both homophily and heterophily

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions



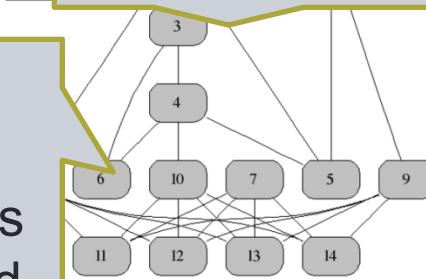
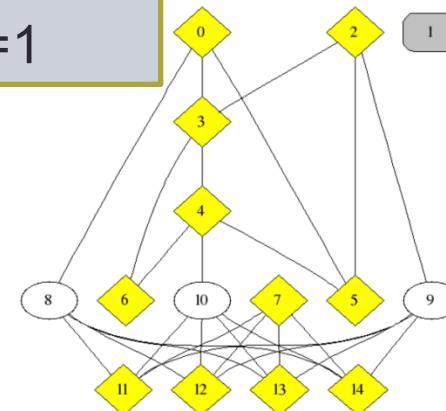
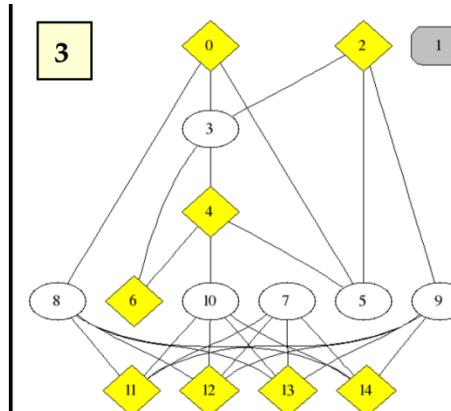
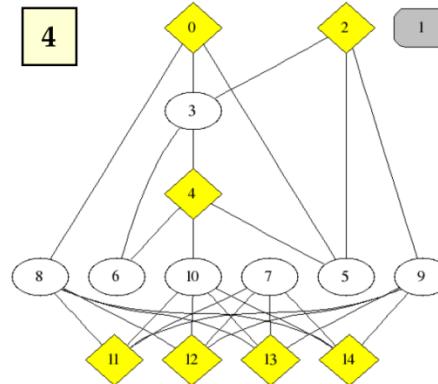
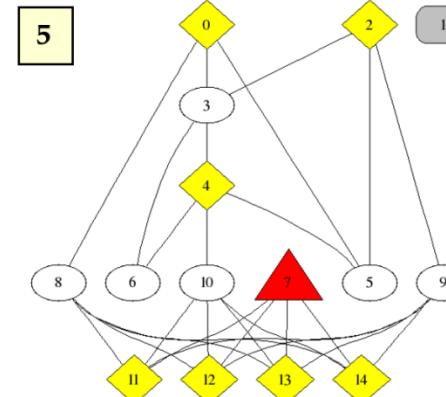
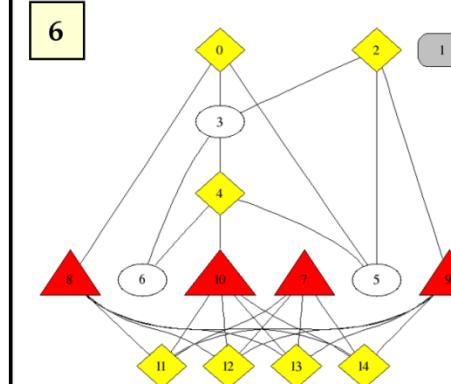
ebay

