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§ Ni:  number  of  neighbors  (degree)  of  ego  i
§ Ei:  number  of  edges  in  egonet i

§ Wi:  total  weight  of  egonet i
§ λw,i:  principal  eigenvalue  of  the  weighted
adjacency  matrix  of  egonet i

18

Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010

Ego-­net  Patterns  



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015 19

Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010

Pattern:  Ego-­net  Power  Law  Density

Ei∝ Ni
α
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slope=1
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(a) Intuition (neighbors matter)
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(b) Performance preview (blue bars: highest - win)

Figure 1: (a) Intuition behind ReFeX: Six IP hosts from differ-
ent days of an enterprise network trace and (manually) labeled
by their primary traffic type. Node and edge size indicate com-
munication volume relative to the central node in each frame.
Regional structure, i.e. the types of neighbors that a given host
connects to, are vital. (b) classification accuracy of ReFeX with
respect to transfer learning, in blue bars (higher is better) - see
Figure (4) for more details.

The contributions of our work are as follows:

• Novel Design: We propose ReFeX, a scalable algorithm that
computes regional features capturing “behavioral” informa-
tion on large graphs.

• Effectiveness: ReFeX’s regional features perform well for
several graph mining tasks, like transfer learning (across-
network classification) and node de-anonymization on large
graphs.

The rest of the paper is organized as follows: the proposed strate-
gies are presented in Section 2; the experiments are presented in
Sections 3 and 4. In Section 5, we review the related work; and we
conclude the paper in Section 6.

2. PROPOSED ALGORITHM
Our algorithm ReFeX aggregates existing feature values of a node

and uses them to generate new recursive features. The initial set of

features used to seed the recursive feature generation can be struc-
tural information from the network or attributes from an external
source. Here, we focus on tasks where only structural information
is available. We separate structural attributes into three types: local,
egonet, and recursive features. Local and egonet features together
are called neighborhood features, and all three together are called
regional features.

2.1 Neighborhood Features
The base features that seed the recursive ReFeX process are lo-

cal and egonet features. These can be computed quickly for a given
node. We call the set of local and egonet features together neigh-
borhood features.

Local features are all essentially measures of the node degree.
If the graph is directed, they include in- and out-degree as well as
total degree. For weighted graphs, they contain weighted versions
of each local feature.

Egonet features are computed for each node based on the node’s
ego network (a.k.a. egonet). The egonet includes the node, its
neighbors, and any edges in the induced subgraph on these nodes.
Egonet features include the number of within-egonet edges, as well
as the number of edges entering and leaving the egonet. Strictly
speaking, the latter are not in the egonet but they can be counted
without looking at non-egonet nodes. As with local features, we
compute directed and/or weighted versions of these features if the
edges are directed and/or weighted.

2.2 Recursive Features
We broadly define a recursive feature as any aggregate computed

over a feature value among a node’s neighbors.

2.2.1 Generating Recursive Features
Currently ReFeX collects two types of recursive features: means

and sums.1 As a typical example, one recursive feature is defined as
the mean value of the feature unweighted degree among all neigh-
bors of a node. The features that can be aggregated are not re-
stricted to neighborbood features, or even to structural features.
The aggregates can be computed over any real-valued feature (in-
cluding other recursive features). We compute the means and sums
of all feature values. Moreover, when applicable, we compute these
for incoming and outgoing edges separately.

2.2.2 Pruning Recursive Features
Clearly, the number of possible recursive features is infinite and

grows exponentially with each recursive iteration. To reduce the
number of generated features, a variety of pruning techniques can
be employed. A simple example is to look for pairs of features
that are highly correlated. In this example case, the pruning strat-
egy is to eliminate one of the features whenever two features are
correlated above a user-defined threshold.

For computational reasons, ReFeX uses a simplified version of
this approach. Specifically, feature values are mapped to small in-
tegers via vertical logarithmic binning, then ReFeX looks for pairs
of features whose values never disagree by more than a threshold.
For details on the threshold, see Section 2.3 below.

First, each feature’s values are transformed into vertical loga-
rithmic bins of size p (where 0 < p < 1). The process is as

1We selected sum and mean as aggregate functions heuristically.
These simple measures capture the dominant trends among a node’s
neighbors w.r.t. each feature. Other functions, such as maximum,
minimum, and variance could easily be added to ReFeX. In our ex-
periments, sum and mean were sufficient to provide good empirical
performance on data mining tasks with a reasonable runtime.
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Figure 4: Across-network transfer learning with neighborhood
and regional features. Regional demonstrates consistently high
accuracy on difficult transfer learning tasks.

3.4.2 Results
Figure 4 demonstrates the performance of Neighborhood and Re-

gional on a series of across-network transfer learning tasks. Here,
we train on one network, where all known labels are available, and
test on a separate network that is completely unlabeled. We em-
phasize the difficulty of these tasks given the (sometime extreme)
differences in class distributions between data sets (see Table 1).
The performance of the Default classifier is a good indicator of the
difficulty of each task since this model makes predictions based
solely on the most frequent class from the training set. We also
note that wnRN+RL is not applicable for these tasks since it relies
on the availability of some known class labels to seed the inference
process.

As in the within-network setting, the Regional classifier is the
best overall performer on the across-network tasks, achieving 82%
- 91% accuracy training and testing on separate days of IP-A and
77% accuracy training on all days of IP-A and testing on IP-B. The
performance of Regional applied to IP-A4 is particularly impres-
sive, given the extreme differences in class distribution between
IP-A4 and the other data sets (see Table 1). We note that Regional
is somewhat less successful training on IP-A4. In fact, training on
IP-A4 and testing on IP-B is the one case where Regional under-
performs Neighborhood. However, the difference in performance
is small (<5%). Finally, and not surprisingly, we see a benefit to
training on a number of diverse data sets instead of a single data
set. Specifically, we achieve 77% training on all of the IP-A data
sets and testing on IP-B, whereas we see a lot of variation (55% -
85%) training on individual days from IP-A.

4. FEATURE EFFECTIVENESS ON
IDENTITY RESOLUTION

To demonstrate that regional features capture meaningful and in-
formative behaviors of nodes, we present a collection of identity
resolution tasks. In each task, we compute a set of regional fea-
tures on a pair of networks whose node-sets overlap. Our hypoth-
esis is that a node’s feature values will be similar across graphs.
We present an experimental framework that allows us to test this
empirically. In our experiments, we will demonstrate how this

method can be used to perform “de-anonymization”on social net-
work datasets when external non-anonymized data is available.

4.1 Problem Statement
For a pair of graphs whose node-sets overlap, but whose edge-

sets can be distinct (or even represent a totally different type of
observation), can we use network structure alone to map nodes in
one network to nodes in the other? More realistically, can we re-
duce the entropy associated with each node in one graph, with re-
spect to its possible identity among nodes in the second graph? For
a given method, we will measure success at this task by counting
how many “incorrect” nodes the method guesses before it finds the
correct node in the second graph.

4.2 Methodology
We are given two graphs, G

target

and G
reference

, and a vertex
v

test

which exists in both graphs. To test a given identity resolution
strategy, we allow the strategy to guess reference vertices hvguess

1 ,
vguess

2 , . . . , vguess

k

i until it correctly guesses v
test

. The score as-
sociated with this strategy is k, the number of guesses required to
find the node. The baseline method is to guess at random; for this
strategy we assume the expected score |V

reference

|/2.
The strategies we test experimentally use structural features to

compute guesses. We present results for (1) Local features only,
(2) Neighborhood features only, and (3) Regional features. The fea-
tures are computed using ReFeX on G

target

. The same features are
then computed on G

reference

. For a given strategy, the guesses are
generated in order of increasing Euclidian distance from V

target

in
feature space. Our hypothesis is that Regional will score lower (i.e.
better) than Local or Neighborhood.

To compare the overall performances of strategies, we compute
scores across a set S

overlap

of all vertices that exist in both graphs.
When it is not computationally feasible to analyze every node in
S

overlap

, we select a set of vertices S
test

⇢ S
overlap

and report
all scores for nodes in S

test

. In these experiments, we select S
test

by taking the 1000 vertices in V
target

with the highest degree, and
keeping only those vertices that are also in S

overlap

.
There are a number of ways to compare performance on a given

test set. For example, the mean score across all target instances
is a measure of success, with lower mean scores indicating better
performance. We can also compute the fraction of target instances
that score less than a given threshold; here a larger fraction is better.
For example, we can report the fraction of target vertices whose
score is less than 1% of |V

reference

|.3

4.3 Data
Table 3 outlines the data sets used in this set of experiments.

The first is a pair of Twitter networks from 2008, including a who-
follows-whom network and a who-mentions-whom network. The
second is an SMS communication network. The third is a collection
of 28 days of Yahoo IM events. The fourth is IP traffic on two
separate enterprise networks, observed at several different times.
We described the IP network in details in Section 3.1.

Yahoo! IM Networks. Each graph here is a collection of IM
events taken from one of 28 days of observation.4 Each node is
an IM user, and each link is a communication event on a given

3If we combine the latter across all thresholds, we can treat it as
the cumulative distribution function of p(score(x)), the empirical
probability distribution over scores for this strategy. This presenta-
tion is harder to interpret, however, since one strategy may perform
better in some regions and worse in others, and we are generally
concerned with the lowest possible scores.
4http://sandbox.yahoo.com/
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(a) (b)

Figure 7: IP tra�c classes are well-separated in

the RolX “role space” with as few as 3 roles. (a)

Ternary plot showing the degree of membership of

each DNS, P2P, and Web host in each of three roles.

(b) Pseudo-density plot obtained by adding uniform

noise to (a) to reveal overlapping points.
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(a) Business Student vs. Rest
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(b) Graduate Student vs. Rest

Figure 8: RolX (in blue) e↵ectively generalizes be-

havior across time (higher is better). Figure shows

results of across-network transfer learning on the

Reality Mining Device dataset with RolX . Notice

that RolX almost always performs well on the two

di↵erent learning tasks with an average accuracy of

83% and 76%, respectively.

coupled groups. Examples are Andrei Broder and Chris-
tos Faloutsos.

