

1. Subgraph Analysis

a) Background

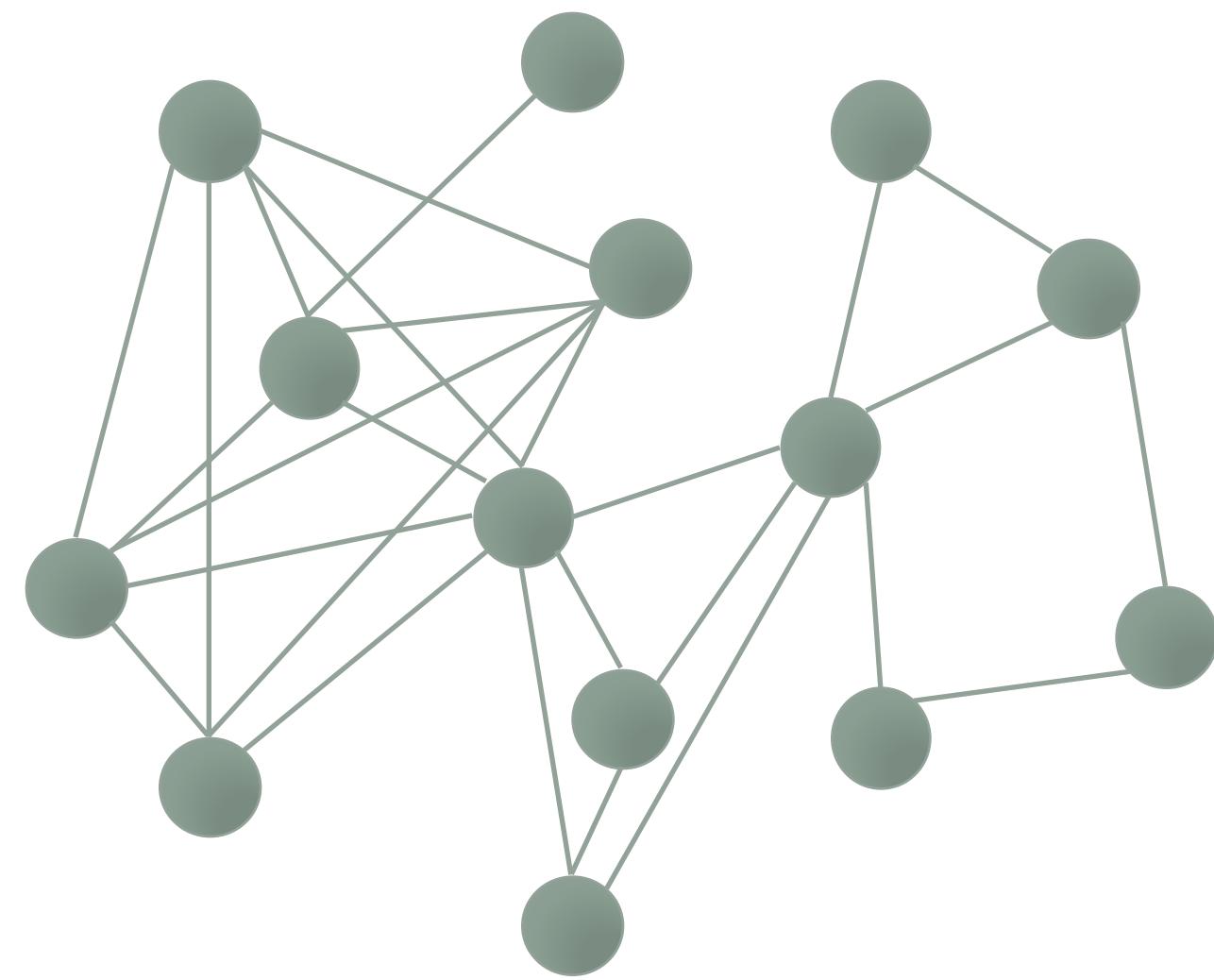
b) Normal Behavior

c) Abnormal Behavior

2. Propagation Methods

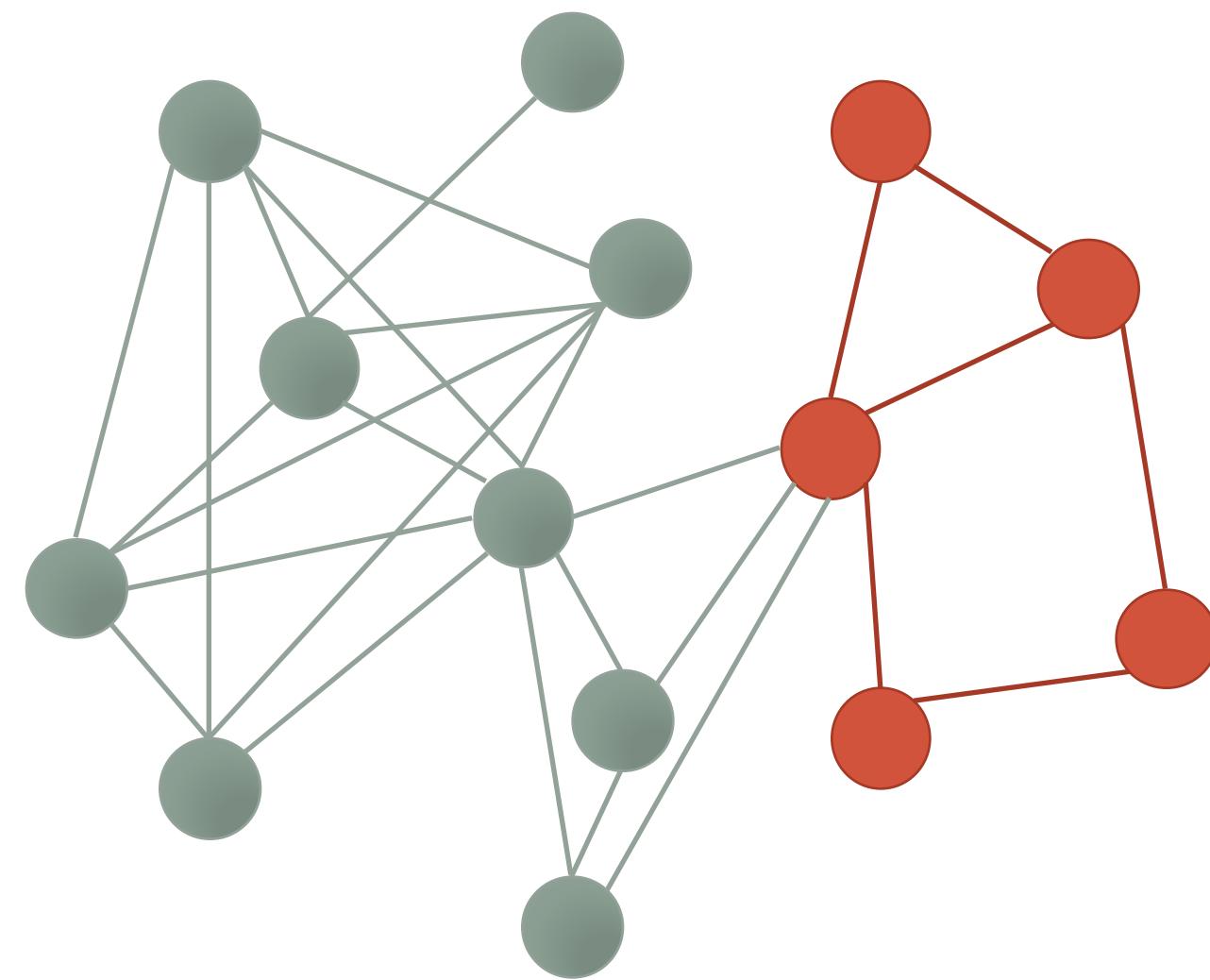
3. Latent Factor Models

What is a subgraph?



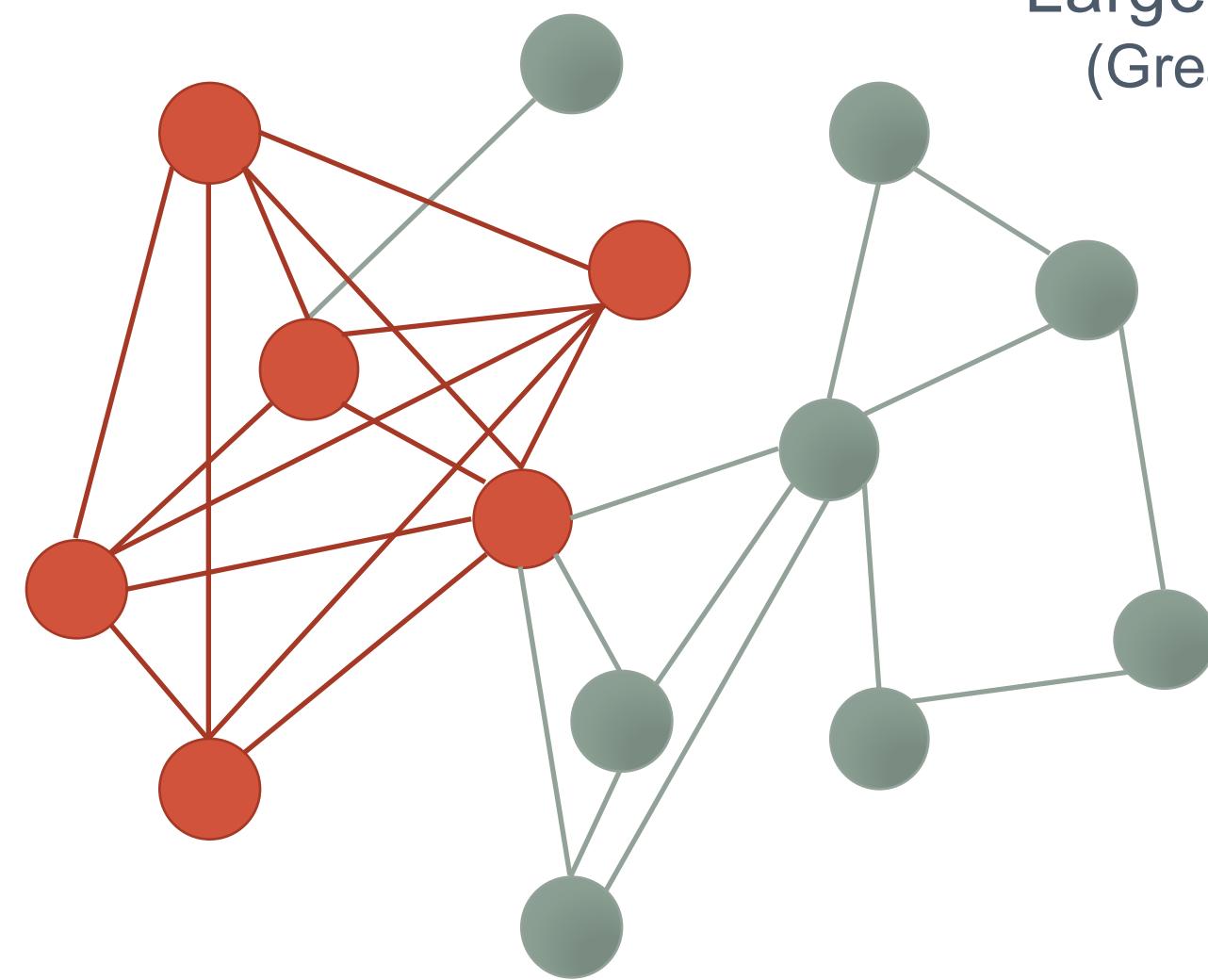
What is a subgraph?

Subset of nodes
and the edges
between them



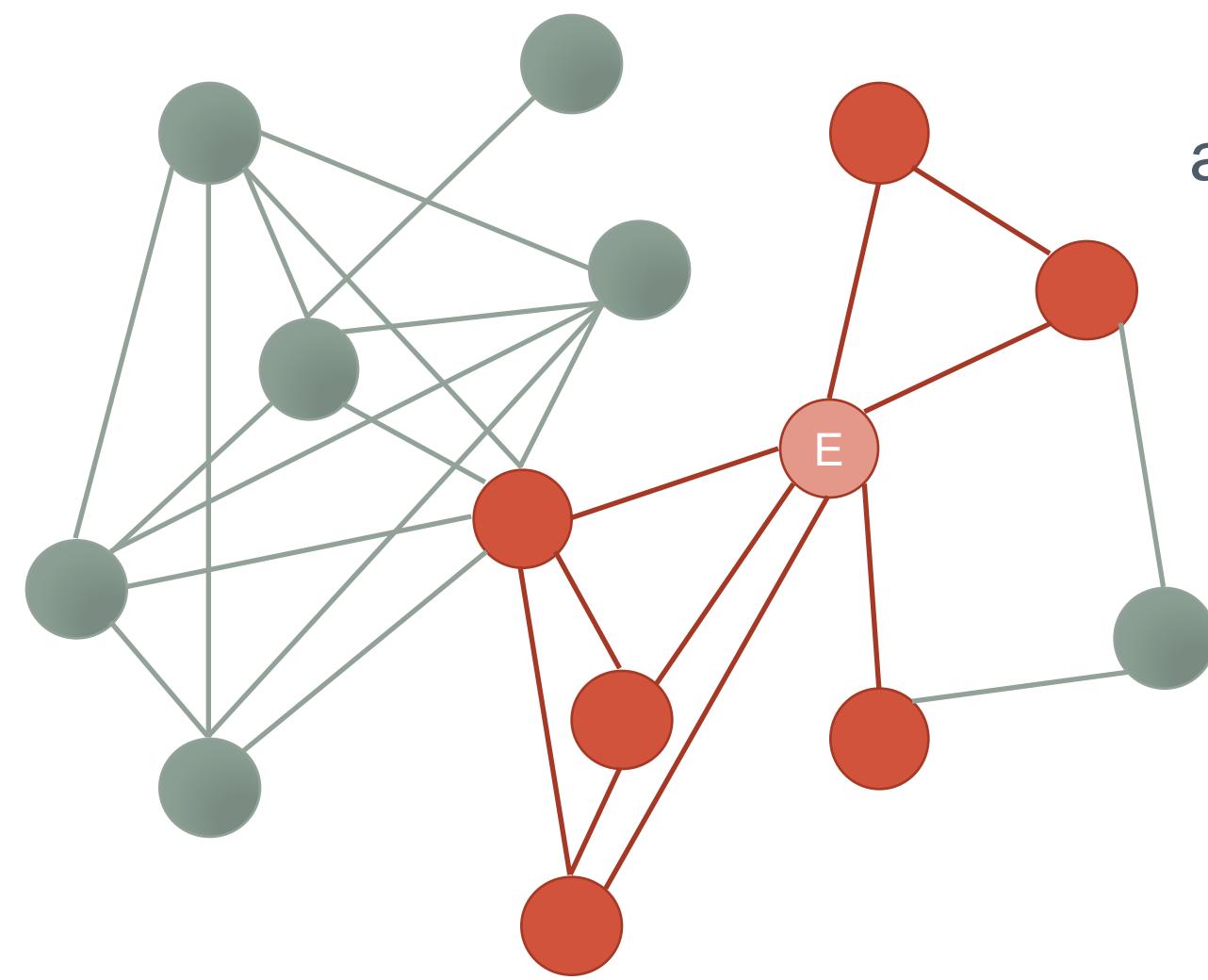
What are some useful subgraphs?