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

Initialize prior beliefs of fraudsters to $P(f)=1$

Initialize other nodes as unbiased



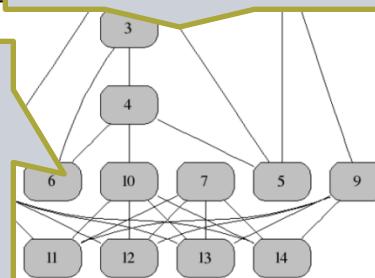
ebay

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

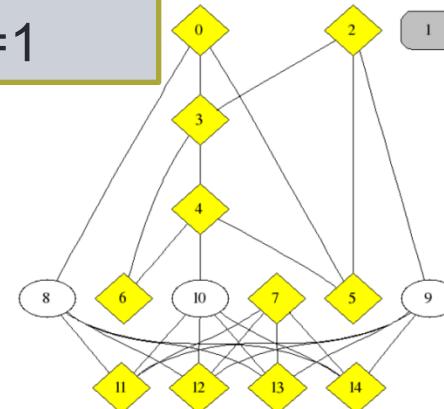
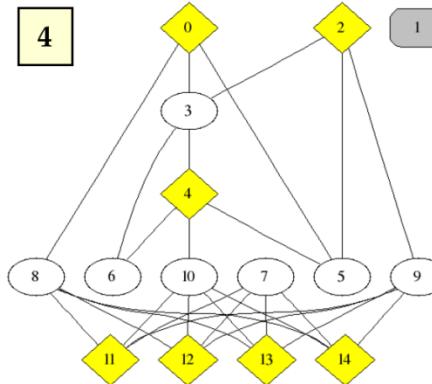
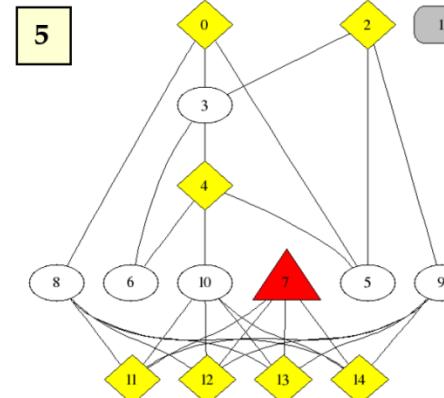
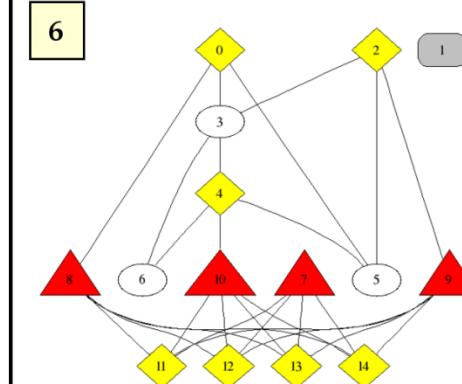
Fraud in Online Auctions