• red diamond : bridge nodes, that connect groups of
(typically, ’main-stream’) nodes. Examples of bridges
are Albert-Laszlo Barabasi and Mark Newman.

(a) Role-colored Visualization of the Network

(b) Role A�nity Heat Map

Figure 9: RolX e↵ectively discovers roles in the

Network Science Co-authorship Graph. (a) Author

network RolX discovered four roles, like the het-

erophilous bridges (red diamond), as well as the ho-

mophilous “pathy” nodes (green triangle) (b) A�n-

ity matrix (red is high score, blue is low) - strong

homophily for roles #1 and #4.

• gray rectangle: main-stream, the vast majority of nodes
- neither on a clique, nor a chain. Examples are John
Hopcroft and Jon Kleinberg.

• green triangle: pathy, nodes that belong to elongated
clusters. For example, Lada Adamic and Bernardo
Huberman.

RolX ’s roles allow us to find similar nodes by compar-
ing their role distributions. Figure 10 depicts node sim-
ilarity for three (target) authors for the Network Science
Co-authorship Graph: Mark Newman, F. Robert, and J.
Rinzel. The primary roles for these three authors are dif-
ferent. Mark Newman’s primary role is a broker (a prolific
author); F. Robert’s primary role places him in a tight-knit
group (an author with homophilous neighborhood), and J.
Rinzel’s primary role places him in the periphery (an au-
thor with homophilous but “pathy” neighborhood). In each
node-similarity picture, the target author is colored in yel-

Using  graph  patterns  to  find  roles
26

RolX:  Structural  Role  Extraction  &  Mining  in  Large  Graphs
K.  Henderson,  B.  Gallagher,  T.  Eliassi-­Rad,  
H.  Tong,  Sugato Basu,  L.Akoglu,  
D.  Koutra,  C.  Faloutsos,  L.  Li
KDD 2012

Use  graph  features  to  find  
similar  types  of  behavior:
• Christos  Faloutsos  &  
Andrei  Broder: tightly  
knit  communities

• Albert-­Laszlo  Barabasi &  
Mark  Newman:  bridge  
communities

• John  Hopcroft and  Jon  
Kleinberg:  mainstream

• Lada Adamic and  
Bernardo  Huberman:
elongated  clusters
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extension of context, because two strongly tied nodes plausibly
constitute an even less diverse endorsement neighborhood.
Finally, we study the position of the inviter within the neigh-

borhood topologies. When studying recruitment, one might
suspect that the structural position of the inviter—the person
who extended the invitation—might signify differences in tie
strength with the invitee and therefore might significantly affect
the predicted conversion rate. We find that inviter position fig-
ures only slightly in the conversion rate (Fig. 3), with invitations
stemming from a high-degree position in the contact neighbor-
hood predicting only a slightly higher conversion rate than if the
inviter is a peripheral node.

User Engagement. Participation in a social system such as Facebook
is built upon a spectrum of social decisions, beginning with the
decision to join (recruitment) and continuing on to decisions about
how to choose a level of engagement.We now show how structural
diversity also plays an analogous role in this latter type of decision
process, studying long-term user engagement in the Facebook
service.Whereas recruitment is a function of the complex interplay
betweenmultiple acts of endorsement, engagement is a function of
the social utility a user derives from the service. Our study of en-
gagement focuses on users who registered for Facebook during
2010, analyzing the diversity of their social neighborhoods 1 week
after registration as a basis for predicting whether they will become
highly engaged users 3 months later.
Users are considered engaged at a given time point if they have

interacted with the service during at least 6 of the last 7 days.
Facebook had 845 million monthly active users on December 31,
2011, and during the month of December 2011, an average of 360
million users were active on at least 6 out of the last 7 days. We
define engagement on a weekly timescale to stabilize the con-
siderable weekly variability of user visits. Our goal is therefore to
predict whether a newly registered user will visit Facebook at
least 6 of 7 days per week 3 months after registration.
Friendship neighborhoods on Facebook are significantly larger

than the e-mail contact neighborhoods from our recruitment
study. We focus our engagement study on a population of ∼10
million users who registered during 2010 and had assembled
neighborhoods consisting of exactly 10, 20, 30, 40, or 50 friends 1
week after registration. For social network neighborhoods of this
size, we find that a neighborhood containing a large number of
connected components primarily indicates a large number of
one-node components, or “singletons”, and as such, it is not an
accurate reflection of social context diversity.

To address this, we evaluate three distinct parametric gener-
alizations of component count. First, we measure diversity simply
by considering only components over a certain size k. Second, we
measure diversity by the component count of the k-core of the
neighborhood graph (22), the subgraph formed by repeatedly
deleting all vertices of degree less than k. Third, we define a
measure that isolates dense social contexts by removing edges
according to their embeddedness, the number of common neigh-
bors shared by their two endpoints; intuitively this is an analog, for
edges, of the type of node removal that defines the k-core.
Adapting earlier work on embeddedness by Cohen (23), we define
the k-brace of a graph to be the subgraph formed by repeatedly
deleting all edges of embeddedness less than k and then deleting
all single-node connected components. (Cohen’s work was con-
cerned with a definition equivalent to the largest connected
component of the k-brace; because we deal with the full subgraph
of all nontrivial components, it is useful to adapt the definitions as
needed.) Examples of these three measures applied to a neigh-
borhood graph are shown in Fig. 4 A and B, illustrating the

Fig. 3. Inviter position during recruitment. Shown is recruitment conversion
as a function of neighborhood graph topology and inviter position in
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extension of context, because two strongly tied nodes plausibly
constitute an even less diverse endorsement neighborhood.
Finally, we study the position of the inviter within the neigh-

borhood topologies. When studying recruitment, one might
suspect that the structural position of the inviter—the person
who extended the invitation—might signify differences in tie
strength with the invitee and therefore might significantly affect
the predicted conversion rate. We find that inviter position fig-
ures only slightly in the conversion rate (Fig. 3), with invitations
stemming from a high-degree position in the contact neighbor-
hood predicting only a slightly higher conversion rate than if the
inviter is a peripheral node.

User Engagement. Participation in a social system such as Facebook
is built upon a spectrum of social decisions, beginning with the
decision to join (recruitment) and continuing on to decisions about
how to choose a level of engagement.We now show how structural
diversity also plays an analogous role in this latter type of decision
process, studying long-term user engagement in the Facebook
service.Whereas recruitment is a function of the complex interplay
betweenmultiple acts of endorsement, engagement is a function of
the social utility a user derives from the service. Our study of en-
gagement focuses on users who registered for Facebook during
2010, analyzing the diversity of their social neighborhoods 1 week
after registration as a basis for predicting whether they will become
highly engaged users 3 months later.
Users are considered engaged at a given time point if they have

interacted with the service during at least 6 of the last 7 days.
Facebook had 845 million monthly active users on December 31,
2011, and during the month of December 2011, an average of 360
million users were active on at least 6 out of the last 7 days. We
define engagement on a weekly timescale to stabilize the con-
siderable weekly variability of user visits. Our goal is therefore to
predict whether a newly registered user will visit Facebook at
least 6 of 7 days per week 3 months after registration.
Friendship neighborhoods on Facebook are significantly larger

than the e-mail contact neighborhoods from our recruitment
study. We focus our engagement study on a population of ∼10
million users who registered during 2010 and had assembled
neighborhoods consisting of exactly 10, 20, 30, 40, or 50 friends 1
week after registration. For social network neighborhoods of this
size, we find that a neighborhood containing a large number of
connected components primarily indicates a large number of
one-node components, or “singletons”, and as such, it is not an
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To address this, we evaluate three distinct parametric gener-
alizations of component count. First, we measure diversity simply
by considering only components over a certain size k. Second, we
measure diversity by the component count of the k-core of the
neighborhood graph (22), the subgraph formed by repeatedly
deleting all vertices of degree less than k. Third, we define a
measure that isolates dense social contexts by removing edges
according to their embeddedness, the number of common neigh-
bors shared by their two endpoints; intuitively this is an analog, for
edges, of the type of node removal that defines the k-core.
Adapting earlier work on embeddedness by Cohen (23), we define
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cerned with a definition equivalent to the largest connected
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Attributed  subgraph  patterns
• SUBDUE:  An  algorithm  for  detecting  repetitive  patterns  
(substructures)  within  (single-­attributed)  graphs.  
• The  best  substructure  is  the  one  that  minimizes

F1(S,G)  =  DL(G | S)  +  DL(S)

• G:  Entire  graph,  S:  The  substructure,  
• DL(G|S)  is  the  DL  of  G  after  compressing  it  using  S,  
• DL(S)  is    the  description  length  of  the  substructure.

•
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Learning  to  Discover  Social  Circles  in  Ego  Networks
Julian  McAuley,  Jure  Leskovec
NIPS  2012

from the same university, as in Figure 1. (4) We would like to leverage both profile information and
network structure in order to identify the circles. Ideally we would like to be able to pinpoint which
aspects of a profile caused a circle to form, so that the model is interpretable by the user.

The input to our model is an ego-network G = (V,E), along with ‘profiles’ for each user v 2 V .
The ‘center’ node u of the ego-network (the ‘ego’) is not included in G, but rather G consists only of
u’s friends (the ‘alters’). We define the ego-network in this way precisely because creators of circles
do not themselves appear in their own circles. For each ego-network, our goal is to predict a set of
circles C = {C1 . . . C

K

}, C

k

✓ V , and associated parameter vectors ✓

k

that encode how each circle
emerged. We encode ‘user profiles’ into pairwise features �(x, y) that in some way capture what
properties the users x and y have in common. We first describe our model, which can be applied
using arbitrary feature vectors �(x, y), and in Section 5 we describe several ways to construct feature
vectors �(x, y) that are suited to our particular application.

We describe a model of social circles that treats circle memberships as latent variables. Nodes within
a common circle are given an opportunity to form an edge, which naturally leads to hierarchical and
overlapping circles. We will then devise an unsupervised algorithm to jointly optimize the latent
variables and the profile similarity parameters so as to best explain the observed network data.