Largest dense subgraph
(Greatest average degree)



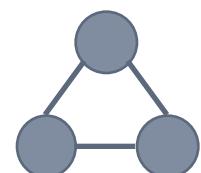
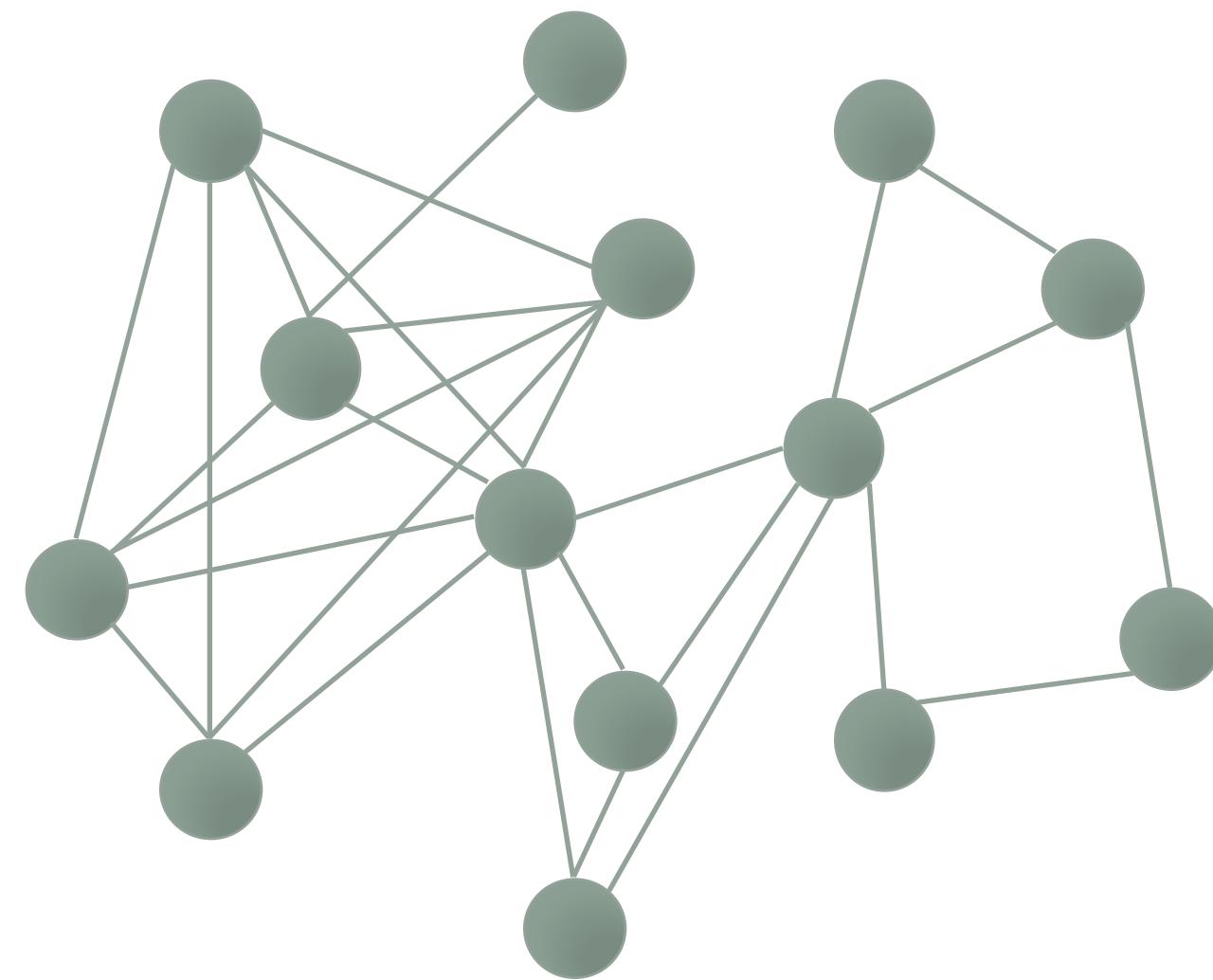
What are some useful subgraphs?

Ego-network:
the subgraph
among a node and
its neighbors



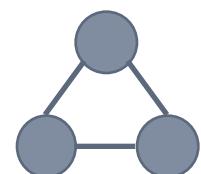
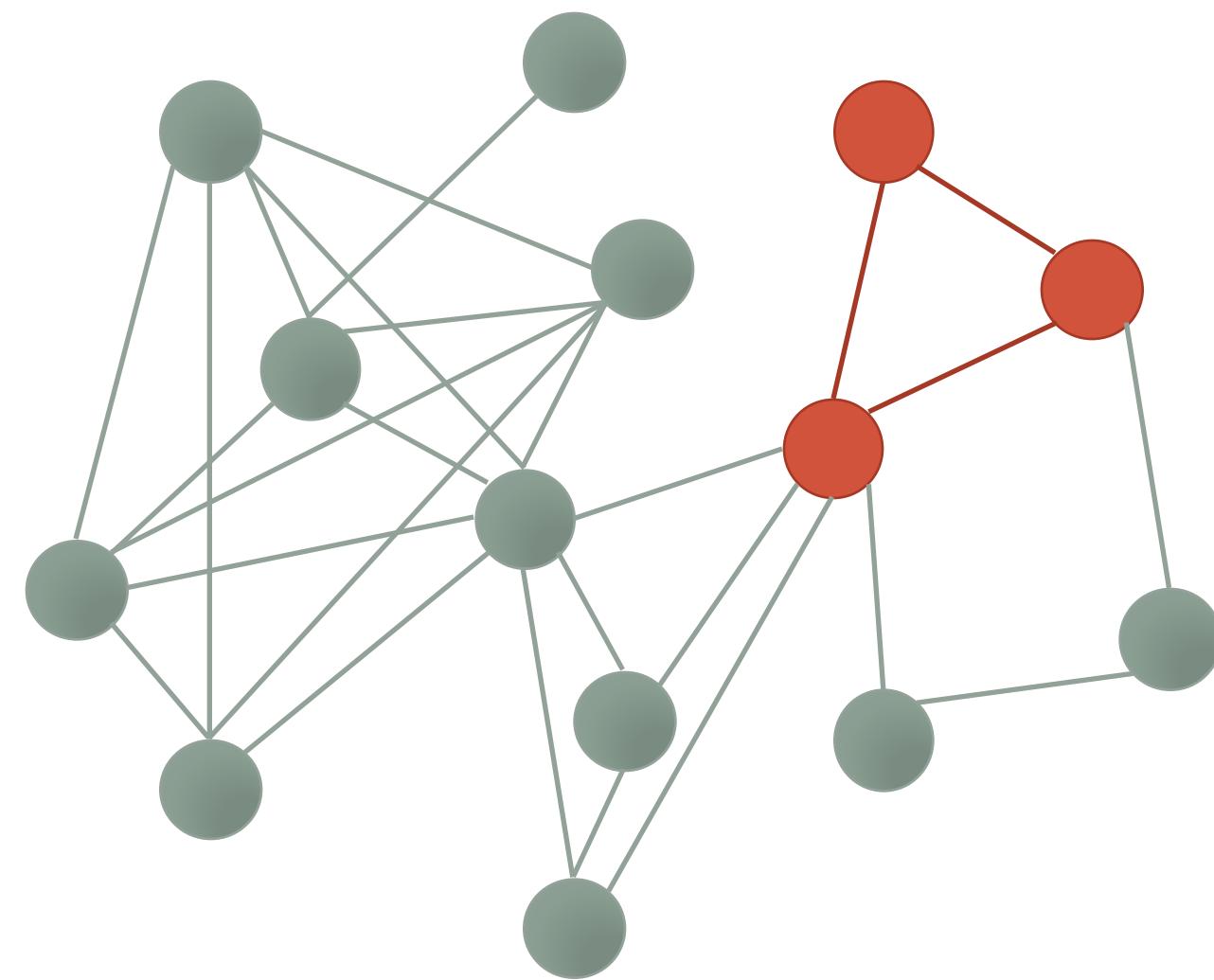
What are some useful subgraphs?

Graph queries:
find subgraphs of
particular pattern



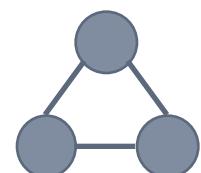
What are some useful subgraphs?

Graph queries:
find subgraphs of
particular pattern



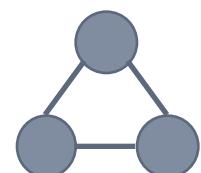
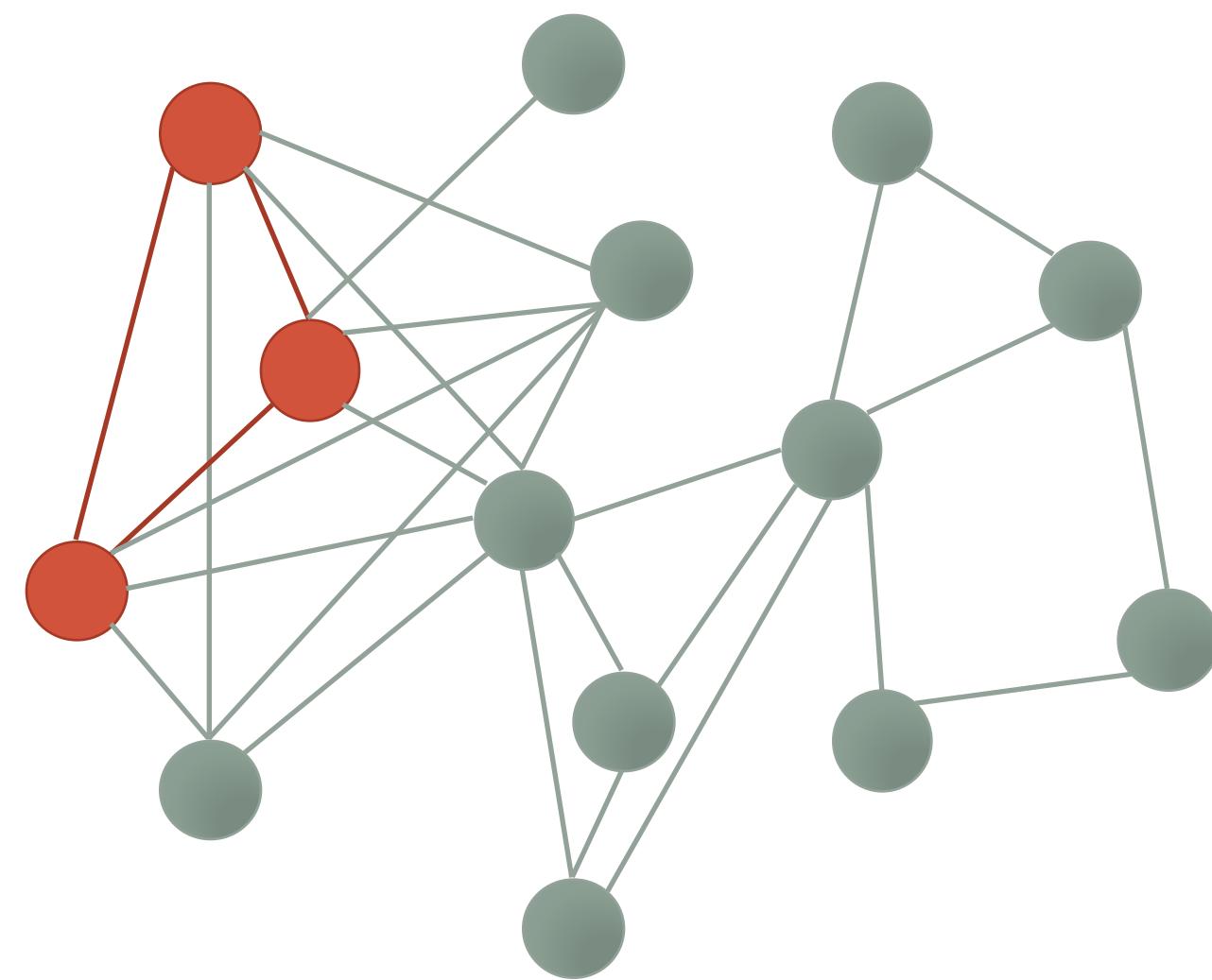
What are some useful subgraphs?

Graph queries:
find subgraphs of
particular pattern

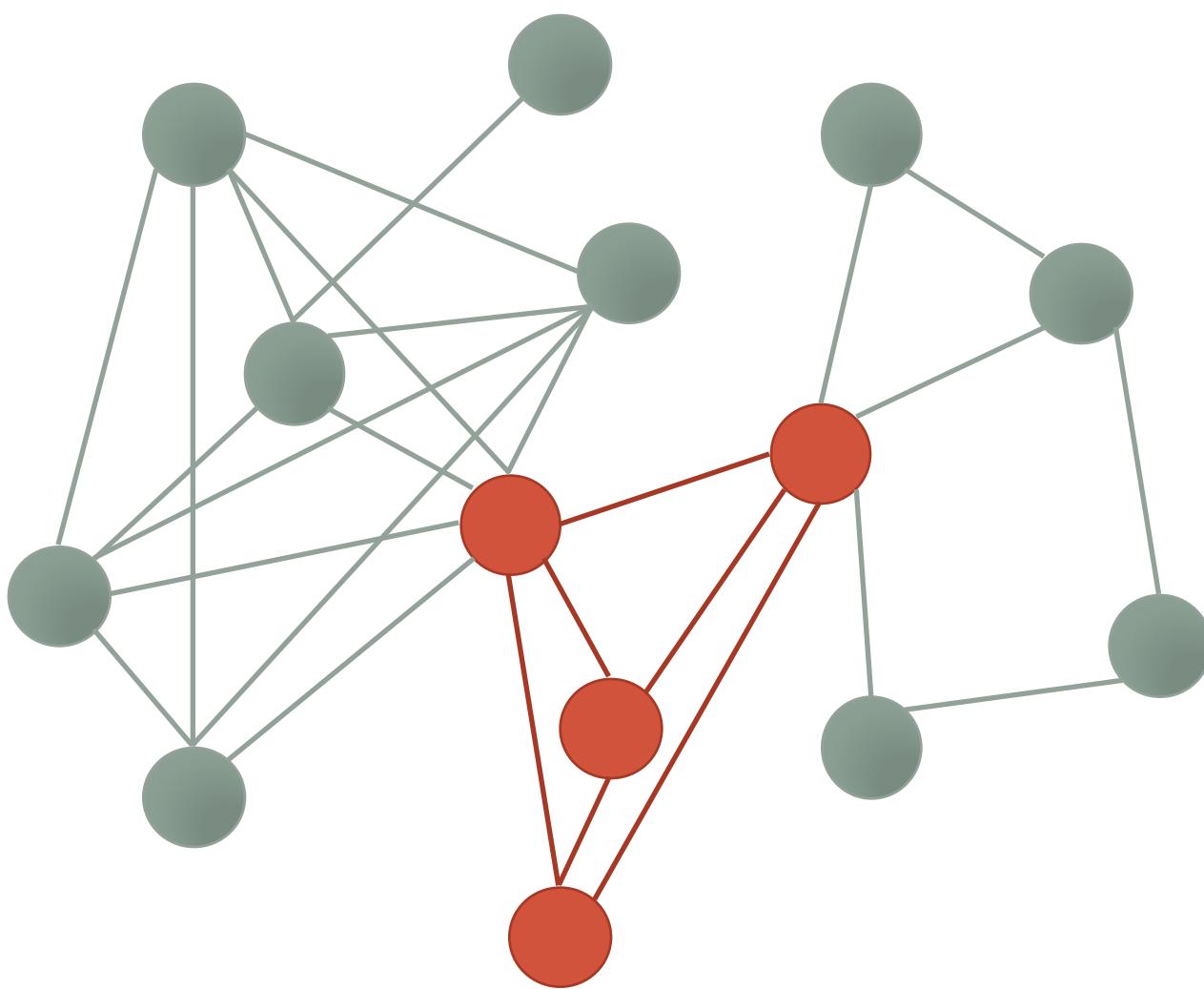


What are some useful subgraphs?