1 Initialize prior beliefs of fraudsters to $P(f)=1$

Initialize other nodes as unbiased



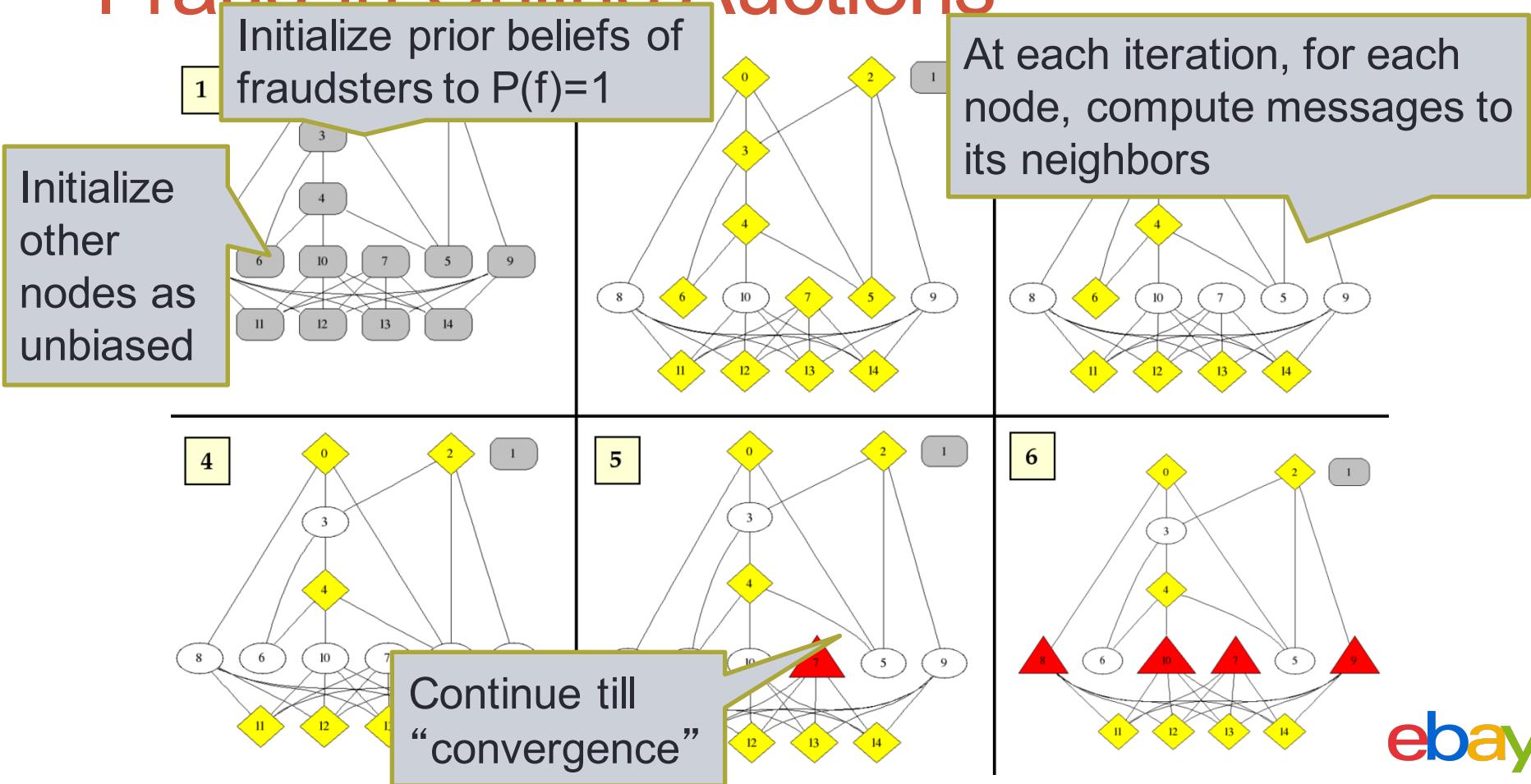
At each iteration, for each node, compute messages to its neighbors