Our model of social circles is defined as follows. Given an ego-network G and a set of K circles
C = {C1 . . . C

K

}, we model the probability that a pair of nodes (x, y) 2 V ⇥ V form an edge as

p((x, y) 2 E) / exp

(
X

C

k

◆{x,y}

h�(x, y), ✓

k

i

| {z }
circles containing both nodes

�
X

C

k

+{x,y}

↵

k

h�(x, y), ✓

k

i

| {z }
all other circles

)
. (1)

For each circle C

k

, ✓

k

is the profile similarity parameter that we will learn. The idea is that
h�(x, y), ✓

k

i is high if both nodes belong to C

k

, and low if either of them do not (↵
k

trades-off
these two effects). Since the feature vector �(x, y) encodes the similarity between the profiles of
two users x and y, the parameter vector ✓

k

encodes what dimensions of profile similarity caused the
circle to form, so that nodes within a circle C

k

should ‘look similar’ according to ✓

k

.

Considering that edges e = (x, y) are generated independently, we can write the probability of G as

P⇥(G; C) =

Y

e2E

p(e 2 E)⇥
Y

e62E

p(e /2 E), (2)

where ⇥ = {(✓
k

, ↵

k

)}k=1...K is our set of model parameters. Defining the shorthand notation

d

k

(e) = �(e 2 C

k

)� ↵

k

�(e /2 C

k

), �(e) =

X

C

k

2C
d

k

(e) h�(e), ✓

k

i

allows us to write the log-likelihood of G:

l⇥(G; C) =

X

e2E

�(e)�
X

e2V⇥V

log

⇣
1 + e

�(e)
⌘

. (3)

Next, we describe how to optimize node circle memberships C as well as the parameters of the user
profile similarity functions ⇥ = {(✓

k

, ↵

k

)} (k = 1 . . . K) given a graph G and user profiles.

3 Unsupervised Learning of Model Parameters

Treating circles C as latent variables, we aim to find ˆ

⇥ = {ˆ

✓, ↵̂} so as to maximize the regularized
log-likelihood of (eq. 3), i.e.,

ˆ

⇥,

ˆC = argmax

⇥,C
l⇥(G; C)� �⌦(✓). (4)

We solve this problem using coordinate ascent on ⇥ and C [14]:
Ct

= argmax

C
l⇥t

(G; C) (5)

⇥

t+1
= argmax

⇥
l⇥(G; Ct

)� �⌦(✓). (6)

3

[Albert,  Einstein,  German,  Princeton]
Use  node  features  to  find  clusters:



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Modeling  with  Cross-­Associations

32

Fully  Automatic  Cross-­Associations
Deepayan Chakrabarti,  Spiros Papadimitriou,  
Dharmendra S.  Modha,  Christos  Faloutsos
KDD 2004

R
ow

 C
lu

st
er

s

Column Clusters

Original matrix

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

R
ow

 C
lu

st
er

s

Column Clusters

Iteration 1 (rows)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

R
ow

 C
lu

st
er

s

Column Clusters

Iteration 2 (cols)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

R
ow

 C
lu

st
er

s

Column Clusters

Iteration 4 (cols)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

(a) Original groups (b) Row shifts (Step 2) (c) Column shifts (Step 4) (d) Column shifts (Step 4)

Figure 2: Row and column shifting: Holding k and ` fixed (here, k = ` = 3), we repeatedly apply Steps 2 and 4
of ReGroup until no improvements are possible (Step 6). Iteration 3 (Step 2) is omitted, since it performs
no swapping. To potentially decrease the cost further, we must increase k or ` or both, as in Figure 1.

In the previous section we established our goal: Among
all possible k and l values, and all possible row- and column-
groups, pick the arrangement with the smallest total com-
pression cost, as MDL suggests (model plus data). Although
theoretically pleasing, Eq. 2 does not tell us how to go about
finding the best arrangement—it can only pinpoint the best
one, among several candidates. The question is how to gen-
erate good candidates.

We answer this question in two steps:

1. ReGroup (inner loop): For a given k and `, find a
good arrangement (i.e., cross-association).

2. CrossAssociationSearch (outer loop): Search for
the best k and ` (k, ` = 1, 2, . . .), re-using the arrange-
ment so far.

We present each in the following sections.

4.1 Alternating Minimization (ReGroup)
Suppose we are given the number of row groups k and the

number of column groups ` and are are interested in finding
a cross-association ( ?,�?) that minimizes

kX

i=1

`X

j=1

C(D
i,j

), (3)

where D
i,j

are the cross-associates of D, given ( ?,�?). We
now outline a simple and e�cient alternating minimization
algorithm that yields a local minimum of Eq. 3. We should
note that, in the regions we typically perform the search, the
code cost dominates the total cost by far (see also Figure 3
and Section 5.1), which justifies this choice.

Algorithm ReGroup:

1. Let t denote the iteration index. Initially, set t = 0.
Start with an arbitrary cross-association ( t,�t) of
the matrix D into k row groups and ` column groups.
For this initial partition, compute the cross-associate
matrices Dt

i,j

, and corresponding distributions P
D

t
i,j
⌘

P t

i,j

.

2. For this step, we will hold column assignments, i.e.,
�t, fixed. For every row x, splice it into ` parts, each
corresponding to one of the column groups. Denote
them as x1, . . . , x`. For each of these parts, compute
n

u

(xj), u = 0, 1, and j = 1, . . . , `. Now, assign row x

to that row group  t+1 such that, for all 1  i  k:

`X

j=1

1X

u=0

n
u

(xj) log
1

P t

 t+1(x),j
(u)


`X

j=1

1X

u=0

n
u

(xj) log
1

P t

i,j

(u)
. (4)

3. With respect to cross-association ( t+1,�t), recom-
pute the matrices Dt+1

i,j

, and corresponding distribu-

tions P
D

t+1
i,j

⌘ P t+1
i,j

.

4–5. Similar to steps 2–3, but swapping columns instead
and producing a new cross-association ( t+1,�t+2)
and corresponding cross-associates Dt+2

i,j

with distri-

butions P
D

t+2
i,j

⌘ P t+2
i,j

.

6. If there is no decrease in total cost, stop; otherwise,
set t = t + 2, go to step 2, and iterate.

Figure 2 shows the alternating minimization algorithm
in action. The graph consists of three square sub-matrices
(“caves” [30]) with sizes 280, 180 and 90, plus 1% noise. We
permute this matrix and try to recover its structure. As
expected, for k = ` = 3, the algorithm discovers the correct
cross-associations. It is also clear that the algorithm finds
progressively better representations of the matrix.

Theorem 4.1 For t � 1,

kX

i=1

`X

j=1

C(Dt

i,j

) �
kX

i=1

`X

j=1

C(Dt+1
i,j

) �
kX

i=1

`X

j=1

C(Dt+2
i,j

).

In words, ReGroup never increases the objective function
(Eq. 3).

Proof. We shall only prove the first inequality, the sec-
ond inequality will follow by symmetry between rows and
columns.

kX

i=1

`X

j=1

C(Dt

i,j

)

=
kX

i=1

`X

j=1

1X

u=0

n
u

(Dt

i,j

) log
1

P t

i,j

(u)

=
kX

i=1

`X

j=1

1X

u=0

2

4
X

x: t(x)=i

n
u

(xj)

3

5 log
1

P t

i,j

(u)

Summarize  binary  matrices  by  
minimizing  the  number  of  bits  to  encode  it.
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Figure 5: Cross-associations for CLASSIC and GRANTS: Due to the dataset sizes, we show the Cross-associations
via shading; darker shades correspond denser blocks (more ones). We also show the most frequently occurring
words for several of the word (column) groups.

although not immediately apparent in the figure), which is
why our algorithm separates the two.

Figure 5(b) shows GRANTS, which consists of NSF grant
proposal abstracts in several disciplines, such as genetics,
mathematics, physics, organizational studies. Again, the
terms are meaningfully grouped: e.g., those related to biol-
ogy (“encoding,” “recombination,” etc.), to physics (“cou-
pling,” “plasma,” etc.) and to material sciences.

We also present briefly (due to space constraints) experi-
ments on matrices from several other settings: social net-
works (EPINIONS) and web visit patterns (CLICKSTREAM).
Notice that in all cases our algorithm organizes the matrices
in homogeneous regions.

5.2 (Q3) Scalability
Figure 7 shows wall-clock times (in seconds) of our MAT-

LAB implementation. In all plots, the datasets were cave-
graphs with three caves. For the noiseless case (b), times for
both ReGroup and CrossAssociationSearch increase lin-
early with respect to number of non-zeros. We observe simi-
lar behavior for the noisy case (c). The “sawtooth” patterns
are explained by the fact that we used a new matrix for each
case. Thus, it was possible for some graphs to have di↵er-
ent “regularity” (spuriously emerging patterns), and thus
compress better and faster. Indeed, when we approximately
scale by the number of inner loop iterations in CrossAsso-

ciationSearch, an overall linear trend (with variance due
to memory access overheads in MATLAB) appears.

6. CONCLUSIONS
We have proposed one of the few methods for clustering

and graph partitioning, that needs no “magic numbers.”
More specifically:

• Besides being fully automatic, our approach satisfies
all properties (P1)–(P3): it finds row and column groups
simultaneously and scales linearly with problem size.

• We introduce a novel approach and propose a general,
intuitive model founded on compression and information-
theoretic principles.

• We provide an integrated, two-level framework to find

cross-associations, consisting of ReGroup (inner loop)
and CrossAssociationSearch (outer loop).

• We give an e↵ective search strategy to minimize the
total code length, taking advantage of the cost function
properties (“waterfall” shape).

Also, out method is easily extensible to matrices with cate-
gorical values. We evaluate our method on several real and
synthetic datasets, where it produces intuitive results.
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• Label  known  fraudsters
• Guilt-­by-­Association
• If  most  nodes  in  your  
d2 community  are  
fraudulent,  you  are  
probably   fraudulent.
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Fig. 5. Left Panel. A guilt by association plot. Circular nodes correspond to wire-
less service accounts while rectangular nodes are conventional land line accounts.
Shaded nodes have been previously labeled as fraudulent by network security as-
sociates. Right Panel. Calibration plot. The per cent fraud is plotted against the
number of fraudsters in a COI for 105 cases presented to security. The plotting
symbol is the number of these cases at each level of fraud infection. The curve
superimposed on the points is the fit of a simple logistic model.

calling patterns of the new account, as characterized by its COI, should not
change very much from the previous account. The left panel of Figure 6 shows
a convincing case where two nodes appear to belong to the same individual. We
now have a problem of matching COI, with the underlying problem of deriving
a reasonable distance function to quantify the closeness of a pair of COI.