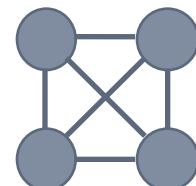
Graph queries:
find subgraphs of
particular pattern



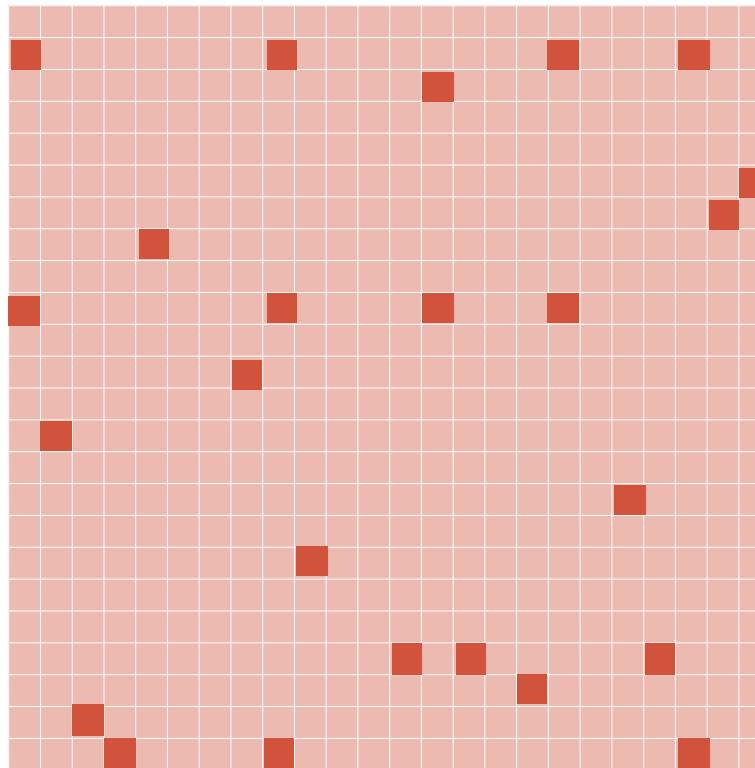
What are some useful subgraphs?



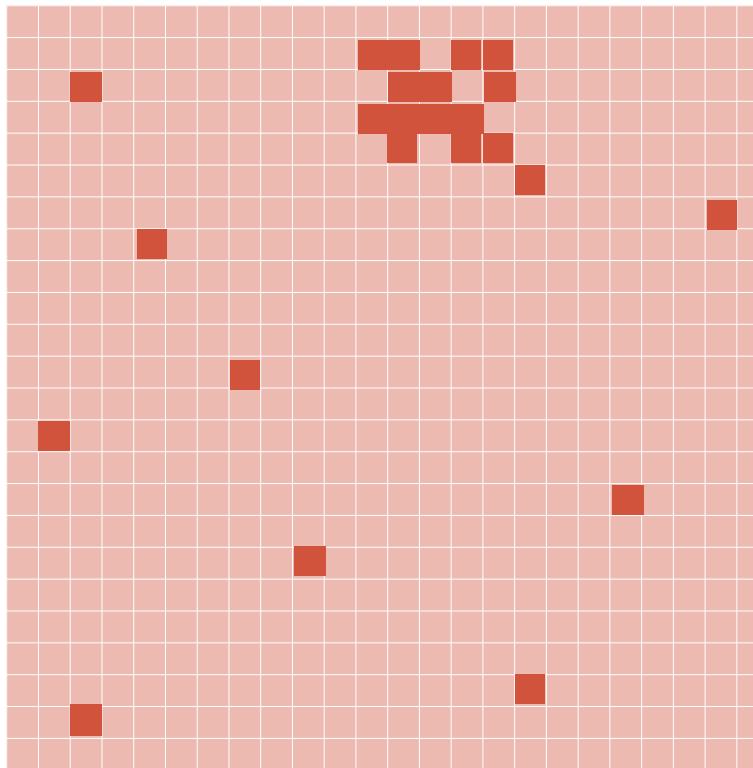
Graph queries:
find subgraphs of
particular pattern



Subgraphs as submatrices

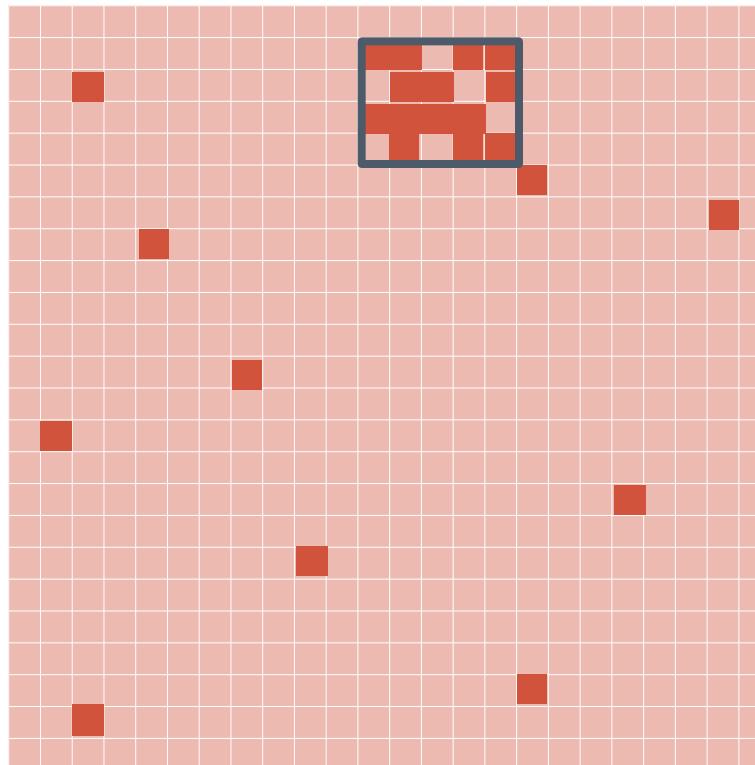


Subgraphs as submatrices

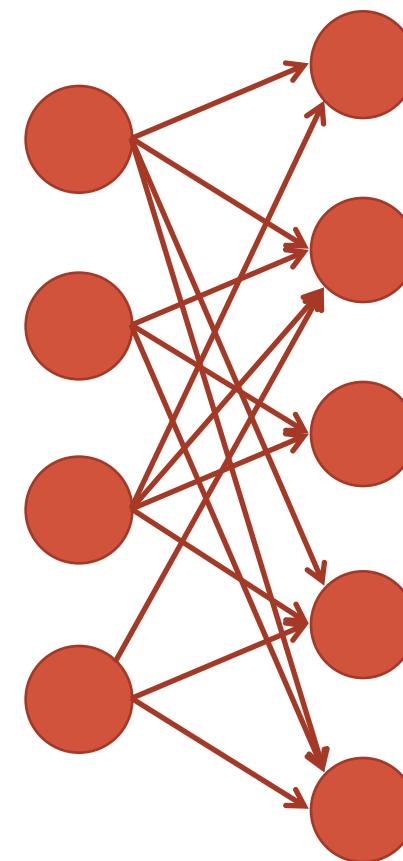


Rearrange to find
dense regions!

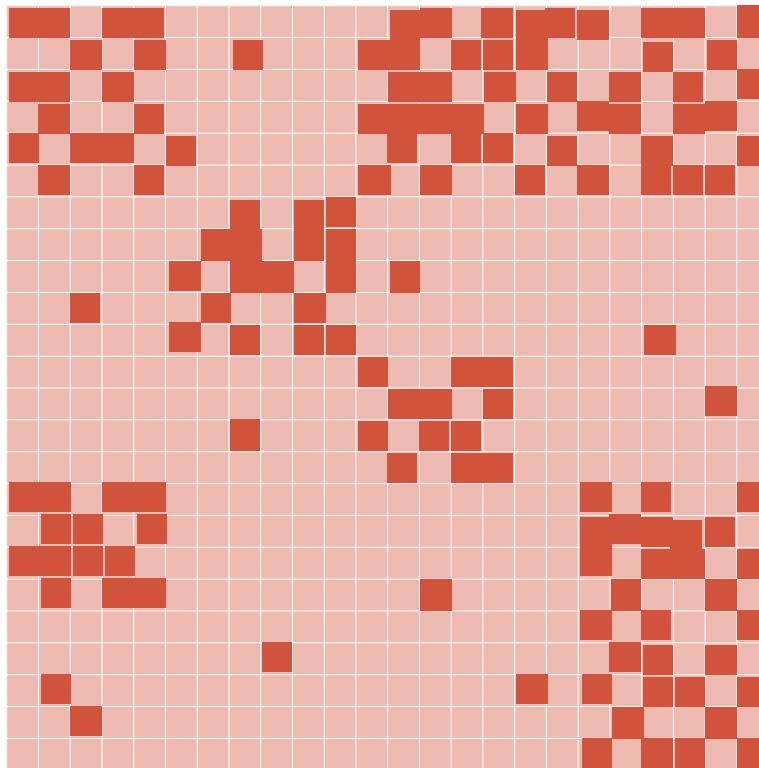
Subgraphs as submatrices



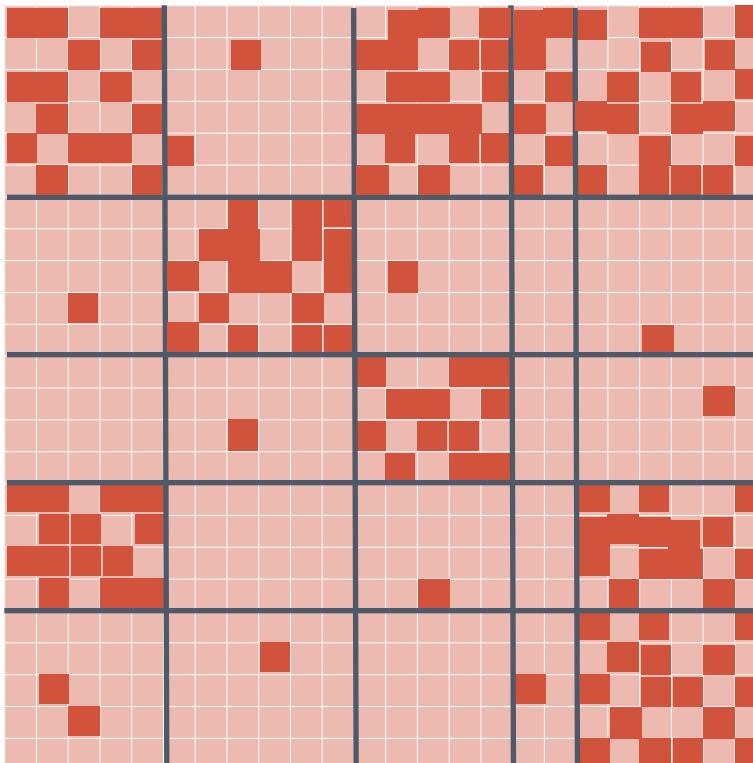
Near-Bipartite core



Subgraphs as submatrices



Subgraphs as submatrices



Co-clustering
and cross associations:
Partition matrix through
clustering rows and columns.

Goal: Each block should have
mostly similar cells

1. Subgraph Analysis

a) Background

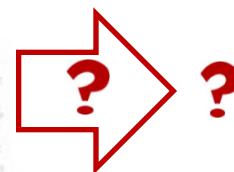
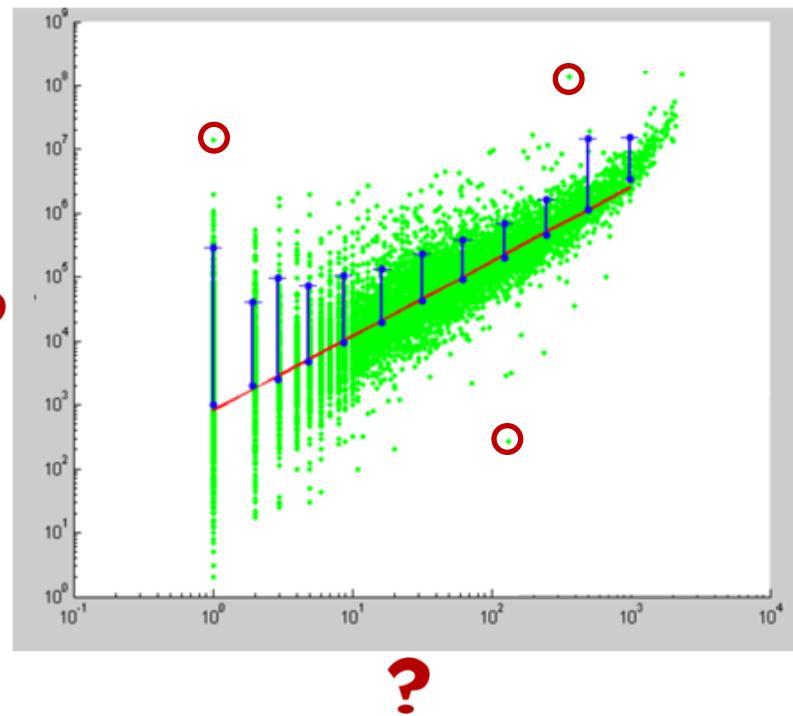
b) Normal Behavior

c) Abnormal Behavior

2. Propagation Methods

3. Latent Factor Models

Ego-net Patterns

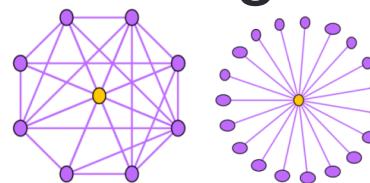


?