ebay

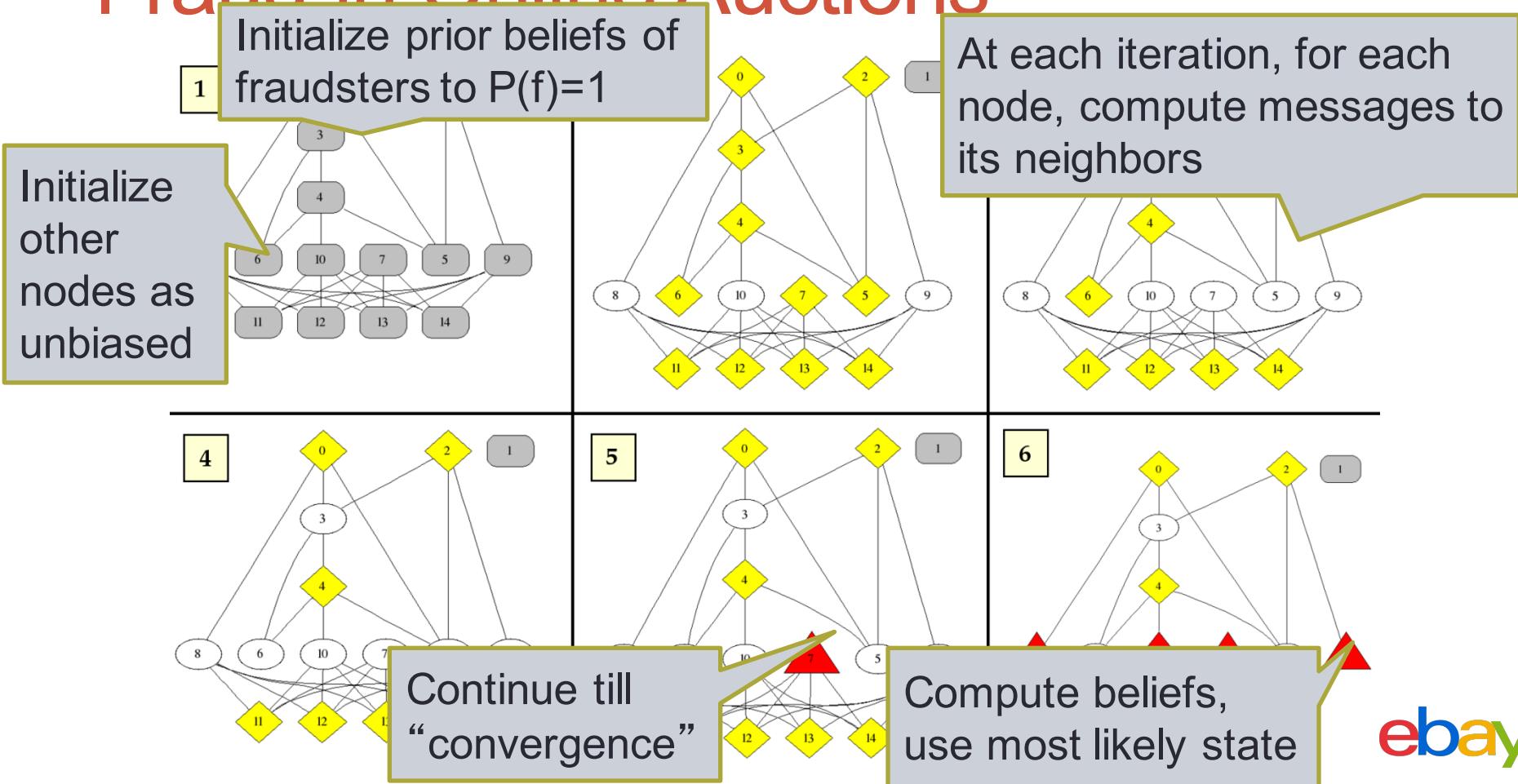
NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions



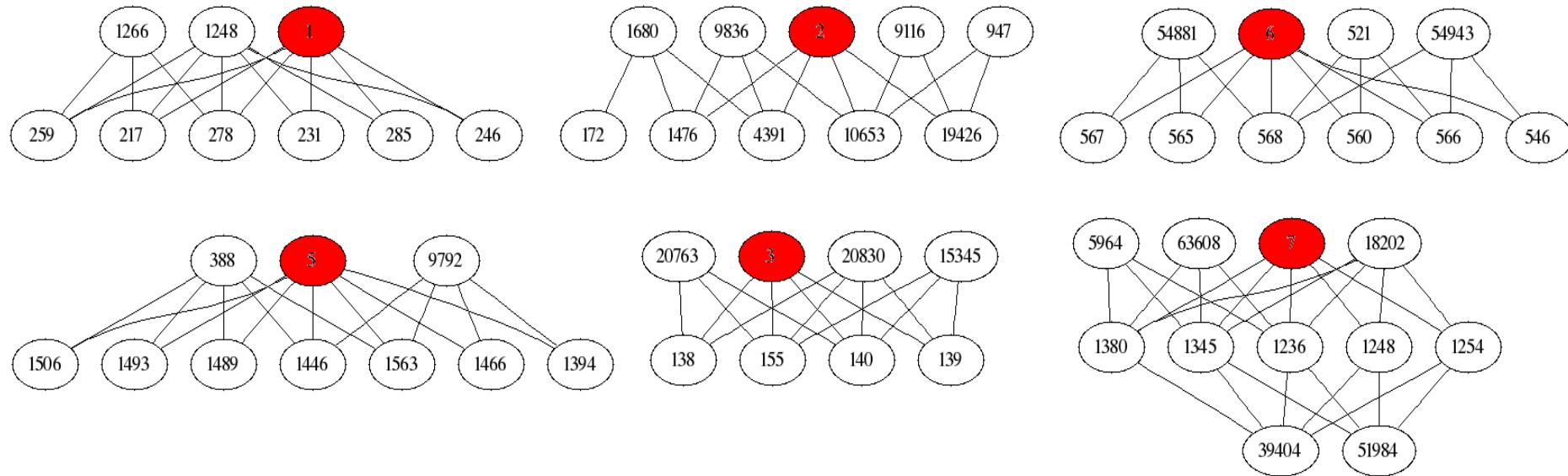
NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions



NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Fraud in Online Auctions

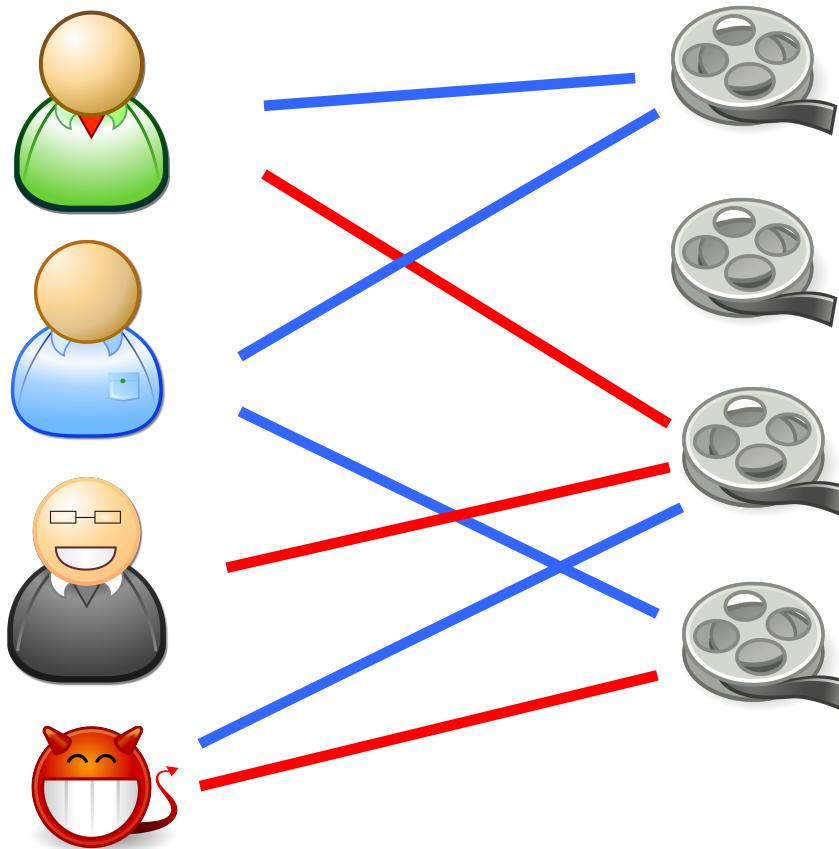


Subgraphs found on eBay
(Red nodes are confirmed fraudsters)