The matching problem is computationally difficult because of the size of
our network – each day we see tens of thousands of new accounts. For each
of these, we need to compute their COI, and then the distance from each of
these to the COI of all recently confirmed fraudulent accounts. Assuming for
these purposes that we maintain a library of the most recent 1000 fraudulent
accounts, tens of millions of pairwise distances need to be computed. To carry
out the computations we use a d2 COI for all accounts in our “fraud library”
and d1 COI for all new accounts.

The distance between two COI depends on both the quantity and the quality
of the overlapping nodes. The quantity of the overlap is measured by counting
the number of overlapping nodes and calculating the percentage of a COI which
consists of overlapping nodes. However all overlapping nodes are not equally
informative, so we need a measure of quality as well. Many graphs will inter-

Communities  of  Interest
Corrinna Cortes,  Daryl  Pregibon,  and  Chris  Volinsky
Springer,  2001
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• Community  of  Interest:
• top-­K  connections

• d2 community  includes  
the  COI  for  neighbors
• Label  known  fraudsters
• Guilt-­by-­Association
• More  “guilt-­by-­
association”  in  next  
section
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less service accounts while rectangular nodes are conventional land line accounts.
Shaded nodes have been previously labeled as fraudulent by network security as-
sociates. Right Panel. Calibration plot. The per cent fraud is plotted against the
number of fraudsters in a COI for 105 cases presented to security. The plotting
symbol is the number of these cases at each level of fraud infection. The curve
superimposed on the points is the fit of a simple logistic model.

calling patterns of the new account, as characterized by its COI, should not
change very much from the previous account. The left panel of Figure 6 shows
a convincing case where two nodes appear to belong to the same individual. We
now have a problem of matching COI, with the underlying problem of deriving
a reasonable distance function to quantify the closeness of a pair of COI.

The matching problem is computationally difficult because of the size of
our network – each day we see tens of thousands of new accounts. For each
of these, we need to compute their COI, and then the distance from each of
these to the COI of all recently confirmed fraudulent accounts. Assuming for
these purposes that we maintain a library of the most recent 1000 fraudulent
accounts, tens of millions of pairwise distances need to be computed. To carry
out the computations we use a d2 COI for all accounts in our “fraud library”
and d1 COI for all new accounts.

The distance between two COI depends on both the quantity and the quality
of the overlapping nodes. The quantity of the overlap is measured by counting
the number of overlapping nodes and calculating the percentage of a COI which
consists of overlapping nodes. However all overlapping nodes are not equally
informative, so we need a measure of quality as well. Many graphs will inter-
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Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010

Pattern:  Ego-­net  Power  Law  Density
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ICDM  2010

Blackhole:
Group  of  nodes  with  
far  more  incoming  
weight  than  outgoing.

Could  be  indicative  of  
trading  ring  buying  up  
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Detecting  Blackholes and  Volcanoes  in  Directed  Networks
Zhongmou Li,  Hui  Xiong,  Yanchi Liu
ICDM  2010

Volcano:
Group  of  nodes  with  far  
more  outgoing  weight  

than  incoming.

Could  be  indicative  of  
trading  ring  selling  off  

inflated  stock
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Intrusion  as  (Anti)social  Communication:  Characterization  and  Detection
Qi  Ding,  Natallia Katenka,  Paul  Barford,  
Eric  Kolaczyk,  Mark  Crovella
KDD 2012
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Method Graph  Type Node  
Attributes

Edge  
Attributes

Seed  
Labels

COI Undirected ✔ ️

OddBall Undirected

Blackholes &  
Volcanoes

Directed

(Anti)-­Social Bipartite

SODA Undirected ✔ ️

FocusCO Undirected ✔ ️

gIceberg Undirected ✔ ️

CopyCatch Bipartite ✔ ️

SynchoTrap Bipartite+ ✔ ️ ✔ ️

Co-­Clustering Bipartite* ✔ ️
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Local  Learning  for  Mining  Outlier  Subgraphs  from  Network  Datasets
Manish  Gupta,  Arun Mallya,  Subhro Roy,  
Jason  Cho,  Jiawei Han
SDM  2014   (slides  adapted  from  Manish  Gupta)

Data  Mining  Author
Theory  AuthorUser  query:

3-­author  clique

Normal Anomalous Anomalous
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3-­author  clique
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Detect outliers,  nodes  whose  
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Focused  Clustering  and  Outlier  Detection  in  Large  Attributed  Graphs
Bryan  Perozzi,  Leman  Akoglu,  Patricia  Iglesias  Sanchez,  
Emmanuel  Muller
KDD 2014   (slides  adapted  from  Bryan  Perozzi)
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Focused  Clustering  and  Outlier  Detection  in  Large  Attributed  Graphs
Bryan  Perozzi,  Leman  Akoglu,  Patricia  Iglesias  Sanchez,  
Emmanuel  Muller
KDD 2014   (slides  adapted  from  Bryan  Perozzi)
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Focused  Clustering  and  Outlier  Detection  in  Large  Attributed  Graphs
Bryan  Perozzi,  Leman  Akoglu,  Patricia  Iglesias  Sanchez,  
Emmanuel  Muller
KDD 2014   (slides  adapted  from  Bryan  Perozzi)

Focused  Outlier

2.  At  each  step  in  cluster  expansion:
2.1  -­ Examine  boundary nodes
2.2  -­ Add  node  with  best  ∆  
2.3  -­ Record  best  structural  node

1.  Clustering  objective:  conductance  
weighted  by  focus  

3.  Focused  Outliers:  
left-­out  best  structural  nodes  
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Focused  Clustering  and  Outlier  Detection  in  Large  Attributed  Graphs
Bryan  Perozzi,  Leman  Akoglu,  Patricia  Iglesias  Sanchez,  
Emmanuel  Muller
KDD 2014   (slides  adapted  from  Bryan  Perozzi)

Focused  
Outlier  did  not  
mention  Waas.
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A  Probabilistic  Approach  to  Uncovering  Attributed  Graph  Anomalies
Nan  Li,  Huan  Sun,  Kyle  Chipman,  
Jemin  George,  Xifeng  Yan
SDM  2014
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A  Probabilistic  Approach  to  Uncovering  Attributed  Graph  Anomalies
Nan  Li,  Huan  Sun,  Kyle  Chipman,  
Jemin  George,  Xifeng  Yan
SDM  2014

Action
Comedy

Subgraph  with  skewed  
attribute  distribution
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A  Probabilistic  Approach  to  Uncovering  Attributed  Graph  Anomalies
Nan  Li,  Huan  Sun,  Kyle  Chipman,  
Jemin  George,  Xifeng  Yan
SDM  2014

Anomaly:  V(1)Background:  V(0)

P(0)

Two generative processes: 
1) anomaly distribution &
2) background distribution
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A  Probabilistic  Approach  to  Uncovering  Attributed  Graph  Anomalies
Nan  Li,  Huan  Sun,  Kyle  Chipman,  
Jemin  George,  Xifeng  Yan
SDM  2014

Anomaly:  V(1)Background:  V(0)

P(0)

Two generative processes: 
1) anomaly distribution &
2) background distribution

€ 

P(vi) = θ i
(k )P(k )(vi)

k=0

1

∑

One overall mixture

With  probability  θi(0),  vi belongs  to  the  
background  component  V(0),  and  
with  θi(1) the  anomaly  component  V(1).
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A  Probabilistic  Approach  to  Uncovering  Attributed  Graph  Anomalies
Nan  Li,  Huan  Sun,  Kyle  Chipman,  
Jemin  George,  Xifeng  Yan
SDM  2014

Anomaly:  V(1)Background:  V(0)

P(0)

Two generative processes: 
1) anomaly distribution &
2) background distribution

€ 

P(vi) = θ i
(k )P(k )(vi)

k=0

1

∑

One overall mixture

With  probability  θi(0),  vi belongs  to  the  
background  component  V(0),  and  
with  θi(1) the  anomaly  component  V(1).

€ 

P(k )(vi) = p(k )(1)X i (1− p(k )(1))1−X i

Each component is a Bernoulli distribution
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A  Probabilistic  Approach  to  Uncovering  Attributed  Graph  Anomalies
Nan  Li,  Huan  Sun,  Kyle  Chipman,  
Jemin  George,  Xifeng  Yan
SDM  2014

  

€ 

ℓ(V ) = logP(vi)
vi ∈V
∑ = log

vi ∈V
∑ θ i

(k )P(k )(vi)
k
∑

Data  loglikelihood   of  vertex  set  V  
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A  Probabilistic  Approach  to  Uncovering  Attributed  Graph  Anomalies
Nan  Li,  Huan  Sun,  Kyle  Chipman,  
Jemin  George,  Xifeng  Yan
SDM  2014

  

€ 

ℓ(V ) = logP(vi)
vi ∈V
∑ = log

vi ∈V
∑ θ i

(k )P(k )(vi)
k
∑

Data  loglikelihood   of  vertex  set  V  

Maximize:

Network  
regularizer Entropy

regularizer(enhances  connectivity  
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Abstract—Traditional multi-dimensional data analysis tech-
niques such as iceberg cube cannot be directly applied to graphs
for finding interesting or anomalous vertices due to the lack of
dimensionality in graphs. In this paper, we introduce the concept
of graph icebergs that refer to vertices for which the concentration
(aggregation) of an attribute in their vicinities is abnormally
high. Intuitively, these vertices shall be “close” to the attribute
of interest in the graph space. Based on this intuition, we propose
a novel framework, called gIceberg, which performs aggregation
using random walks, rather than traditional SUM and AVG
aggregate functions. This proposed framework scores vertices by
their different levels of interestingness and finds important ver-
tices that meet a user-specified threshold. To improve scalability,
two aggregation strategies, forward and backward aggregation,
are proposed with corresponding optimization techniques and
bounds. Experiments on both real-world and synthetic large
graphs demonstrate that gIceberg is effective and scalable.