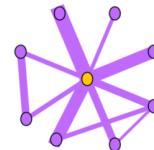
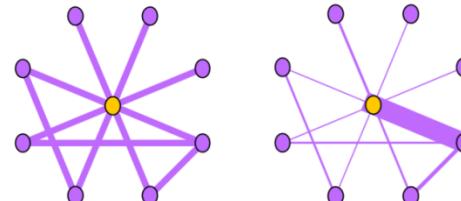
Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010

Ego-net Patterns

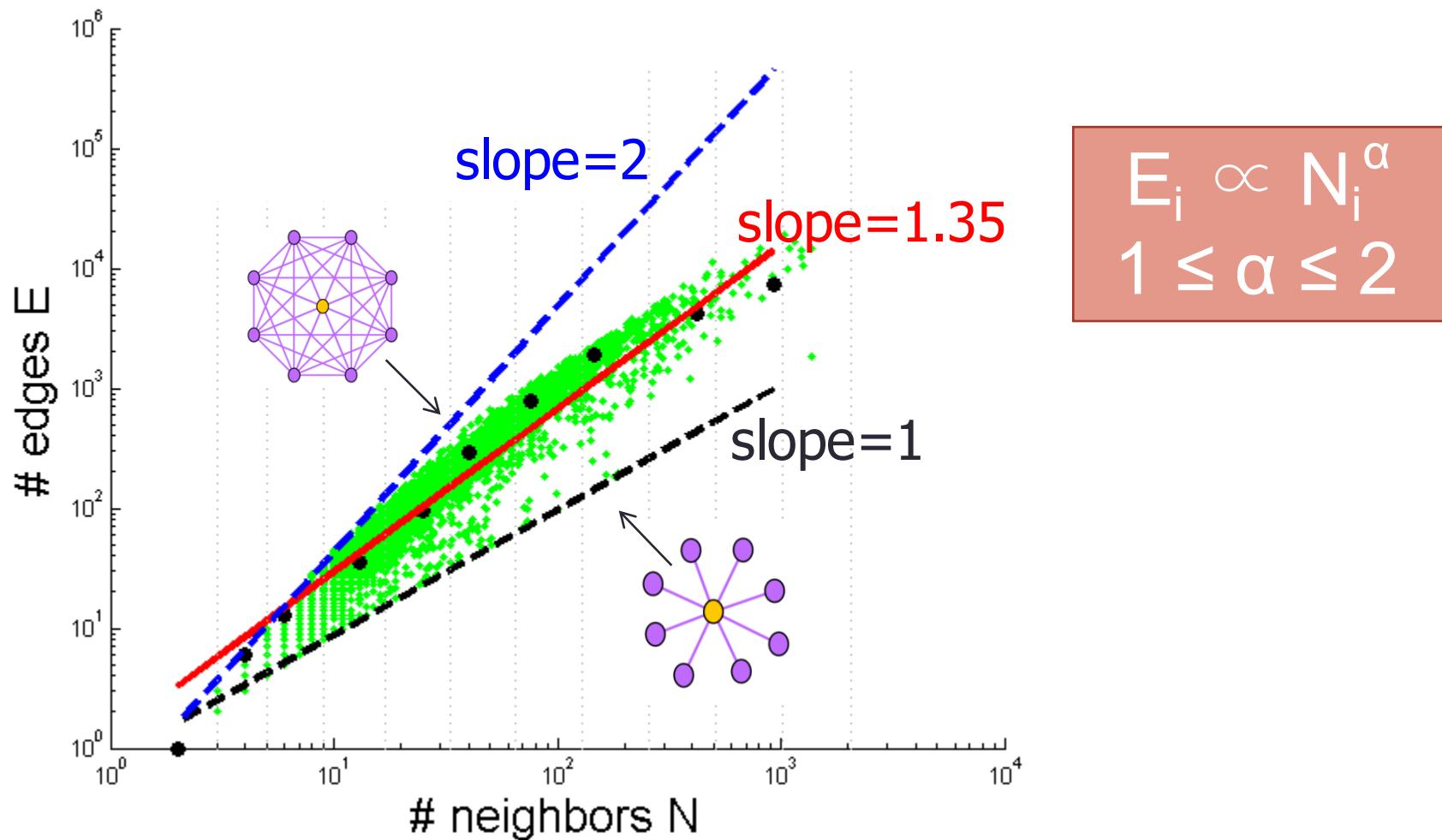
- N_i : number of neighbors (degree) of ego i
- E_i : number of edges in egonet i



- W_i : total weight of egonet i
- $\lambda_{w,i}$: principal eigenvalue of the **weighted** adjacency matrix of egonet i

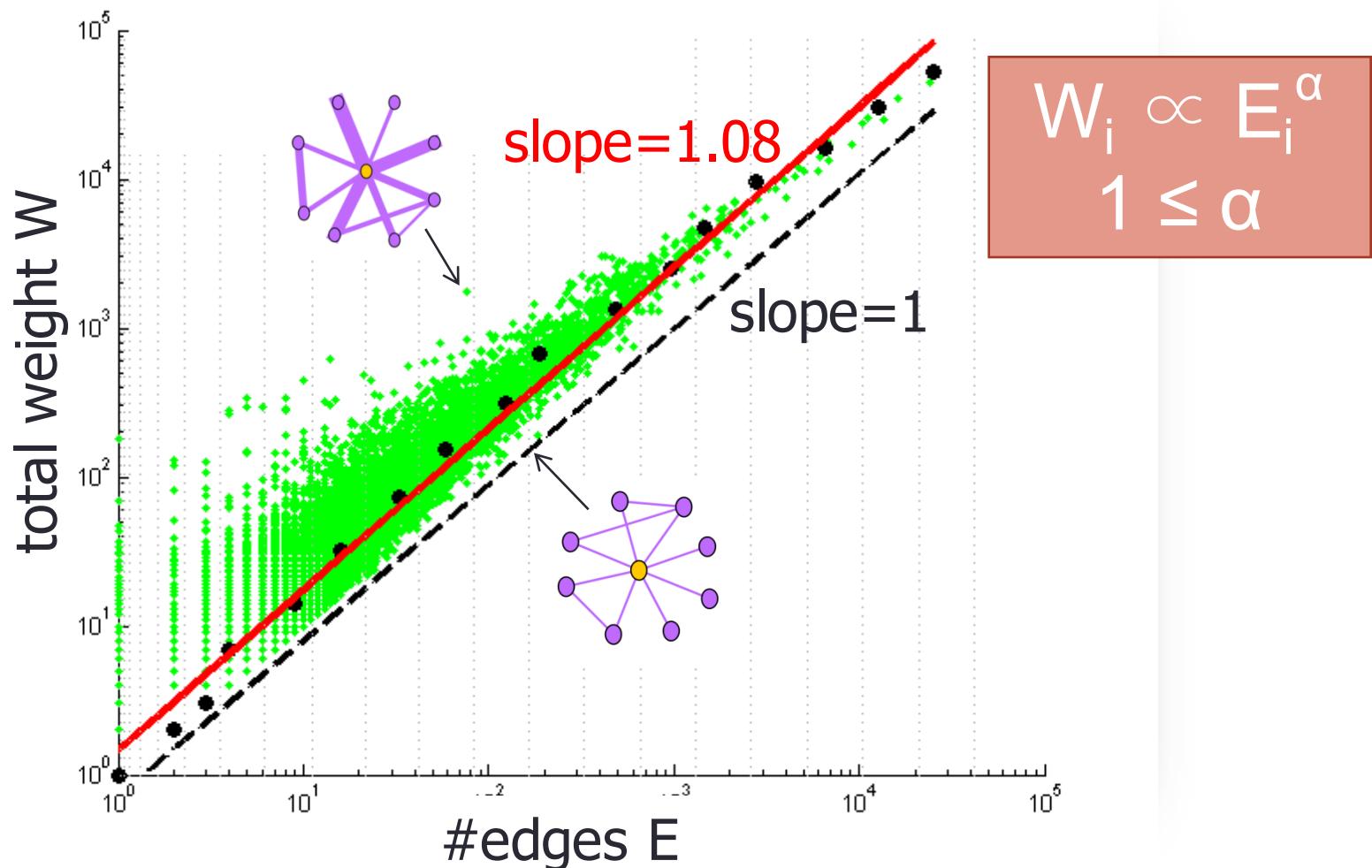


Pattern: Ego-net Power Law Density



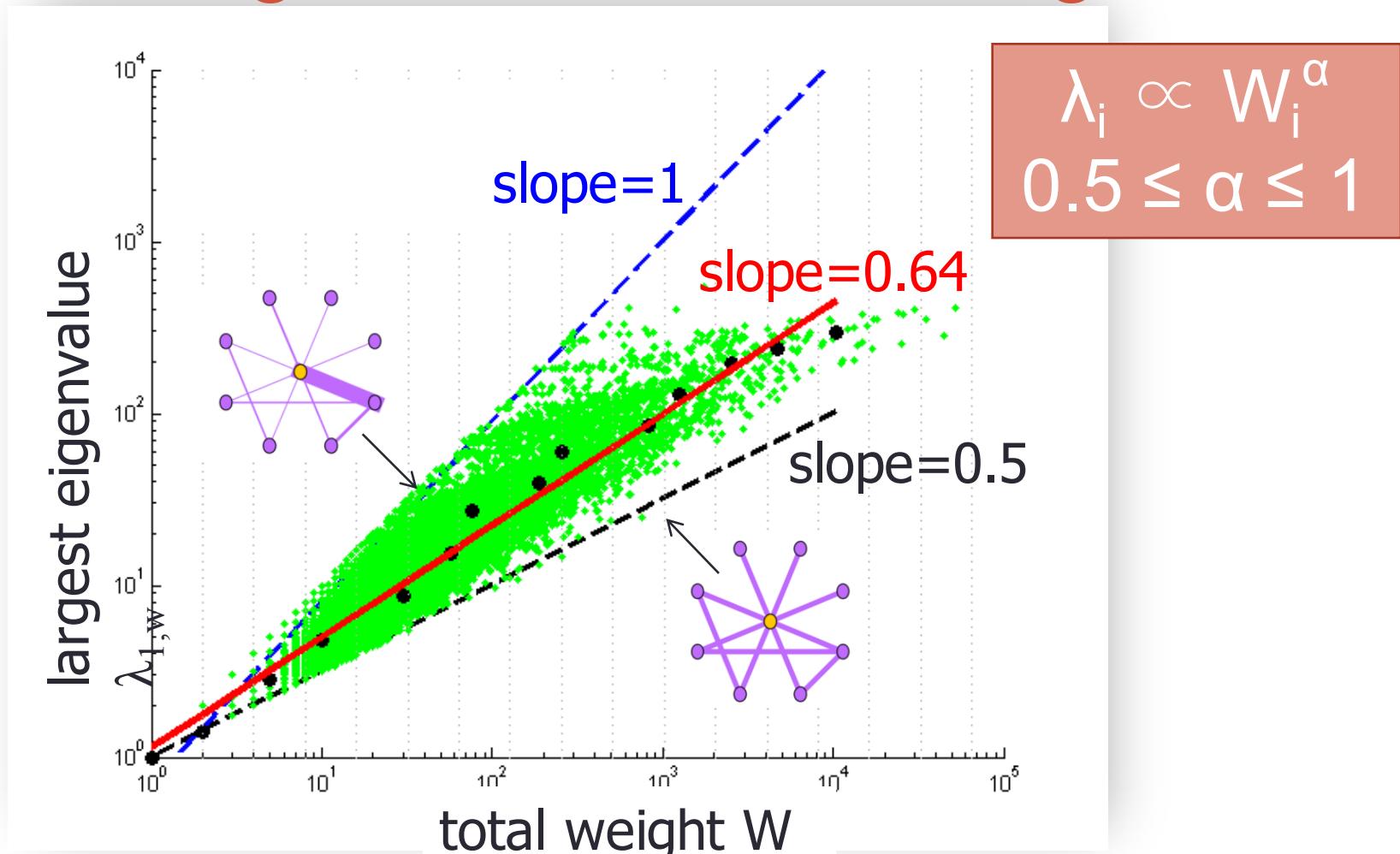
Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010

Pattern: Ego-net Power Law Weight



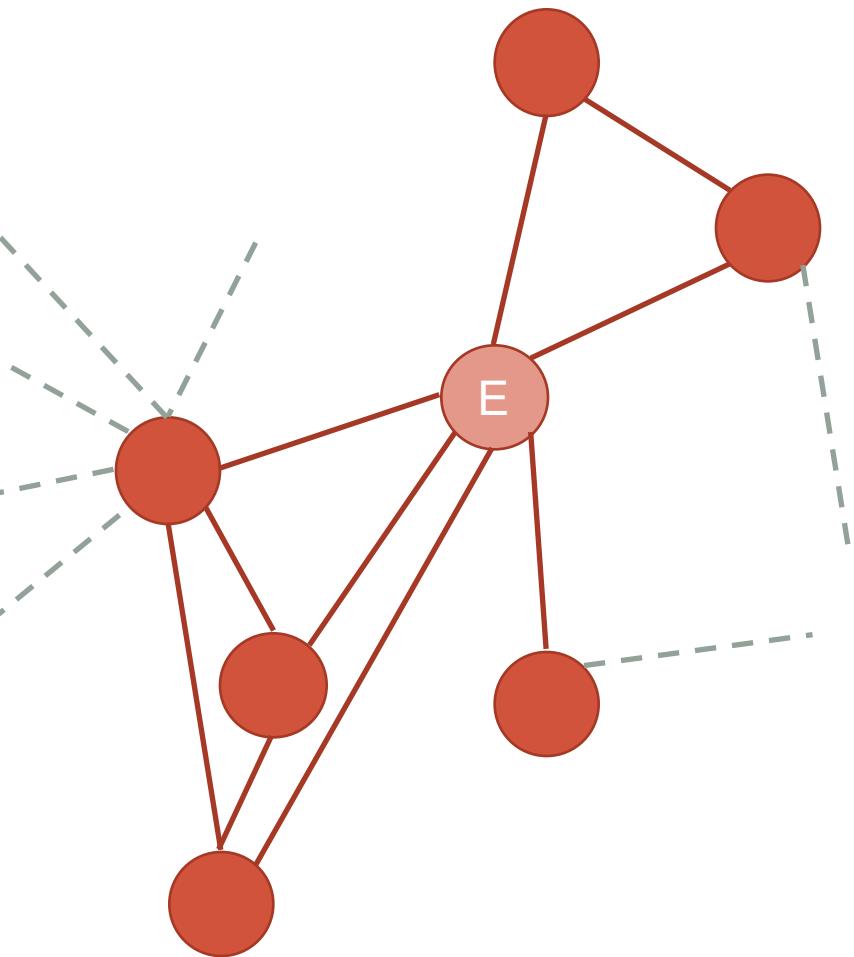
Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010

Pattern: Ego-net Power Law Eigenvalue



Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010

Using graph patterns to find roles



Useful node features:

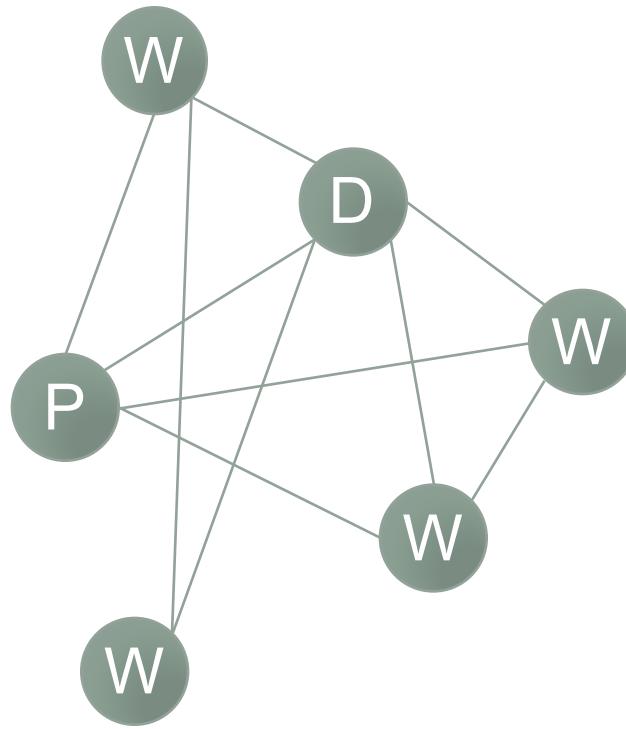
- Degree
- Nodes in ego-net
- Edges in ego-net
- Edges leaving ego-net
- Mean of neighbor degree
- Sum of neighbor degree
- Expand recursively...