ebay

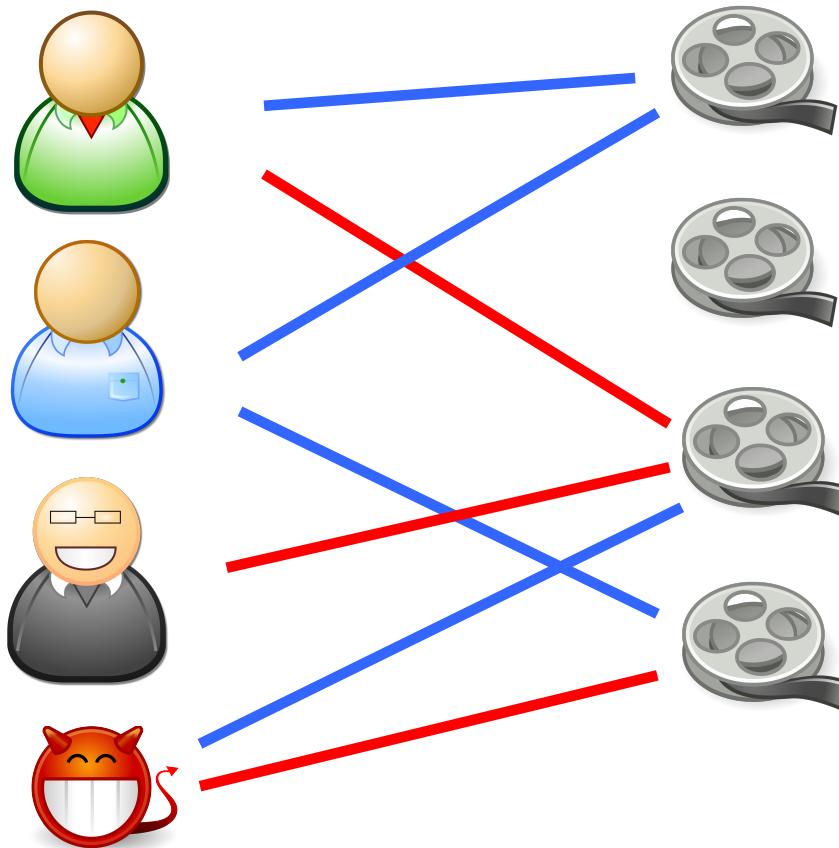
NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks
Shashank Pandit, Duen Horng Chau,
Samuel Wang, Christos Faloutsos
WWW 2007

Finding fraudulent reviews



Idea: Fraudsters give
bad reviews to good products
&
good reviews to bad products

Finding fraudulent reviews



Idea: Fraudsters give bad reviews to good products & good reviews to bad products