I. INTRODUCTION

The ubiquity of large-scale graphs has motivated research
in graph mining and analysis, such as frequent graph pattern
mining [1], graph summarization/compression [2], and graph
anomaly detection [3]. An important feature of real-world
graphs is that they often contain attributes on their vertices.
For instance, in an academic collaboration network, a vertex is
an author and the vertex attributes can be their research topics.
In a customer social network, the vertex attributes can be the
products the customers purchased. Various studies have been
dedicated to mining attributed graphs [4], [5], [6].

Given a large vertex attributed graph, how can we find
interesting vertices or anomalies? Certainly, the interestingness
criteria vary among different applications [7], [3], [8]. In this
paper, we introduce a generic concept of graph icebergs that
refer to vertices for which the concentration (aggregation)
of an attribute in their vicinities is abnormally high. The
name, “iceberg”, is borrowed from the concept of iceberg
queries proposed in [9]. When querying traditional relational
databases, many applications entail computing aggregate func-
tions over an attribute (or a set of attributes) to find aggregate
values above some specified threshold. Such queries are called
iceberg queries, because the number of above-threshold results
is often small (the tip of an iceberg), compared to the large
amount of input data [9]. Analogously, an aggregate function,

such as the percentage of neighboring vertices containing the
attribute, can be applied to each vertex in the graph, to assess
the concentration of a certain attribute within the vertex’s
vicinity. An aggregate score is computed for each vertex’s
vicinity. Graph iceberg vertices are retrieved as those whose
aggregate score is above a given threshold.

Applications of graph iceberg mining abound, including
target marketing, recommendation systems, social influence
analysis, intrusion detection, and so on. In a social network, if
many of John Doe’s friends bought an iPhone but he has not,
he would be a good target for iPhone promotion, since he could
be influenced by his friends. In a geographic network, we can
find sub-networks where crimes occur more often than the
rest of the network. The detection of such sub-networks could
help law enforcement officers better allocate their resources.
In addition, if the detected iceberg vertices form sparse sub-
graphs, social influence analysis can be applied, since sparse
edge connections among iceberg vertices often indicate social
influence, rather than homophily [10].
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Fig. 1. Graph Iceberg

Figure 1(a) shows a vertex-attributed graph, where black
vertices are those containing the attribute of interest, which
could be a product purchase, a network attack, a reported
crime, etc. An aggregate score is computed for each vertex,
indicating the concentration level of the attribute in its vicinity.
Figure 1(b) shows that the vertices can be rearranged according
to their aggregate scores. Vertices with higher scores are
positioned higher. By inserting cutting thresholds with differ-
ent values, we can retrieve different sets of iceberg vertices.
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dimensionality in graphs. In this paper, we introduce the concept
of graph icebergs that refer to vertices for which the concentration
(aggregation) of an attribute in their vicinities is abnormally
high. Intuitively, these vertices shall be “close” to the attribute
of interest in the graph space. Based on this intuition, we propose
a novel framework, called gIceberg, which performs aggregation
using random walks, rather than traditional SUM and AVG
aggregate functions. This proposed framework scores vertices by
their different levels of interestingness and finds important ver-
tices that meet a user-specified threshold. To improve scalability,
two aggregation strategies, forward and backward aggregation,
are proposed with corresponding optimization techniques and
bounds. Experiments on both real-world and synthetic large
graphs demonstrate that gIceberg is effective and scalable.

I. INTRODUCTION

The ubiquity of large-scale graphs has motivated research
in graph mining and analysis, such as frequent graph pattern
mining [1], graph summarization/compression [2], and graph
anomaly detection [3]. An important feature of real-world
graphs is that they often contain attributes on their vertices.
For instance, in an academic collaboration network, a vertex is
an author and the vertex attributes can be their research topics.
In a customer social network, the vertex attributes can be the
products the customers purchased. Various studies have been
dedicated to mining attributed graphs [4], [5], [6].

Given a large vertex attributed graph, how can we find
interesting vertices or anomalies? Certainly, the interestingness
criteria vary among different applications [7], [3], [8]. In this
paper, we introduce a generic concept of graph icebergs that
refer to vertices for which the concentration (aggregation)
of an attribute in their vicinities is abnormally high. The
name, “iceberg”, is borrowed from the concept of iceberg
queries proposed in [9]. When querying traditional relational
databases, many applications entail computing aggregate func-
tions over an attribute (or a set of attributes) to find aggregate
values above some specified threshold. Such queries are called
iceberg queries, because the number of above-threshold results
is often small (the tip of an iceberg), compared to the large
amount of input data [9]. Analogously, an aggregate function,

such as the percentage of neighboring vertices containing the
attribute, can be applied to each vertex in the graph, to assess
the concentration of a certain attribute within the vertex’s
vicinity. An aggregate score is computed for each vertex’s
vicinity. Graph iceberg vertices are retrieved as those whose
aggregate score is above a given threshold.

Applications of graph iceberg mining abound, including
target marketing, recommendation systems, social influence
analysis, intrusion detection, and so on. In a social network, if
many of John Doe’s friends bought an iPhone but he has not,
he would be a good target for iPhone promotion, since he could
be influenced by his friends. In a geographic network, we can
find sub-networks where crimes occur more often than the
rest of the network. The detection of such sub-networks could
help law enforcement officers better allocate their resources.
In addition, if the detected iceberg vertices form sparse sub-
graphs, social influence analysis can be applied, since sparse
edge connections among iceberg vertices often indicate social
influence, rather than homophily [10].
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Figure 1(a) shows a vertex-attributed graph, where black
vertices are those containing the attribute of interest, which
could be a product purchase, a network attack, a reported
crime, etc. An aggregate score is computed for each vertex,
indicating the concentration level of the attribute in its vicinity.
Figure 1(b) shows that the vertices can be rearranged according
to their aggregate scores. Vertices with higher scores are
positioned higher. By inserting cutting thresholds with differ-
ent values, we can retrieve different sets of iceberg vertices.

Aggregate  score:  concentration  of  attribute  in  vertex’s  vicinity  
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Fig. 6. Backward Aggregation Approximation

V. BACKWARD AGGREGATION

In this section, we introduce a different aggregation scheme
called backward aggregation (BA). Instead of aggregating
PageRank in a forward manner (adding up the entries of
black vertices in a PPV), BA starts from black vertices, and
propagates values in their PPVs to other vertices in a backward
manner. Specifically, based on the reversibility of random
walks, the symmetric property of degree-normalized PPV [19]
states that: in an undirected graph G, for any two vertices u
and v, the PPVs of u and v satisfy:

pu(v) =
dv
du

pv(u), (7)

where du and dv are the degrees of u and v, respectively.
If we know v’s PageRank with respect to u, pu(v), we can
quickly compute the value for its reverse, pv(u), without
actually computing v’s PPV. For a given query attribute q,
the PageRank values of black vertices in any vertex v’s PPV
are the key to computing v’s q-score. In Figure 3(b), BA starts
from black vertices, computes their PPVs, and propagates their
contributions to the other vertices’ q-scores backward (black
arrow) according to Equation (7). BA provides a possibility
to quickly compute q-scores for the entire vertex set, by
starting from only those black vertices. Given that black
vertices usually occupy a small portion of V , BA reduces the
aggregation time significantly.

A. Backward Aggregation Approximation

Applying BA on approximate PPVs generated by random
walks is called BA approximation. In Figure 6, for each
black vertex x we perform R random walks, {W1, . . . ,WR},
from x to approximate x’s PPV. Each walk continues until
its first restart. Once such process is done on all the black
vertices, for any vertex v in G, v’s approximate q-score is
the sum of the reverse PageRank scores of the vth entries
in the approximate PPVs of the black vertices, computed
according to Equation (7). We now analyze the accuracy of
such approximate aggregation.

Theorem 7 (BA Approximation): Let Vq ⊆ V be the set of
black vertices. Suppose we perform R random walks from
each black vertex, x, to approximate its PPV, p̃x. For any
vertex v ∈ V , let P̃q(v) = Σx∈Vq

dx
dv

p̃x(v) be the approximate
q-score of v using BA. We have Pr[P̃q(v) − Pq(v) ≥ ϵ] ≤
exp{−2Rd2vϵ

2/Σx∈Vqd
2
x} and Pr[|P̃q(v) − Pq(v)]| ≥ ϵ] ≤

2 exp{−2Rd2vϵ
2/Σx∈Vqd

2
x}, where ϵ > 0.

The proof is in the appendix. Now we analyze how well
BA retrieves iceberg vertices. As in Algorithm 4, BA retrieves

Algorithm 4: Backward Aggregation
Input: G, query q, threshold θ, approximation error ϵ
Output: Graph iceberg vertices
1 for Each black vertex x do
2 Use random walks to get x’s approximate PPV, p̃x;
3 for Each entry p̃x(v) do
4 Compute the reverse entry p̃v(x) =

dx
dv

p̃x(v);

5 Add p̃v(x) to v’s q-score: P̃q(v);
6 Return vertices with approximate q-score above θ − ϵ;

all the vertices whose approximate q-score is above θ − ϵ
as iceberg vertices. Again we use recall as the measure,
which evaluates the percentage of real iceberg vertices that
are captured by the BA approximation.

Corollary 3 (BA Recall): Given a q-score cut-off threshold
θ, for vertex v such that Pq(v) ≥ θ, we have Pr[P̃q(v) ≥
θ − ϵ] ≥ 1 − 2 exp{−2Rd2vϵ

2/Σx∈Vqd
2
x}, where ϵ > 0 and

P̃q(v) is v’s q-score using BA approximation.
Proof: The proof follows from Theorem 7.

Therefore the likelihood for a real iceberg vertex v to be
retrieved by BA can be bounded. This bound is not as tight
as the one for FA. We later show in our experiments that BA
achieves good recall in practice, given a reasonable number of
random walks. Algorithm 4 describes the BA workflow.

VI. CLUSTERING PROPERTY OF ICEBERG VERTICES

Graph iceberg vertices can further be used to discover graph
iceberg regions. We achieve this by methods ranging from
graph clustering to simple connected component finding. In
this section, we describe some interesting properties of how
iceberg vertices are distributed in the graph. We discovered
that iceberg vertices naturally form connected components
surrounding the black vertices in the graph.