It's who you know: Graph mining using recursive structural features

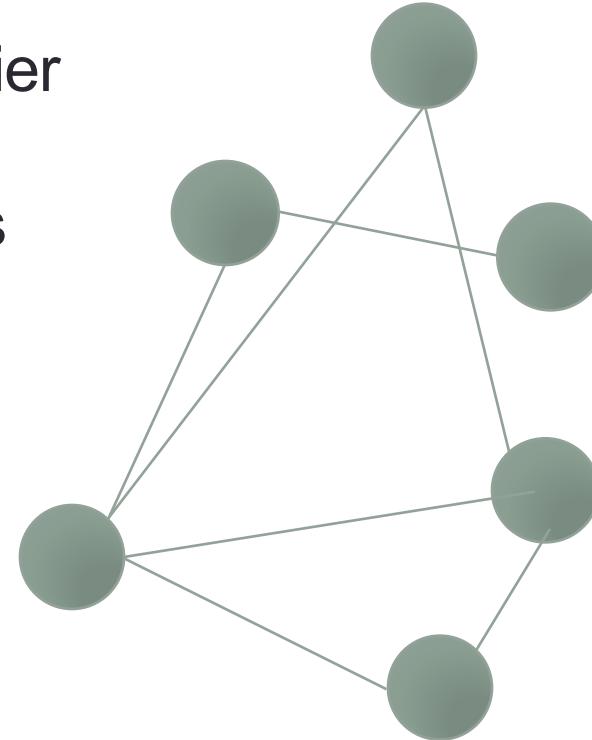
K. Henderson, B. Gallagher, L. Li, L. Akoglu,
T. Eliassi-Rad, H. Tong, C. Faloutsos

KDD 2011

Using graph patterns to find roles

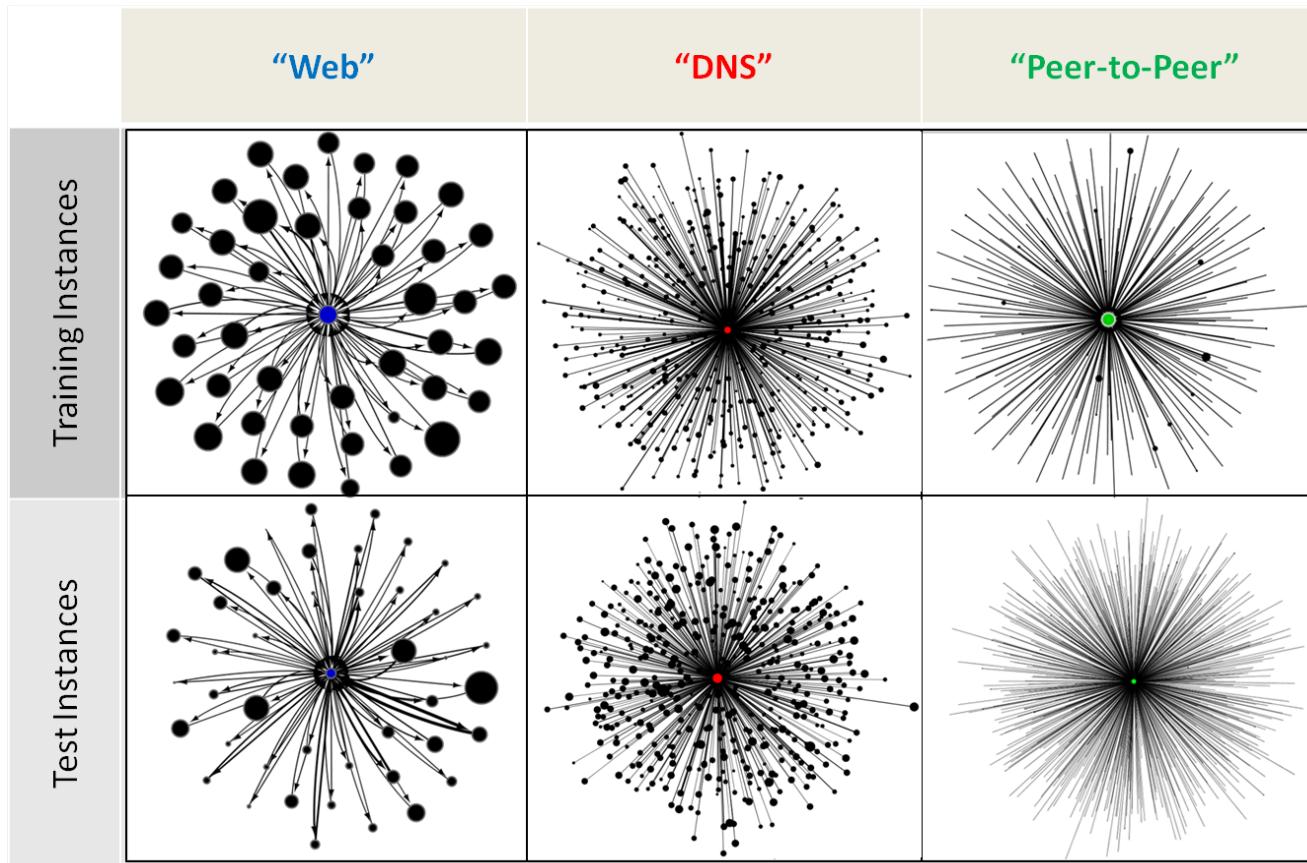


Learn classifier
to predict
node labels



It's who you know: Graph mining using recursive structural features
Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu,
Tina Eliassi-Rad, Hanghang Tong, Christos Faloutsos
KDD 2011

Using graph patterns to find roles



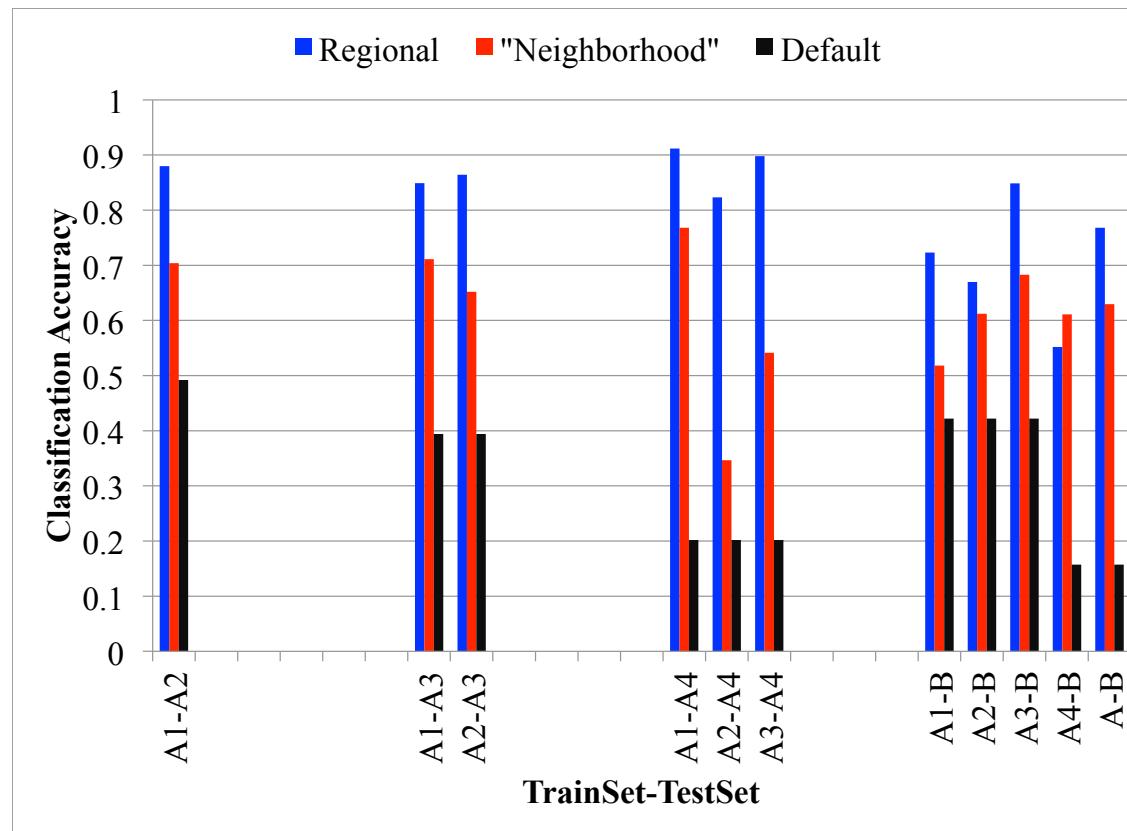
It's who you know: Graph mining using recursive structural features

Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu,

Tina Eliassi-Rad, Hanghang Tong, Christos Faloutsos

KDD 2011

Using graph patterns to find roles



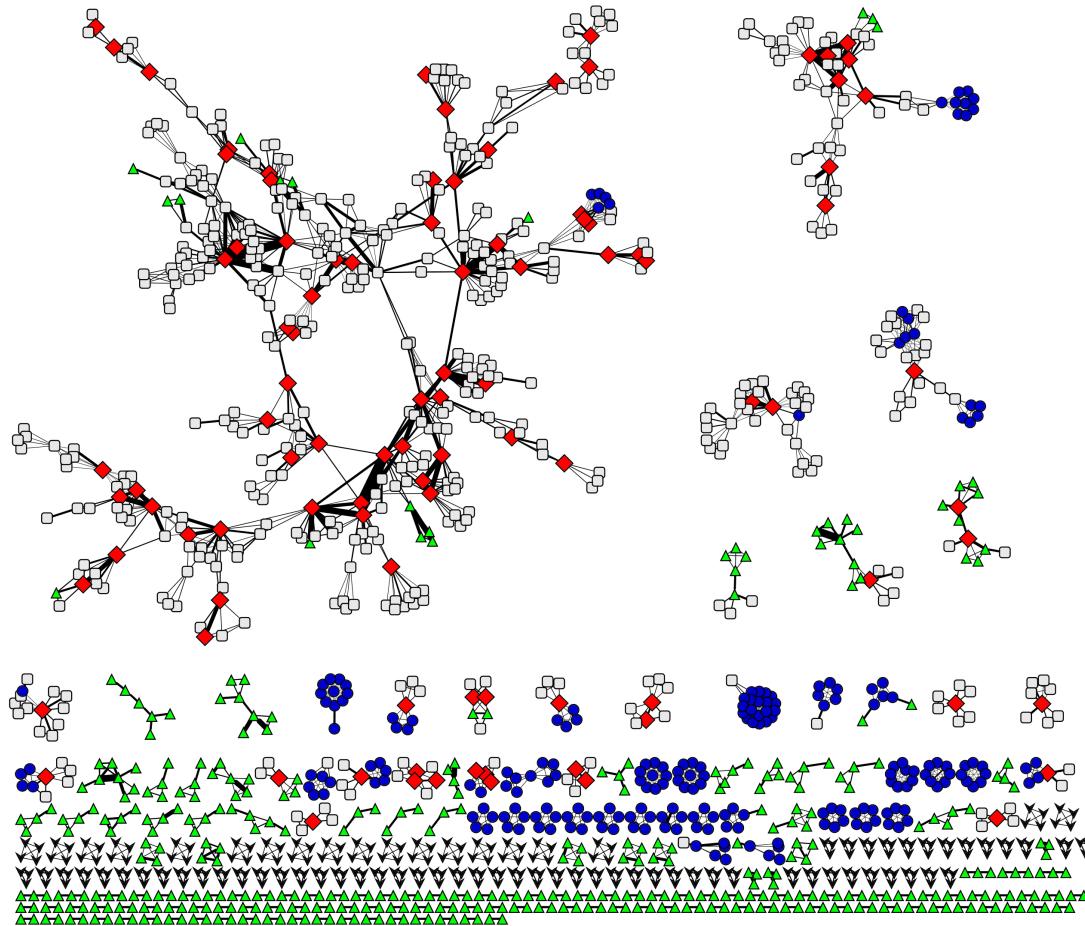
It's who you know: Graph mining using recursive structural features

Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu,

Tina Eliassi-Rad, Hanghang Tong, Christos Faloutsos

KDD 2011

Using graph patterns to find roles



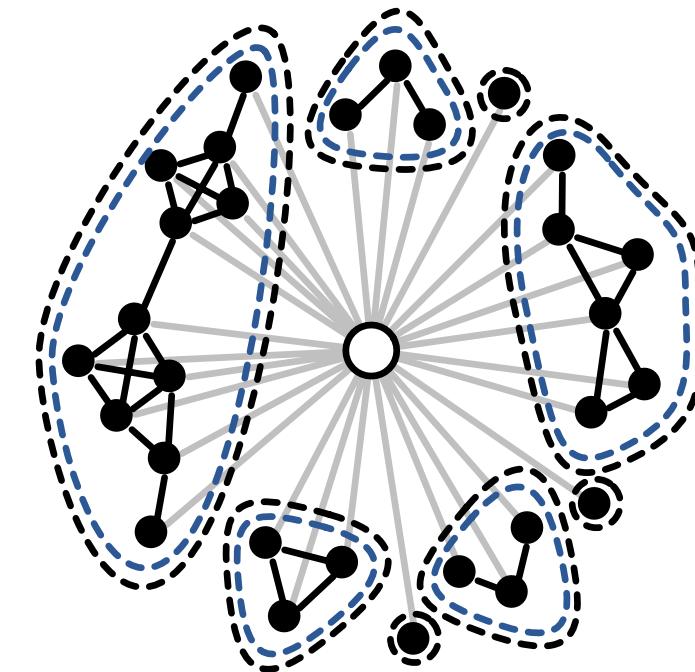
Use graph features to find similar types of behavior:

- Christos Faloutsos & Andrei Broder: tightly knit communities
- Albert-Laszlo Barabasi & Mark Newman: bridge communities
- John Hopcroft and Jon Kleinberg: mainstream
- Lada Adamic and Bernardo Huberman: elongated clusters

RoIX: Structural Role Extraction & Mining in Large Graphs

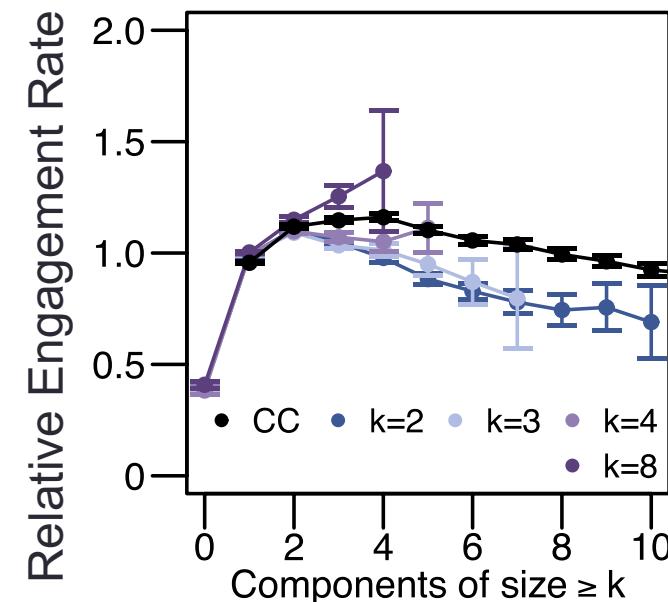
K. Henderson, B. Gallagher, T. Eliassi-Rad,
H. Tong, Sugato Basu, L. Akoglu,
D. Koutra, C. Faloutsos, L. Li
KDD 2012