Use Belief Propagation

		Products	
Users		Good	Bad
Honest	1- ϵ	ϵ	
	2 ϵ	1-2 ϵ	

		Products	
Users		Good	Bad
Honest	ϵ	1- ϵ	
	1-2 ϵ	2 ϵ	

Found replicated bot reviews

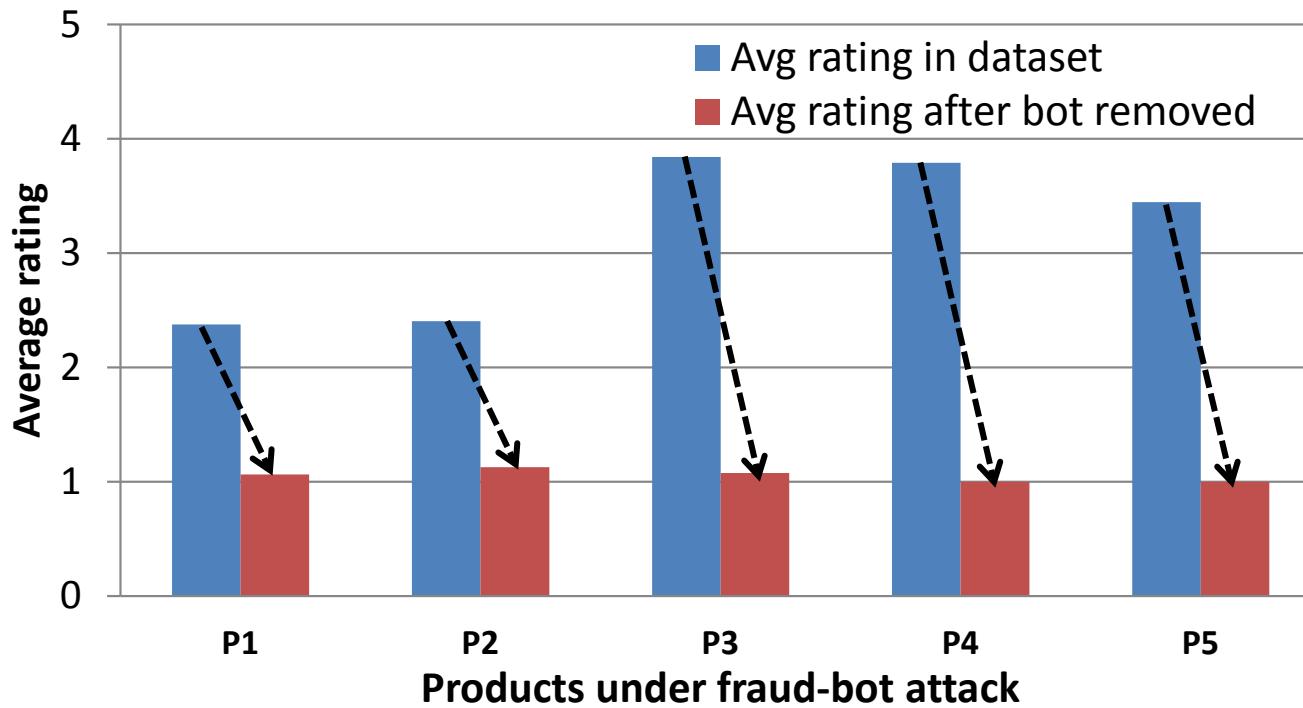
<p>Suggestion tebavor My face...great, but what I really want to know about are my breasts!</p> <p>Satisfied tebavor I'm extremely satisfied with my caricature. Well done.</p> <p>So great! tebavor Seems a real one. It's a lot of fun</p> <p>Good app tebavor Not as stupid as I thought!</p> <p>Really happy tebavor It's actually a personal one on one reading. I'm really happy with the outcome.</p>	<p>Rides merquezcito I just discovered old</p> <p>A beautiful gift merquezcito I got one made as a gift for my god-daughter</p> <p>Perfect merquezcito Nothing else to say</p> <p>Good app merquezcito Not as stupid as I thought!</p>
<p>Ooh la la Muquiwara78 Qd I see the head of my old guy, it scares me. At the same time, I will be like!</p> <p>Satisfied Muquiwara78 I'm extremely satisfied with my caricature. Well done.</p> <p>ha ha ha Muquiwara78 I want to be that close of J Lo!</p> <p>Simple IQ test Muquiwara78 Good app.</p> <p>Thanks Muquiwara78 I'm extremely satisfied</p>	<p>Deadly manjuli It does not care a shot of being old. Fortunately it is not immediately</p> <p>Good job manjuli I really like this app. I want another!!!</p> <p>ha ha ha manjuli I want to be that close of J Lo!</p> <p>Simple IQ test manjuli Good app.</p> <p>Thanks manjuli I'm extremely satisfied</p>

Found replicated bot reviews

ha ha ha Muquiwara78	 Version 1 - Aug 25, 2011
I want to be that close of J Lo!	
Simple IQ test Muquiwara78	 Version 1.0 - Aug 25, 2011
Good app.	
Thanks Muquiwara78	 Version 1.0 - Aug 25, 2011
I'm extremely satisfied	

ha ha ha manjuli	 Version 1 - Oct 23, 2011
I want to be that close of J Lo!	
Simple IQ test manjuli	 Version 1.0 - Oct 23, 2011
Good app.	
Thanks manjuli	 Version 1.0 - Oct 23, 2011
I'm extremely satisfied	