A. Active Boundary
Define a region R = {VR, ER} to be a connected subgraph

of G, and the boundary of R, N(R), to be the set of vertices
such that N(R)∩VR = ∅ and each vertex in N(R) is directly
connected to at least one vertex in VR. In Figure 7(a), the dark
area surrounding region R forms R’s boundary. Theorem 3
shows that the q-score of a non-black vertex is exactly (1− c)
times the average q-score of all its neighbors.

Theorem 8 (Boundary): Given a region R in G which does
not contain any black vertex, if the q-scores of all vertices in
N(R) are below the q-score threshold θ, then no vertex in VR

has q-score above θ.
Proof: Equation (4) shows that the q-score of a non-black

vertex is lower than the maximum q-score of its neighbors.
Suppose there is a vertex v0 ∈ VR such that Pq(v0) > θ. Since
R does not contain black vertices, v0 is non-black, thus at least
one of v0’s neighbors has q-score higher than Pq(v0). Let it
be v1. The same argument holds for v1. A path is therefore
formed with a strictly increasing sequence of q-scores, and all
the q-scores in this sequence are > θ. Since |VR| is finite,
eventually the path goes through R’s boundary, N(R). Since
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V. BACKWARD AGGREGATION

In this section, we introduce a different aggregation scheme
called backward aggregation (BA). Instead of aggregating
PageRank in a forward manner (adding up the entries of
black vertices in a PPV), BA starts from black vertices, and
propagates values in their PPVs to other vertices in a backward
manner. Specifically, based on the reversibility of random
walks, the symmetric property of degree-normalized PPV [19]
states that: in an undirected graph G, for any two vertices u
and v, the PPVs of u and v satisfy:

pu(v) =
dv
du

pv(u), (7)

where du and dv are the degrees of u and v, respectively.
If we know v’s PageRank with respect to u, pu(v), we can
quickly compute the value for its reverse, pv(u), without
actually computing v’s PPV. For a given query attribute q,
the PageRank values of black vertices in any vertex v’s PPV
are the key to computing v’s q-score. In Figure 3(b), BA starts
from black vertices, computes their PPVs, and propagates their
contributions to the other vertices’ q-scores backward (black
arrow) according to Equation (7). BA provides a possibility
to quickly compute q-scores for the entire vertex set, by
starting from only those black vertices. Given that black
vertices usually occupy a small portion of V , BA reduces the
aggregation time significantly.

A. Backward Aggregation Approximation

Applying BA on approximate PPVs generated by random
walks is called BA approximation. In Figure 6, for each
black vertex x we perform R random walks, {W1, . . . ,WR},
from x to approximate x’s PPV. Each walk continues until
its first restart. Once such process is done on all the black
vertices, for any vertex v in G, v’s approximate q-score is
the sum of the reverse PageRank scores of the vth entries
in the approximate PPVs of the black vertices, computed
according to Equation (7). We now analyze the accuracy of
such approximate aggregation.

Theorem 7 (BA Approximation): Let Vq ⊆ V be the set of
black vertices. Suppose we perform R random walks from
each black vertex, x, to approximate its PPV, p̃x. For any
vertex v ∈ V , let P̃q(v) = Σx∈Vq

dx
dv

p̃x(v) be the approximate
q-score of v using BA. We have Pr[P̃q(v) − Pq(v) ≥ ϵ] ≤
exp{−2Rd2vϵ

2/Σx∈Vqd
2
x} and Pr[|P̃q(v) − Pq(v)]| ≥ ϵ] ≤

2 exp{−2Rd2vϵ
2/Σx∈Vqd

2
x}, where ϵ > 0.

The proof is in the appendix. Now we analyze how well
BA retrieves iceberg vertices. As in Algorithm 4, BA retrieves

Algorithm 4: Backward Aggregation
Input: G, query q, threshold θ, approximation error ϵ
Output: Graph iceberg vertices
1 for Each black vertex x do
2 Use random walks to get x’s approximate PPV, p̃x;
3 for Each entry p̃x(v) do
4 Compute the reverse entry p̃v(x) =

dx
dv

p̃x(v);

5 Add p̃v(x) to v’s q-score: P̃q(v);
6 Return vertices with approximate q-score above θ − ϵ;

all the vertices whose approximate q-score is above θ − ϵ
as iceberg vertices. Again we use recall as the measure,
which evaluates the percentage of real iceberg vertices that
are captured by the BA approximation.

Corollary 3 (BA Recall): Given a q-score cut-off threshold
θ, for vertex v such that Pq(v) ≥ θ, we have Pr[P̃q(v) ≥
θ − ϵ] ≥ 1 − 2 exp{−2Rd2vϵ

2/Σx∈Vqd
2
x}, where ϵ > 0 and

P̃q(v) is v’s q-score using BA approximation.
Proof: The proof follows from Theorem 7.

Therefore the likelihood for a real iceberg vertex v to be
retrieved by BA can be bounded. This bound is not as tight
as the one for FA. We later show in our experiments that BA
achieves good recall in practice, given a reasonable number of
random walks. Algorithm 4 describes the BA workflow.

VI. CLUSTERING PROPERTY OF ICEBERG VERTICES

Graph iceberg vertices can further be used to discover graph
iceberg regions. We achieve this by methods ranging from
graph clustering to simple connected component finding. In
this section, we describe some interesting properties of how
iceberg vertices are distributed in the graph. We discovered
that iceberg vertices naturally form connected components
surrounding the black vertices in the graph.

A. Active Boundary
Define a region R = {VR, ER} to be a connected subgraph

of G, and the boundary of R, N(R), to be the set of vertices
such that N(R)∩VR = ∅ and each vertex in N(R) is directly
connected to at least one vertex in VR. In Figure 7(a), the dark
area surrounding region R forms R’s boundary. Theorem 3
shows that the q-score of a non-black vertex is exactly (1− c)
times the average q-score of all its neighbors.

Theorem 8 (Boundary): Given a region R in G which does
not contain any black vertex, if the q-scores of all vertices in
N(R) are below the q-score threshold θ, then no vertex in VR

has q-score above θ.
Proof: Equation (4) shows that the q-score of a non-black

vertex is lower than the maximum q-score of its neighbors.
Suppose there is a vertex v0 ∈ VR such that Pq(v0) > θ. Since
R does not contain black vertices, v0 is non-black, thus at least
one of v0’s neighbors has q-score higher than Pq(v0). Let it
be v1. The same argument holds for v1. A path is therefore
formed with a strictly increasing sequence of q-scores, and all
the q-scores in this sequence are > θ. Since |VR| is finite,
eventually the path goes through R’s boundary, N(R). Since
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V. BACKWARD AGGREGATION

In this section, we introduce a different aggregation scheme
called backward aggregation (BA). Instead of aggregating
PageRank in a forward manner (adding up the entries of
black vertices in a PPV), BA starts from black vertices, and
propagates values in their PPVs to other vertices in a backward
manner. Specifically, based on the reversibility of random
walks, the symmetric property of degree-normalized PPV [19]
states that: in an undirected graph G, for any two vertices u
and v, the PPVs of u and v satisfy:

pu(v) =
dv
du

pv(u), (7)

where du and dv are the degrees of u and v, respectively.
If we know v’s PageRank with respect to u, pu(v), we can
quickly compute the value for its reverse, pv(u), without
actually computing v’s PPV. For a given query attribute q,
the PageRank values of black vertices in any vertex v’s PPV
are the key to computing v’s q-score. In Figure 3(b), BA starts
from black vertices, computes their PPVs, and propagates their
contributions to the other vertices’ q-scores backward (black
arrow) according to Equation (7). BA provides a possibility
to quickly compute q-scores for the entire vertex set, by
starting from only those black vertices. Given that black
vertices usually occupy a small portion of V , BA reduces the
aggregation time significantly.

A. Backward Aggregation Approximation

Applying BA on approximate PPVs generated by random
walks is called BA approximation. In Figure 6, for each
black vertex x we perform R random walks, {W1, . . . ,WR},
from x to approximate x’s PPV. Each walk continues until
its first restart. Once such process is done on all the black
vertices, for any vertex v in G, v’s approximate q-score is
the sum of the reverse PageRank scores of the vth entries
in the approximate PPVs of the black vertices, computed
according to Equation (7). We now analyze the accuracy of
such approximate aggregation.

Theorem 7 (BA Approximation): Let Vq ⊆ V be the set of
black vertices. Suppose we perform R random walks from
each black vertex, x, to approximate its PPV, p̃x. For any
vertex v ∈ V , let P̃q(v) = Σx∈Vq

dx
dv

p̃x(v) be the approximate
q-score of v using BA. We have Pr[P̃q(v) − Pq(v) ≥ ϵ] ≤
exp{−2Rd2vϵ

2/Σx∈Vqd
2
x} and Pr[|P̃q(v) − Pq(v)]| ≥ ϵ] ≤

2 exp{−2Rd2vϵ
2/Σx∈Vqd

2
x}, where ϵ > 0.

The proof is in the appendix. Now we analyze how well
BA retrieves iceberg vertices. As in Algorithm 4, BA retrieves

Algorithm 4: Backward Aggregation
Input: G, query q, threshold θ, approximation error ϵ
Output: Graph iceberg vertices
1 for Each black vertex x do
2 Use random walks to get x’s approximate PPV, p̃x;
3 for Each entry p̃x(v) do
4 Compute the reverse entry p̃v(x) =

dx
dv

p̃x(v);

5 Add p̃v(x) to v’s q-score: P̃q(v);
6 Return vertices with approximate q-score above θ − ϵ;

all the vertices whose approximate q-score is above θ − ϵ
as iceberg vertices. Again we use recall as the measure,
which evaluates the percentage of real iceberg vertices that
are captured by the BA approximation.

Corollary 3 (BA Recall): Given a q-score cut-off threshold
θ, for vertex v such that Pq(v) ≥ θ, we have Pr[P̃q(v) ≥
θ − ϵ] ≥ 1 − 2 exp{−2Rd2vϵ

2/Σx∈Vqd
2
x}, where ϵ > 0 and

P̃q(v) is v’s q-score using BA approximation.
Proof: The proof follows from Theorem 7.