Using ego-nets to predict engagement



○ Connected components
○ Components of size ≥ 3

Number of connected components in egonet predicts engagement on Facebook

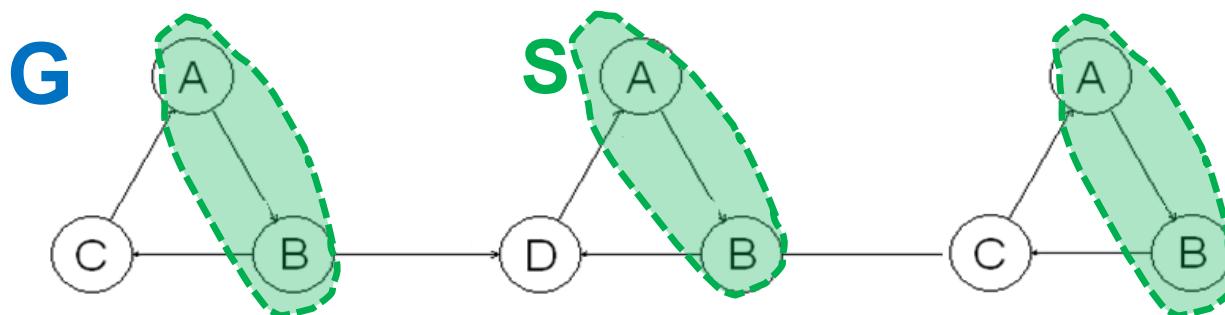


Structural diversity in social contagion
Johan Ugander, Lars Backstrom,
Cameron Marlow, Jon Kleinberg
PNAS 2012

Attributed subgraph patterns

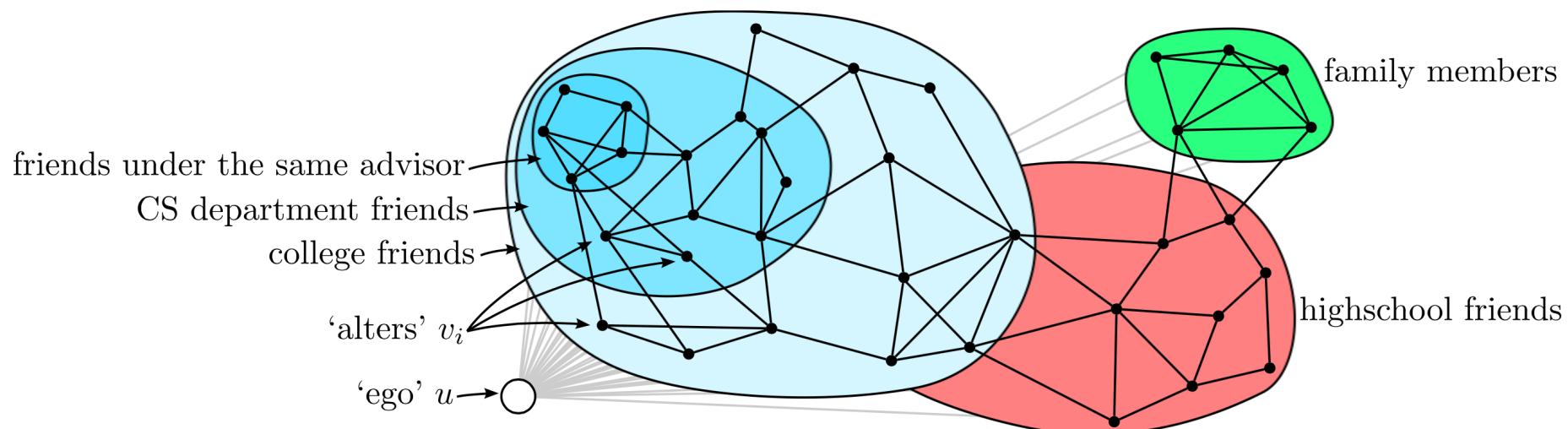
- **SUBDUE**: An algorithm for detecting repetitive patterns (substructures) within (single-attributed) graphs.
- The best substructure is the one that **minimizes**

$$F1(\mathbf{S}, \mathbf{G}) = DL(\mathbf{G} \mid \mathbf{S}) + DL(\mathbf{S})$$



- G: Entire graph, S: The substructure,
- $DL(G|S)$ is the DL of G after compressing it using S,
- $DL(S)$ is the description length of the substructure.

Friend groups within ego-nets

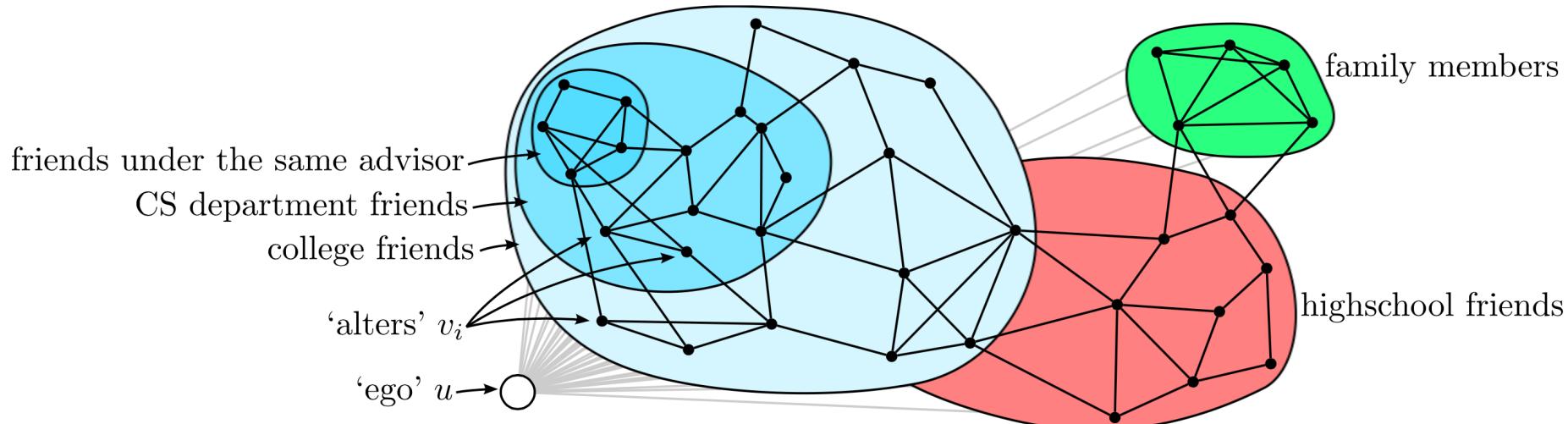


Learning to Discover Social Circles in Ego Networks
Julian McAuley, Jure Leskovec
NIPS 2012

Friend groups within ego-nets

Use node features to find clusters:

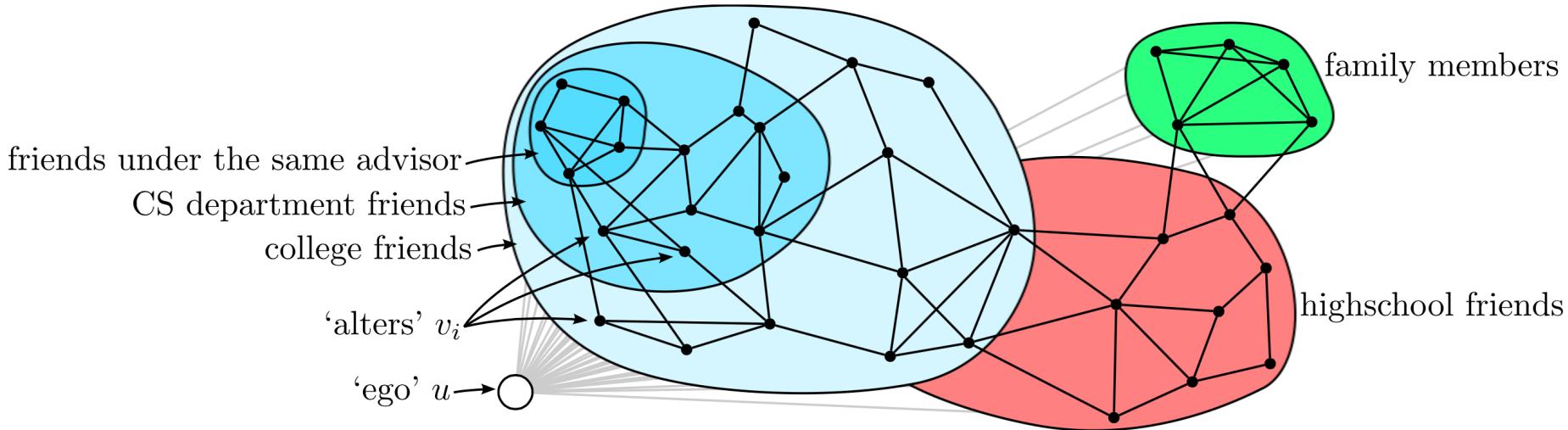
[Albert, Einstein, German, Princeton]



Friend groups within ego-nets

Use node features to find clusters:

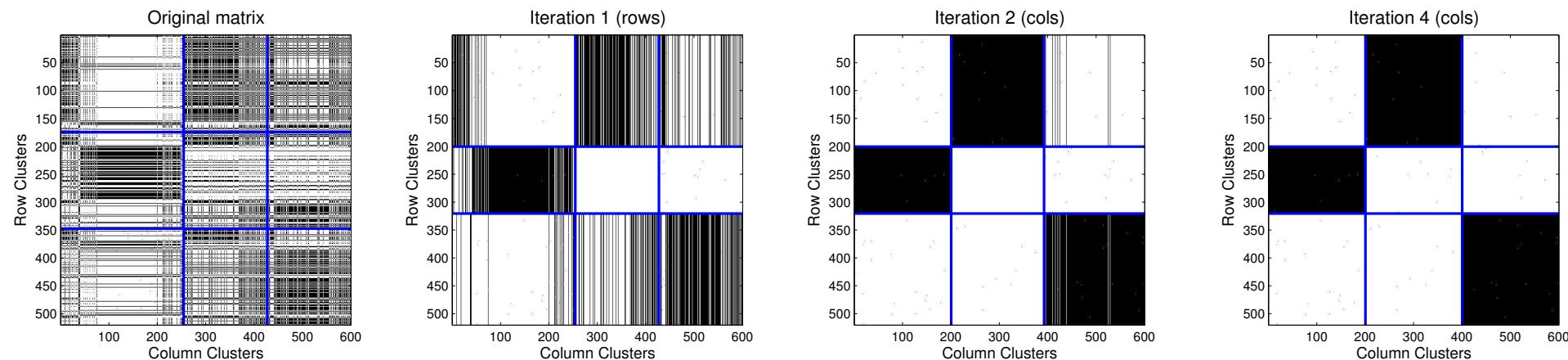
[Albert, Einstein, German, Princeton]



$$p((x, y) \in E) \propto \exp \left\{ \underbrace{\sum_{C_k \supseteq \{x, y\}} \langle \phi(x, y), \theta_k \rangle}_{\text{circles containing both nodes}} - \underbrace{\sum_{C_k \not\supseteq \{x, y\}} \alpha_k \langle \phi(x, y), \theta_k \rangle}_{\text{all other circles}} \right\}$$

Learning to Discover Social Circles in Ego Networks
 Julian McAuley, Jure Leskovec
 NIPS 2012

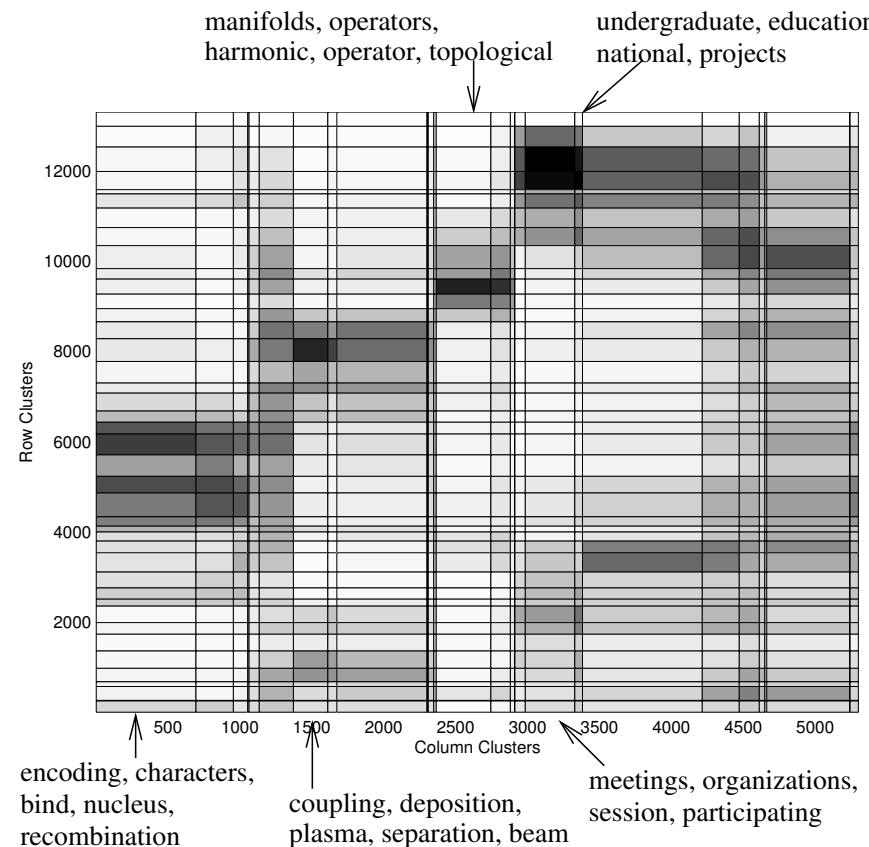
Modeling with Cross-Associations



Summarize binary matrices by
minimizing the number of bits to encode it.