Finding fraudulent reviews

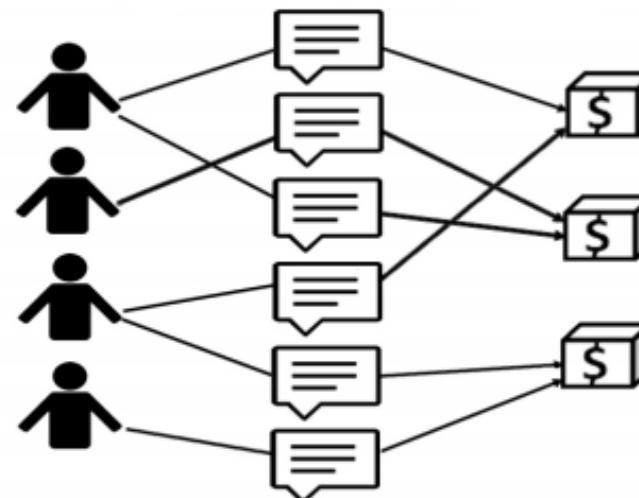


Opinion Fraud Detection in Online Reviews by Network Effects
Leman Akoglu, Rishi Chandy, Christos Faloutsos
ICWSM 2013

Finding fraudulent reviews

Online Review System

Meta Data
Review network



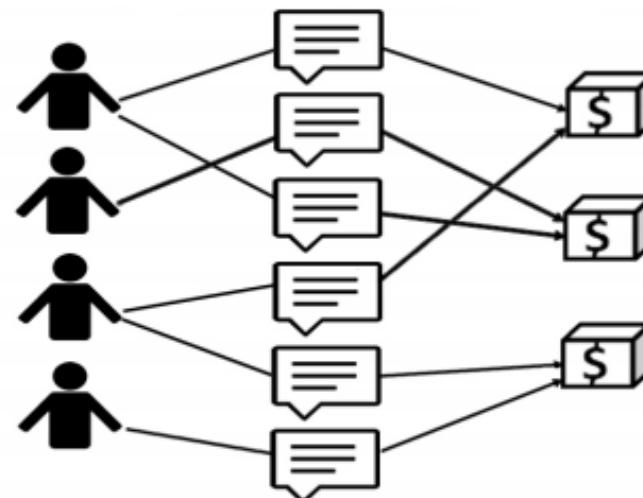
Network
+ Meta-data
+ Labels (if any)

Collective Opinion Spam Detection:
Bridging Review Networks and Metadata
Shebuti Rayana, Leman Akoglu
KDD 2015

Finding fraudulent reviews

Online Review System

Meta Data
Review network



Network
+ Meta-data
+ Labels (if any)

Collective Opinion Spam Detection:
Bridging Review Networks and Metadata
Shebuti Rayana, Leman Akoglu
KDD 2015

See the talk on
Tuesday @ 2:40PM!
(Level 2 – Room 2)

Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
HITS	Directed			
PageRank	Directed			Optional
Label Prop.	Undirected			✓
pMRF BP	Undirected			Preferred
EdgeExplain	Undirected	✓		✓

Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
HITS	Directed			
PageRank	Directed			Optional
Label Prop.	Undirected			✓
pMRF BP	Undirected			Preferred
EdgeExplain	Undirected	✓		✓

All of the node attributes are the seed labels for semi-supervised learning in EdgeExplain.

Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
CatchSync	Directed			
TrustRank	Directed			✓
Distrust Rank	Directed			✓
SibylRank	Directed			✓
NetProbe	Directed			
FraudEagle	Bipartite		✓	
SpEagle	Tripartite	✓		

Key Points

Random walks ~
singular vectors: find
important nodes, and
communities

“Guilt-by-association”
propagate labels
(homophily, heterophily,
and more)