Therefore the likelihood for a real iceberg vertex v to be
retrieved by BA can be bounded. This bound is not as tight
as the one for FA. We later show in our experiments that BA
achieves good recall in practice, given a reasonable number of
random walks. Algorithm 4 describes the BA workflow.

VI. CLUSTERING PROPERTY OF ICEBERG VERTICES

Graph iceberg vertices can further be used to discover graph
iceberg regions. We achieve this by methods ranging from
graph clustering to simple connected component finding. In
this section, we describe some interesting properties of how
iceberg vertices are distributed in the graph. We discovered
that iceberg vertices naturally form connected components
surrounding the black vertices in the graph.

A. Active Boundary
Define a region R = {VR, ER} to be a connected subgraph

of G, and the boundary of R, N(R), to be the set of vertices
such that N(R)∩VR = ∅ and each vertex in N(R) is directly
connected to at least one vertex in VR. In Figure 7(a), the dark
area surrounding region R forms R’s boundary. Theorem 3
shows that the q-score of a non-black vertex is exactly (1− c)
times the average q-score of all its neighbors.

Theorem 8 (Boundary): Given a region R in G which does
not contain any black vertex, if the q-scores of all vertices in
N(R) are below the q-score threshold θ, then no vertex in VR

has q-score above θ.
Proof: Equation (4) shows that the q-score of a non-black

vertex is lower than the maximum q-score of its neighbors.
Suppose there is a vertex v0 ∈ VR such that Pq(v0) > θ. Since
R does not contain black vertices, v0 is non-black, thus at least
one of v0’s neighbors has q-score higher than Pq(v0). Let it
be v1. The same argument holds for v1. A path is therefore
formed with a strictly increasing sequence of q-scores, and all
the q-scores in this sequence are > θ. Since |VR| is finite,
eventually the path goes through R’s boundary, N(R). Since
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Method Graph  Type Node  
Attributes

Edge  
Attributes

Seed  
Labels

COI Undirected ✔ ️

OddBall Undirected

Blackholes &  
Volcanoes

Directed

(Anti)-­Social Bipartite

SODA Undirected ✔ ️

FocusCO Undirected ✔ ️

gIceberg Undirected ✔ ️

CopyCatch Bipartite ✔ ️

SynchoTrap Bipartite+ ✔ ️ ✔ ️

Co-­Clustering Bipartite* ✔ ️
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We can see in Figure 2(a) that those malicious accounts are coor-
dinated to follow a target set of users in batches. The entire group
of accounts show a salient on-off action pattern. During the active
periods, they follow the same set of users at around the same time.
In contrast, normal users exhibit diverse user-following behavior.
As shown in Figure 2(b), little perceivable correlation can be found
among the user-following sequences of normal users.
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(a) Synchronized attack

0 24 48 72 96 120 144 168
0 

200 

400 

600 

800 

1000 

Time (hours)

A
cc

o
u

n
t 

ID

(b) Normal

Figure 2: An example in Instagram user following. The x-axis
is the timestamp of an account’s following action and the y-
axis is an account’s ID. A dot (x, y) shows that an account y
follows a targeted account at time x. The color of a dot encodes
the followed account’s ID. Actions of the same color follow the
same account.

2.3 Economic constraints of attackers
In this subsection, we speculate why various social network at-

tacks tend to happen in loose synchrony. We believe that this is
partly due to the economic constraints on the attacker side.

Cost on computing and operating resources. Attackers have
limited physical computing resources. Although they can purchase
or compromise machines (e.g., botnets), or even rent from cloud
computing services, such resources incur financial cost. Further-
more, those computing resources have limited operating time. This
is because an infected machine may go offline, recover, or even be
quarantined at any time [32, 48], and that a machine rental is usu-
ally charged based on the consumed computing utility [4]. Another
operating cost is the human labor to fabricate fake or compromise
real accounts, and to maintain and manage the accounts. Under
these operating constraints, an attacker often controls his malicious
accounts from a set of machines within a limited time.

Revenue frommissions with strict requirements. OSN attackers
are often deeply rooted in the underground markets, e.g., BlackHat-
World and Freelancer [33,36,37]. Most of their missions are driven
by customer demands with specific requirements. Usually the ob-
jective of a campaign is to achieve prevalence in OSNs. There-

fore, the mission requirements often include the level of prevalence
that a customer pursues and a strict deadline by which the mission
must be accomplished. For example, many social-networking tasks
in Freelancer solicit X Facebook friends/likes within Y days [33].
Similar tasks target other social network missions, such as follow-
ings, posts, reviews, etc. These underground tasks with strict time
requirements force attackers to target certain aspects of a victim’s
service and to act in advance of the mission deadlines.

We call the constraints of limited computing and operating re-
sources as resource constraints, and the constraints of strict re-
quirements on an attacker’s missions as mission constraints. Our
understanding of these economic constraints and their subsequent
manifestation on the activities of controlled accounts helps us di-
rectly attack the weak spot of attackers, making it hard for them to
evade detection.

3. SYSTEM OVERVIEW

3.1 High-level system architecture
SynchroTrap is a generic and scalable framework that can ef-

fectively throttle large groups of malicious accounts in OSNs. The
main idea of SynchroTrap is to use clustering analysis [26] to detect
the loosely synchronized actions from malicious accounts at scale.
In particular, it measures pairwise user behavior similarity and then
uses a hierarchical clustering algorithm [26] to group users with
similar behavior over an extended period of time together.

3.2 Challenges
We face a number of challenges in making SynchroTrap a prac-

tical solution for large-scale OSNs.

Scalability: A main challenge originates from the enormous scale
of today’s OSNs. First, the large volume of user activity data leads
to a low signal-to-noise ratio, making it hard to achieve high detec-
tion accuracy. For example, Facebook has more than 600 million
daily active users [8], while the number of malicious accounts in-
volved in an attack campaign is often on the order of thousands.
As a result, approaches (e.g., clickstream analysis [42]) that use
holistic comparison of all user activities may yield low accuracy.
In response to this challenge, we partition user actions by OSN ap-
plications and detect on a per-application basis (§ 4.1). We further
partition user actions by their associated target or source objects,
such as IP addresses, followee IDs, and page IDs, to capture the
constraints of an attacker (§ 4.2).

Second, the sheer volume of activity data prohibits a practical
implementation that can cope with generic actions. Large and com-
plex batch computations at Facebook-scale services are prohibitive
due to their requirements on hardware capacity (e.g., memory).
Such computations make resource sharing difficult and failure re-
covery costly. To handle massive user activities at Facebook-scale
OSNs, we apply divide-and-conquer. We slice the computation of
user comparison into smaller jobs along the time dimension and use
parallelism to scale (§ 4.5). We then aggregate the results of multi-
ple smaller computations to obtain period-long user similarity.

Accuracy: The diversity of normal user behavior and the stealthi-
ness of malicious activity hinder high accurate detection. Anomaly
detection schemes inevitably incur false positives and negatives. As
a result, the goal of an automated detection system is often to re-
duce both the false positive and negative rates. In order to achieve
high accuracy, we design SynchroTrap based on our understanding
of an attacker’s economic constraints. Moreover, as the false posi-
tive and false negative rates are usually inversely related, Synchro-

Temporal  lockstep  
behavior  found  in  
Instagram  followers
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form billions of actions everyday [34]. In contrast, the number of
malicious accounts involved in an attack campaign is often on the
order of thousands. How can we accurately detect such a weak sig-
nal from a large amount of noisy data? Third, we aim to deploy
our system on real-world online social networks such as Facebook.
Therefore, our detection algorithm must be able to process a few
terabytes of data on a daily basis, while many of the off-the-shelf
anomaly detection algorithms [26] or previous work, such as Click-
stream, do not scale to data of this size.

We have developed several simple but pragmatic techniques to
address the above design challenges. First, we model the malicious
account detection problem as a clustering problem (§ 3.1). We
compare pairwise user actions over a certain time period and group
those users who take similar actions at roughly the same time into
clusters, and mark a cluster whose size exceeds a tunable thresh-
old as malicious. This is because we observe from a real social
network that legitimate social network users take diverse actions
over time (§ 2). Second, to make the clustering algorithm compu-
tationally tractable, we further use an attacker’s network resource
constraint, e.g., the number of IP addresses under his control, or the
attacker’s target, e.g., a fraudulent Instagram account, to reduce the
pairwise comparison to be per IP address and/or per targeted object,
depending on the specific application context. Finally, we partition
user action data into small daily or hourly chunks. We design al-
gorithms to aggregate the comparison results between those small
chunks to detect malicious actions over a longer period such as a
week (§ 4.5). This technique enables us to implement SynchroTrap
in an incremental-processing fashion, making it practically deploy-
able at large online social networks.

We have deployed SynchroTrap at Facebook and Instagram for
over ten months (§ 7). In a detailed study of one-month data (§ 8.1),
we observe that it uncovered more than two million malicious ac-
counts and 1156 malicious campaigns. We have randomly sampled
a subset of malicious accounts SynchroTrap caught, and asked se-
curity specialists to inspect the accuracy of the results. The manual
inspection suggests that our system achieves a precision higher than
99%. During the course of its deployment, SynchroTrap on aver-
age catches ∼274K malicious accounts per week. We have also
evaluated the performance of SynchroTrap on a 200-machine clus-
ter at Facebook. The performance results show that our system is
able to process Facebook and Instagram’s user data. It takes a few
hours for SynchroTrap to process the daily data and ∼15 hours to
process a weekly aggregation job.

Admittedly, strategic attackers may attempt to spread the actions
of malicious accounts to evade SynchroTrap’s detection. We ana-
lyze SynchroTrap’s security guarantee and show that SynchroTrap
can effectively limit the rate of malicious actions an attacker per-
forms, even if the attacker controls an unlimited number of ma-
licious accounts (§ 6). In addition, we provide a set of parame-
ters that operators can tune to achieve a desirable trade-off between
false positives and false negatives. With a strict setting, Synchro-
Trap yields a near-zero false positive rate.