Fully Automatic Cross-Associations
Deepayan Chakrabarti, Spiros Papadimitriou,
Dharmendra S. Modha, Christos Faloutsos
KDD 2004

Modeling with Cross-Associations

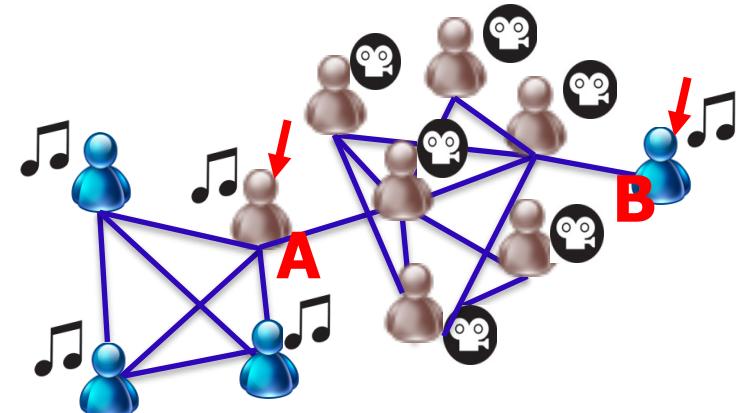


Co-clustering
of grant
applications

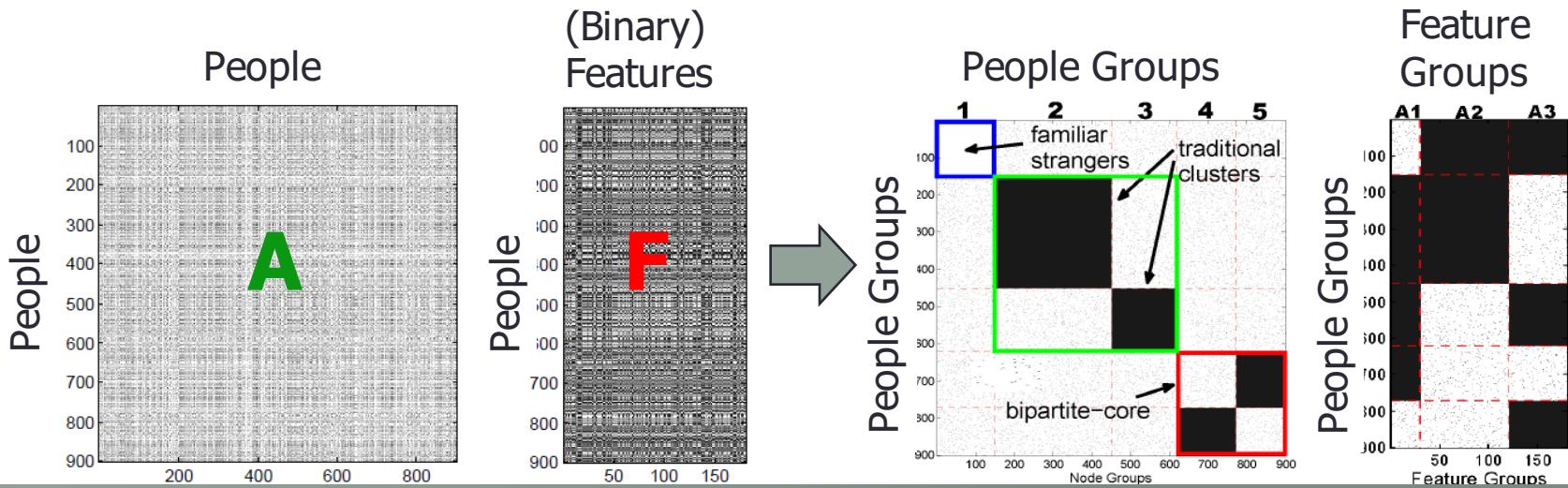
Fully Automatic Cross-Associations
Deepayan Chakrabarti, Spiros Papadimitriou,
Dharmendra S. Modha, Christos Faloutsos
KDD 2004

Joint co-clustering

- Cohesive clusters & anomalies

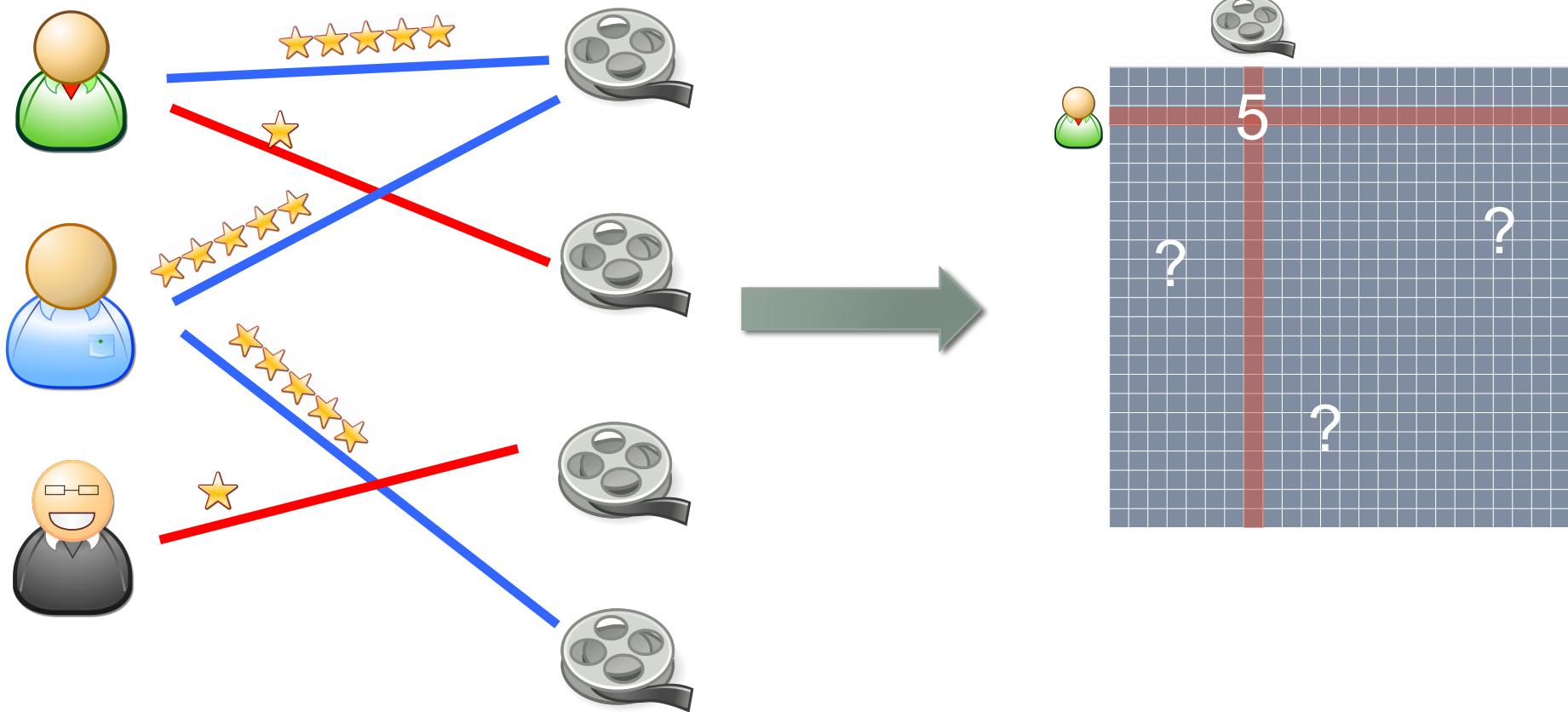


Given adjacency matrix **A** and feature matrix **F**
 Find homogeneous blocks (clusters) in **A** and **F**



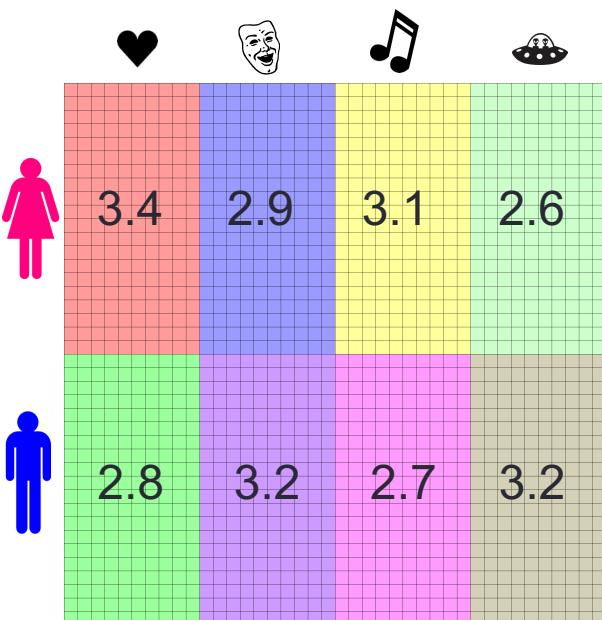
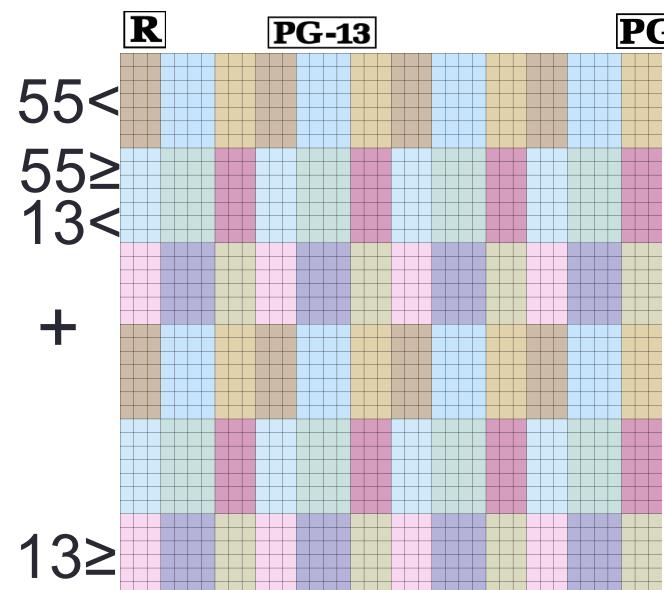
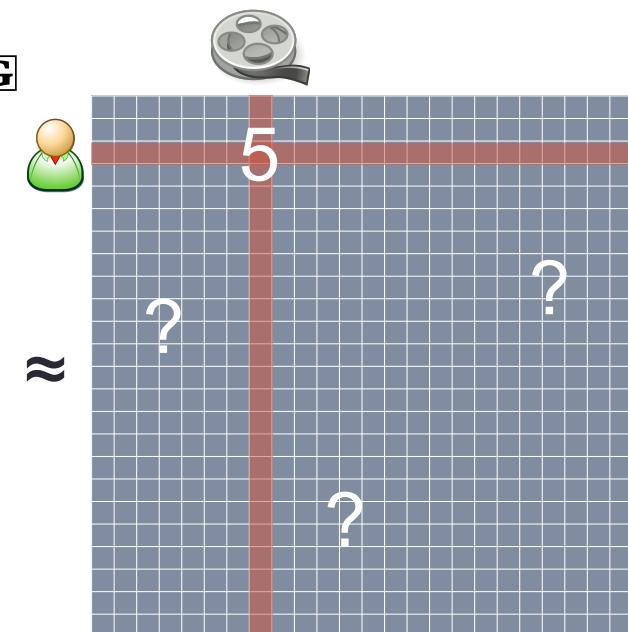
PICS: Parameter-free Identification of Cohesive Subgroups in Large Attributed Graphs. Leman Akoglu, Hanghang Tong, Brendan Meeder, Christos Faloutsos.
 SDM 2012

Prediction with Co-clustering



ACCAMs: Additive Co-clustering to Approximate Matrices Succinctly
Alex Beutel, Amr Ahmed, Alex Smola
WWW 2015

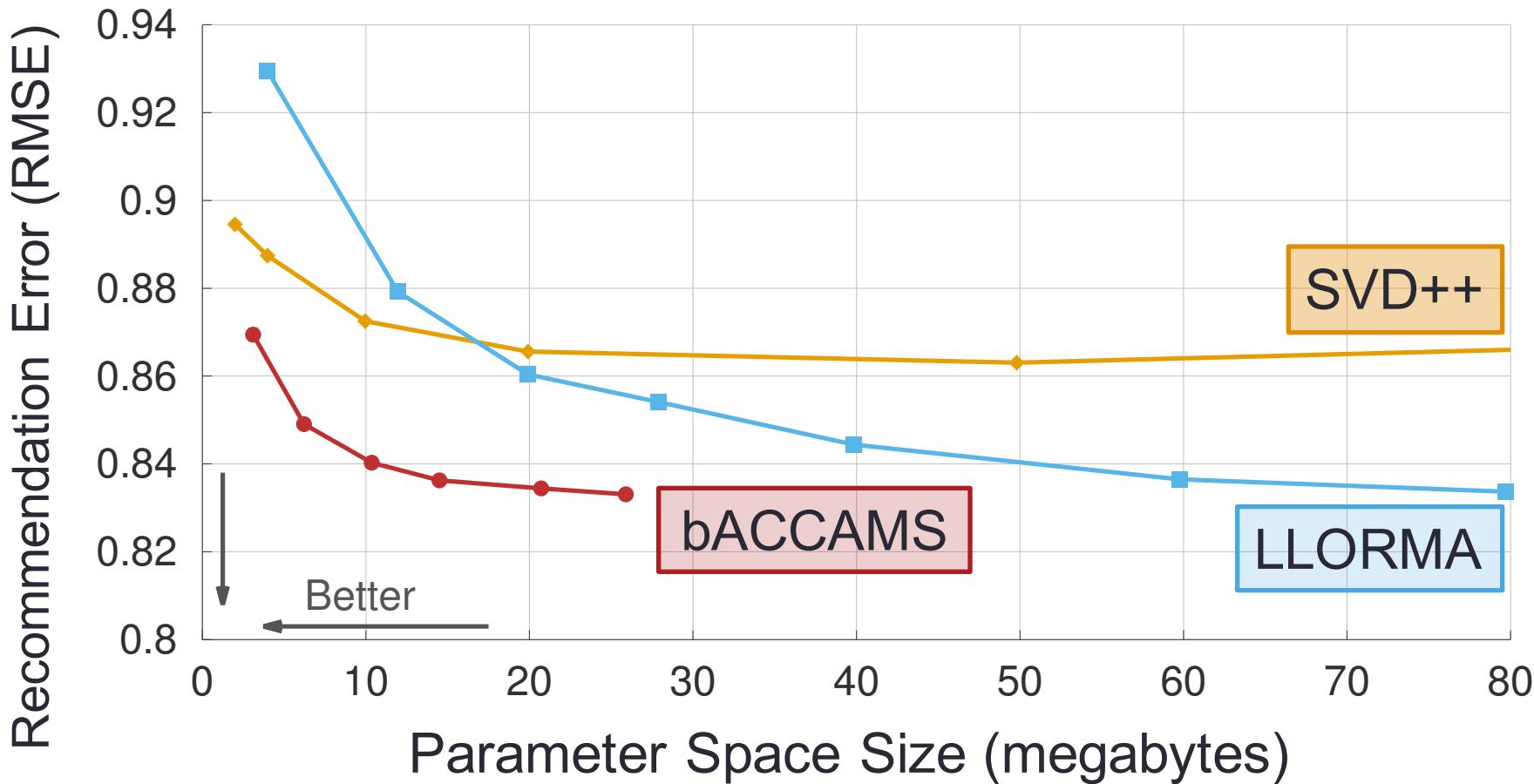
Prediction with Co-clustering



$$\begin{bmatrix} .4 & -.1 & .2 \\ .5 & .4 & -.5 \\ -.2 & -.5 & .8 \end{bmatrix}$$

ACCAMs: Additive Co-clustering to Approximate Matrices Succinctly
Alex Beutel, Amr Ahmed, Alex Smola
WWW 2015

Modeling with Co-clustering



ACAMS: Additive Co-clustering to Approximate Matrices Succinctly
Alex Beutel, Amr Ahmed, Alex Smola
WWW 2015