In summary, this work makes the following main contributions:
•We observe that malicious accounts tend to act together in a vari-
ety of social network context (§ 2).
•We have designed, implemented, and deployed SynchroTrap. Our
design addresses several practical challenges of using loosely syn-
chronized actions to uncover malicious social network accounts,
including how to detect such behavior in a variety of social net-
work applications, and among large and noisy data sets (§ 4).
• We present a preliminary analysis of the characteristics of the
detected malicious accounts. This analysis may provide insight for
other feature-based malicious account detection systems (§ 8).
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Figure 1: An example of malicious photo uploads in Facebook.
The x-axis shows the time when an account uploads a photo,
and the y-axis is the account’s ID. A dot (x, y) in the figure
shows that an account with ID y uploads a photo at time x.
The color of a dot encodes the IP address of the action. Photo
uploads of the same color come from the same IP address.

2. MOTIVATING EXAMPLES
In this section, we examine two real-world attack examples that

motivate SynchroTrap’s design. Beutel et al. [16] observe that ma-
licious accounts post fake likes at around the same time. These two
additional examples show that: a) this attack pattern also appears in
other social network applications such as Instagram following, and
b) malicious accounts not only act together but often from a limited
set of IP addresses.

2.1 Malicious Facebook photo uploads
Figure 1 compares the photo-uploading activities of malicious

users to those of normal users at Facebook. Figure 1(a) plots the
photo uploads with timestamps from a group of 450 malicious ac-
counts over a week. Facebook caught those accounts because they
promoted diet pills by uploading spam photos. We can see that
those accounts use a few IP addresses to upload many spam pho-
tos. The horizontal color stripes indicate that they switch among a
small set of IP addresses during the one-week period.

Figure 1(b) shows the photo uploads of 450 randomly chosen
accounts which have never been flagged as malicious. We refer to
those users as normal users. As can be seen, the actions are much
more spread out in time and come from a much more diverse set of
IP addresses.

2.2 Inflating followers on Instagram
Malicious users in Instagram follow target users to inflate the

number of their followers. Figure 2 compares user-following activ-
ities between 1,000 malicious users and 1,000 normal users. The
malicious accounts are sampled from an attack campaign involving
7K accounts.
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we fingerprint attacks and take actions on detected accounts and
user-created content.

Attack signatures. SynchroTrap extracts the common constraint
objects on which groups of suspicious accounts act together. The
OSN entities pointed by those constraint objects can be abusive,
and thus can be used as attack signatures. They include rogue Face-
book apps, Facebook pages with inappropriate content, abusive In-
stagram accounts soliciting excessive followers, etc. By tracking
back to the complete user action log, SynchroTrap can even provide
the fingerprints of an attacker’s machines, including IP addresses,
user agents, browser cookies, etc. All of the above signatures can
be used to build fast classifiers to suppress future attacks in nearly
real time [35], and to decide on proper responses.

Response. The response to attacks in SynchroTrap is multifold:
large groups of detected accounts are challenged with CAPTCHAs;
actions performed in attack campaigns are invalidated in retrospect;
and user-created content, such as photos, is sent for automated san-
ity check (e.g., photoDNA [9]) or manual inspection.

8. EVALUATION
We evaluate SynchroTrap using a one-month execution log at

Facebook in August 2013. We answer the following questions to
show that SynchroTrap provides a practical solution for large on-
line social networks:

• Can SynchroTrap accurately detect malicious accounts while
yielding low false positives?
• How effective is SynchroTrap in uncovering new attacks?
• Can SynchroTrap scale up to Facebook-size OSNs?
We obtain SynchroTrap’s detection accuracy by manually in-

specting sampled accounts and activities it uncovered. We then
study the new findings through cross-validation against existing
approaches that run at Facebook. We examine the social connec-
tivity of the identified accounts by using SybilRank [19], a scal-
able social-graph-based fake account detection system. We also
share the operation experience to shed light on how SynchroTrap
works in practice over time. Lastly, we demonstrate the scalability
of SynchroTrap using performance measurements obtained from a
200-machine cluster.

8.1 Validation of identified accounts
We first validate the malicious accounts with support from the

Facebook security team. We proceed with investigation of the con-
firmed accounts to understand how adversaries managed to take
control of them. Furthermore, we study the network-level charac-
teristics of the detected attacks, including the email domains and IP
addresses used by malicious accounts.

Application
Page Instagram App Photo

Login
like follow install upload

Campaigns 201 531 74 29 321
Accounts 730K 589K 164K 120K 564K
Actions 357M 65M 4M 48M 29M
Precision 99.0% 99.7% 100% 100% 100%

Table 2: Identified accounts and precision. Precision is the portion of
identified accounts that are confirmed malicious. We derived precision
from manual inspection of randomly sampled accounts by the Face-
book security team.

Methodology. A main challenge to validate the detected accounts
and their actions is their large number. During the month of our
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Figure 7: CDF of campaigns with respect to the number of in-
volved users. In a large campaign, an attacker manipulates
multiple thousands of malicious accounts.

study, SynchroTrap uncovers millions of accounts. Manually re-
viewing all those accounts imposes prohibitive human workload.
Furthermore, cross validating the detected accounts with other ex-
isting Facebook countermeasures is not possible because a large
fraction of detected accounts are not caught by other methods (§ 8.2).
Therefore, our approach is to inspect representative samples of the
detected accounts with manual assistance from the security spe-
cialists. We randomly sample subsets of the detected accounts for
inspection and obtain the false rates.

Precision. Table 2 shows the numbers of suspicious accounts Syn-
chroTrap caught and attack campaigns uncovered by SynchroTrap,
and the precision in each application. In total, SynchroTrap de-
tected 1156 large campaigns that involve more than 2 million ma-
licious accounts, with a precision higher than 99%. Table 2 also
shows that the large attack campaigns are comprised of millions of
user actions. Among the five deployed applications, attackers were
more active in page like and user following, presumably because
campaigns in these applications are more lucrative. By uncovering
large campaigns, SynchroTrap allows Facebook and Instagram to
identify and properly invalidate millions of malicious user actions
in each application.

Post-processing to deal with false positives. False positives are
detrimental to OSN user experience. Besides adding human efforts
into the process of setting parameters (§ 4.6), we further reduce
false positives through post-processing. First, we discard small user
clusters and screen out only large clusters, which are more likely to
result from large attacks. Based on the experience with the system,
the Facebook security team sets a threshold of 200, above which
almost all users in each cluster are found malicious. Second, we
do not invalidate all actions that a malicious account has performed
during a detection window Tp, but conservatively focus on those
that match at least one action of each of the other accounts in the
same cluster. This post processing step helps rule out valid actions
that a user account may have delivered while being compromised.

Scale of campaigns. Figure 7 shows the CDF of the scale of the
attack campaigns after post-processing, in terms of the number of
involved malicious accounts. While 80% of the campaigns involve
fewer than 1,000 accounts, we also find a few very large campaigns,
in which attackers manipulate a few thousands of accounts.

How are the malicious accounts taken under control? Because
attackers have to use accounts to perform malicious activities in
OSNs, it is critical for them to own or hijack a large number of
accounts before launching their campaigns. To understand how
adversaries take control of accounts, the Facebook security team
classifies the reviewed accounts into categories based on how they
were involved in campaigns. The means by which attackers harness
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(a) Normal (b) Anomalous

Fig. 3. CDF on purity of clusters from SMR co-clustering.

(a) Normal (b) Anomalous

Fig. 5. CDF on purity of clusters from information theoretic co-clustering.

the information theoretic co-clustering provides a hard co-
clustering with non-overlapping clusters, and our data set
contains numerous types of attacks, we tried running the
algorithm with K = L = 5, allowing for a more fine-grained
break down of the data set. The purity of each cluster is shown
in Table II.

We then took pairs of clusters and plotted the points in
these clusters as a scatter plot of two parameters given from
the SMR co-clustering, coloring the points based on which
co-cluster the points were in. We compared this plot with
the coloring given by the labels themselves. In many cases
we found that the patterns that emerge from the labels were
the same patterns found by coloring points based on the
clusters given by the algorithm. For example, in Figure 6,
we see a scatter plot of dst_host_srv_count versus

Cluster Number of Connections Percent Normal Percent Attacks
1 20,156 97.74% 2.26%
2 116,822 5.30% 94.70%
3 29,591 93.34% 6.66%
4 281,437 0.21% 99.79%
5 46,014 93.85% 6.15%

TABLE II
PURITY OF CLUSTERS WHEN RUNNING INFORMATION THEORETIC

CO-CLUSTERING WITH K = L = 5.

dst_host_same_src_port_rate. In Figure 6(a) points
are colored by the labels given, and in (b) points are colored
based on the clusters found in information theoretic co-
clustering. The same odd patterns stand out, indicating that
little information could be gained in this case from knowing

Each  cluster  is  nearly  all  normal  
connections  or  all  attacks
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Method Graph  Type Node  
Attributes

Edge  
Attributes

Seed  
Labels

COI Undirected ✔ ️

OddBall Undirected

Blackholes &  
Volcanoes

Directed

(Anti)-­Social Bipartite

SODA Undirected ✔ ️

FocusCO Undirected ✔ ️

gIceberg Undirected ✔ ️

CopyCatch Bipartite ✔ ️

SynchoTrap Bipartite+ ✔ ️ ✔ ️

Co-­Clustering Bipartite* ✔ ️

PICS Undirected ✔ ️
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Recap
• COI: Guilt-­by-­Association
• Oddball: Unusually  dense  graphs  are  suspicious  (along  with  other  
surprising  patterns  described  in  the  paper)
• Blackholes and  Volcanos can  be  indicative  of  trading  rings
• (Anti)social  behavior  – In  packet  traces,  cliques  are  normal  and  
bridges  connecting  cliques  are  suspicious
• SODA:  Attributed  subnetwork  anomalies
• FocusCO: Learn  model  of  normal  attributes  among  communities  and  
find  outliers  in  the  community
• gIceberg:  Subgraph  with  anomalous  distribution  of  attribute
• CopyCatch: Temporally  near-­bipartite   cores  are  extra-­suspicious
• SynchoTrap: Generalize  CopyCatch to  handle  extra  data  like  IP  
addresses  and  repeat  actions
• Co-­clustering: Global  partitioning  to  find  locally  similar  regions;;  can  
include  edges  with  side  information.
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