1. Subgraph Analysis

a) Background

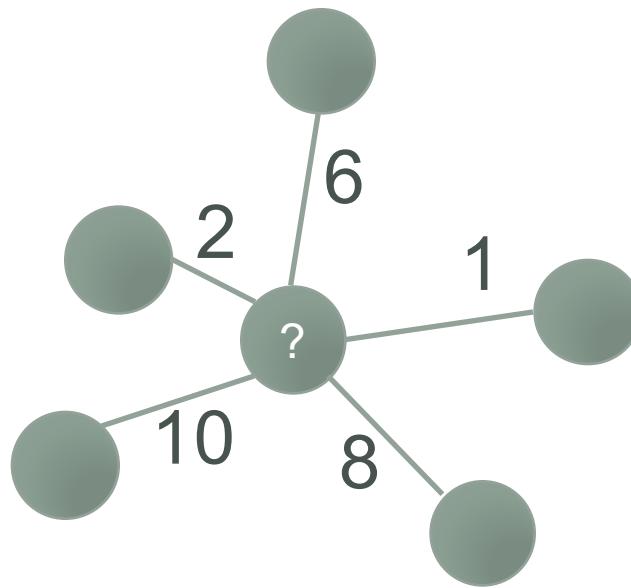
b) Normal Behavior

c) Abnormal Behavior

2. Propagation Methods

3. Latent Factor Models

Fraud in Telecommunication Networks



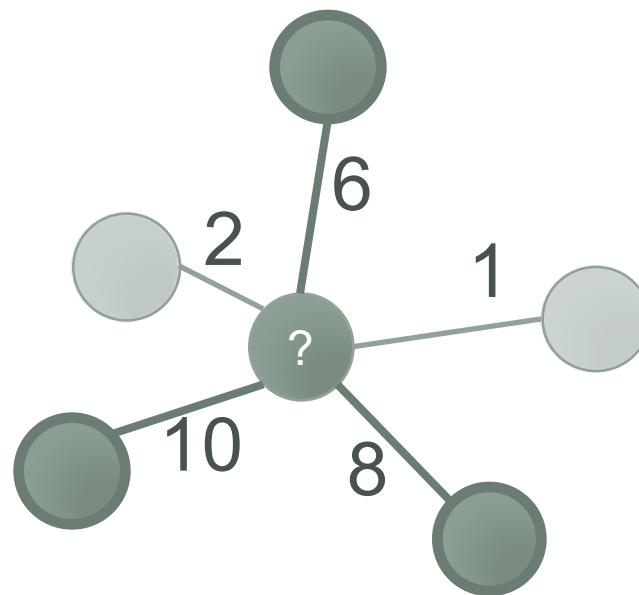
- Community of Interest:
 - top-K connections

Communities of Interest

Corrinna Cortes, Daryl Pregibon, and Chris Volinsky

Springer, 2001

Fraud in Telecommunication Networks



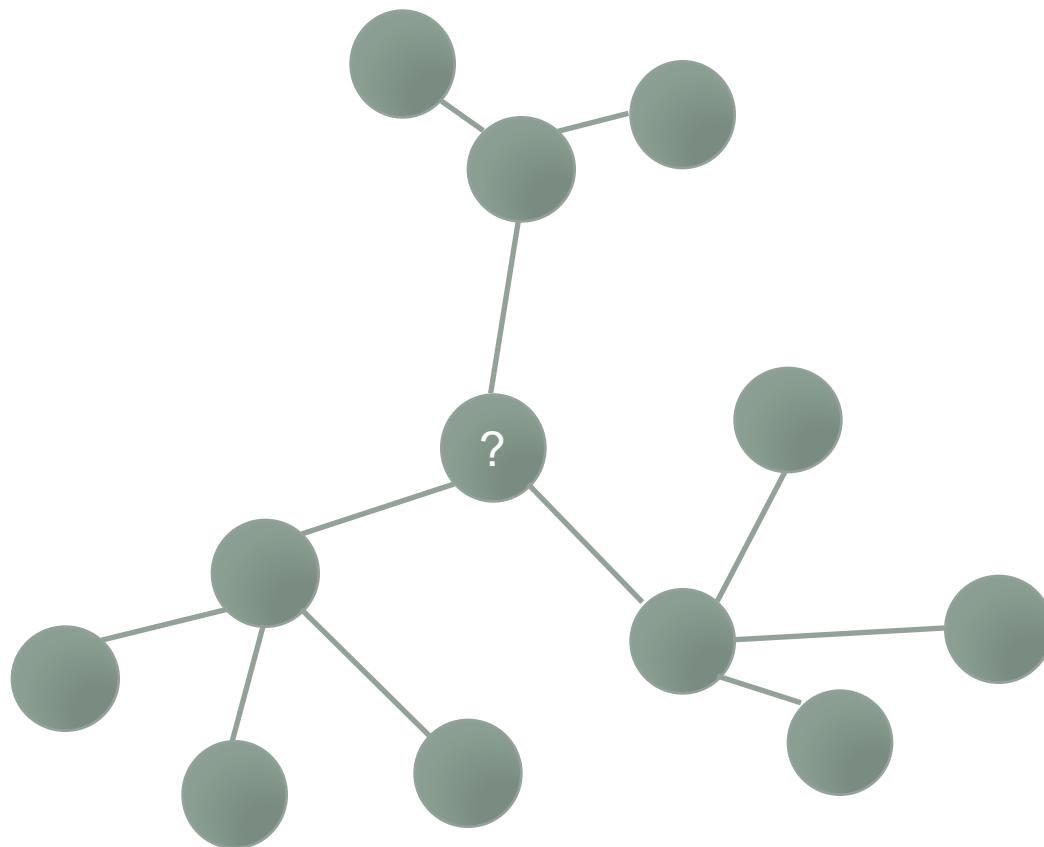
- Community of Interest:
 - top-K connections

Communities of Interest

Corrinna Cortes, Daryl Pregibon, and Chris Volinsky

Springer, 2001

Fraud in Telecommunication Networks



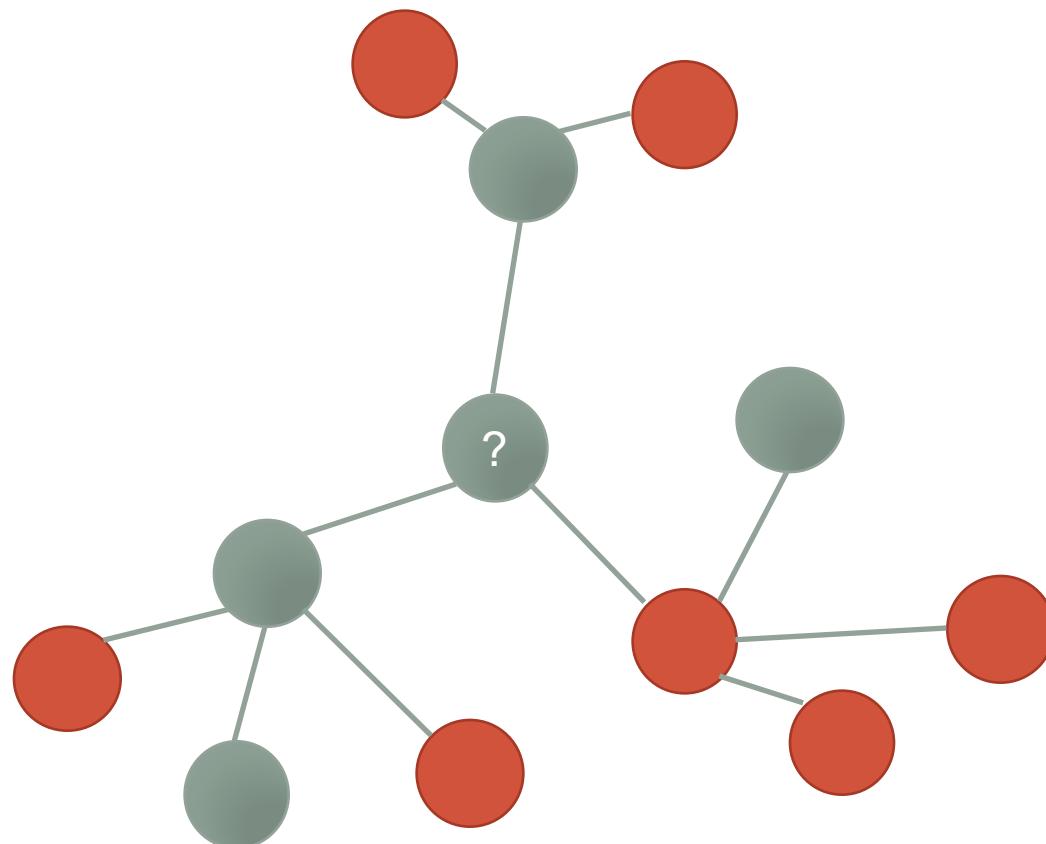
- Community of Interest:
 - top-K connections
 - d_2 community includes the COI for neighbors

Communities of Interest

Corrinna Cortes, Daryl Pregibon, and Chris Volinsky

Springer, 2001

Fraud in Telecommunication Networks



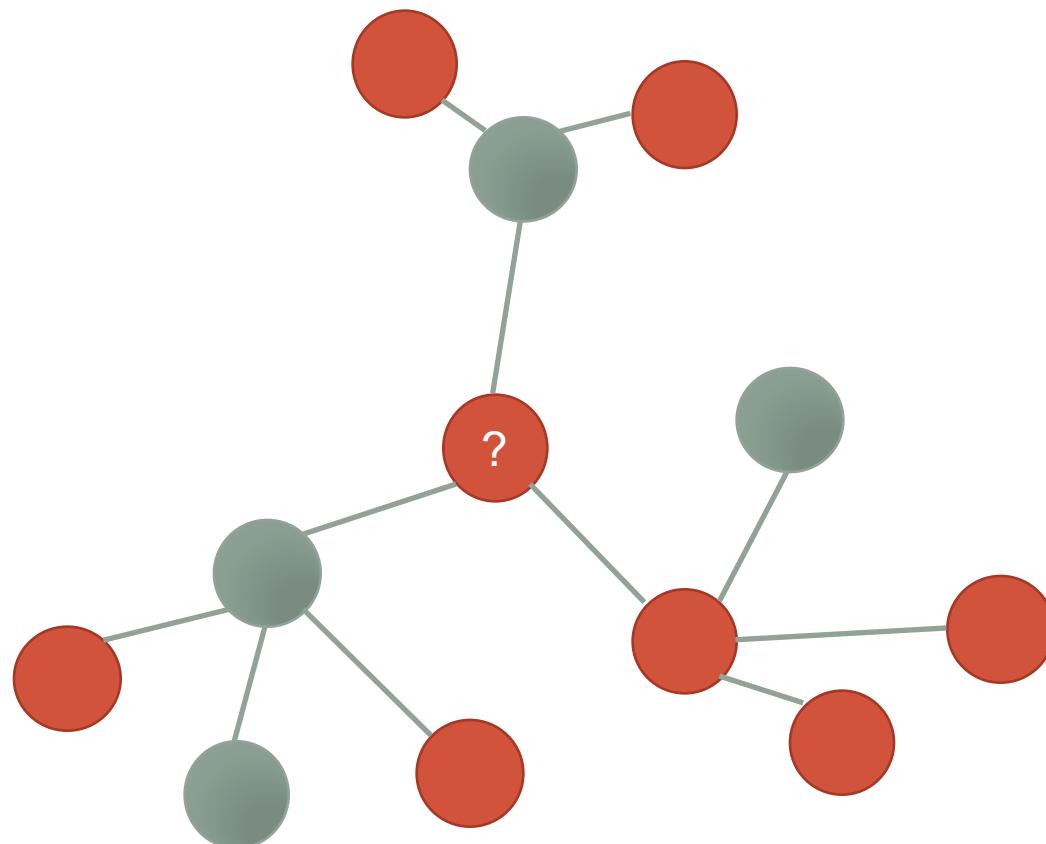
- Community of Interest:
 - top-K connections
 - d_2 community includes the COI for neighbors
- Label known fraudsters
- **Guilt-by-Association**
 - If most nodes in your d_2 community are fraudulent, you are probably fraudulent.

Communities of Interest

Corrinna Cortes, Daryl Pregibon, and Chris Volinsky

Springer, 2001

Fraud in Telecommunication Networks



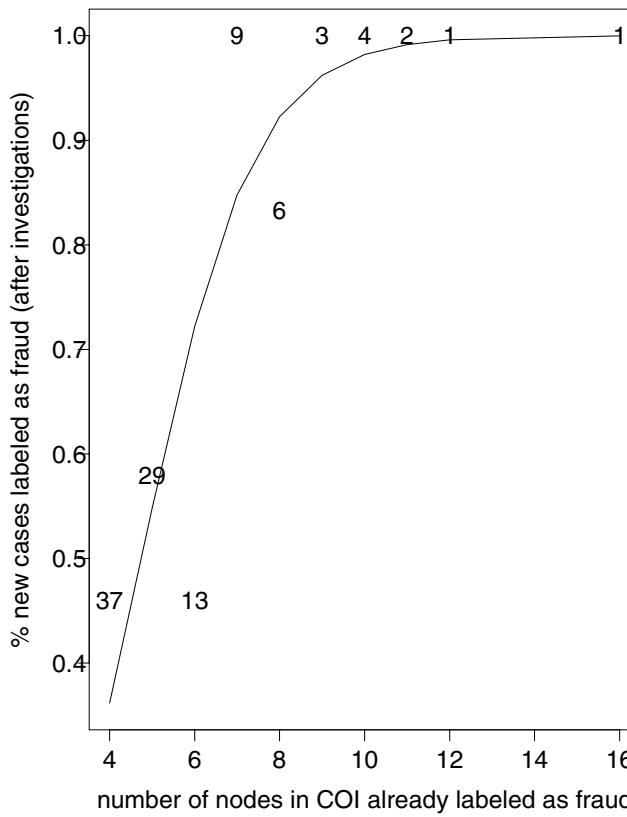
- Community of Interest:
 - top-K connections
 - d_2 community includes the COI for neighbors
- Label known fraudsters
- **Guilt-by-Association**
 - If most nodes in your d_2 community are fraudulent, you are probably fraudulent.

Communities of Interest

Corrinna Cortes, Daryl Pregibon, and Chris Volinsky

Springer, 2001

Fraud in Telecommunication Networks

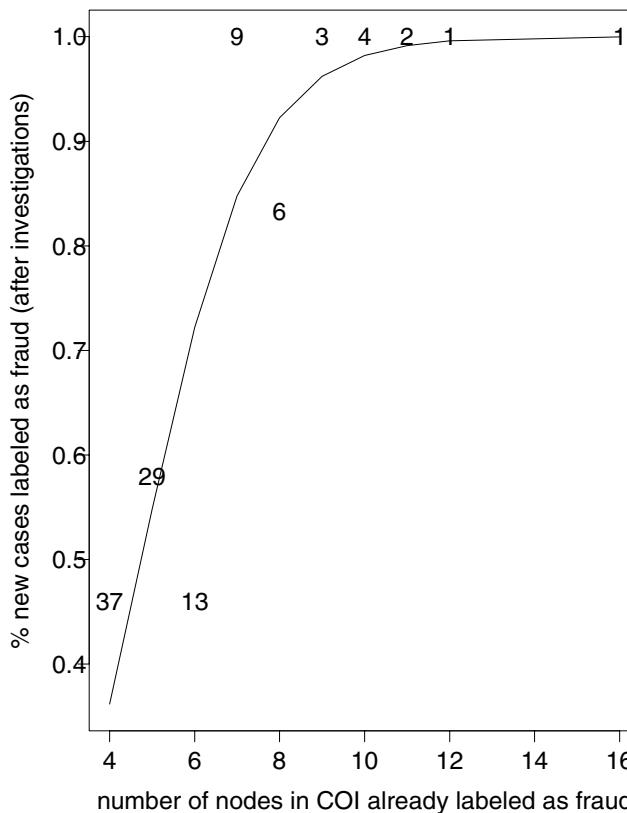


- Community of Interest:
 - top-K connections
 - d_2 community includes the COI for neighbors
 - Label known fraudsters
 - **Guilt-by-Association**
 - If most nodes in your d_2 community are fraudulent, you are probably fraudulent.

Communities of Interest

Corrinna Cortes, Daryl Pregibon, and Chris Volinsky
Springer, 2001

Fraud in Telecommunication Networks



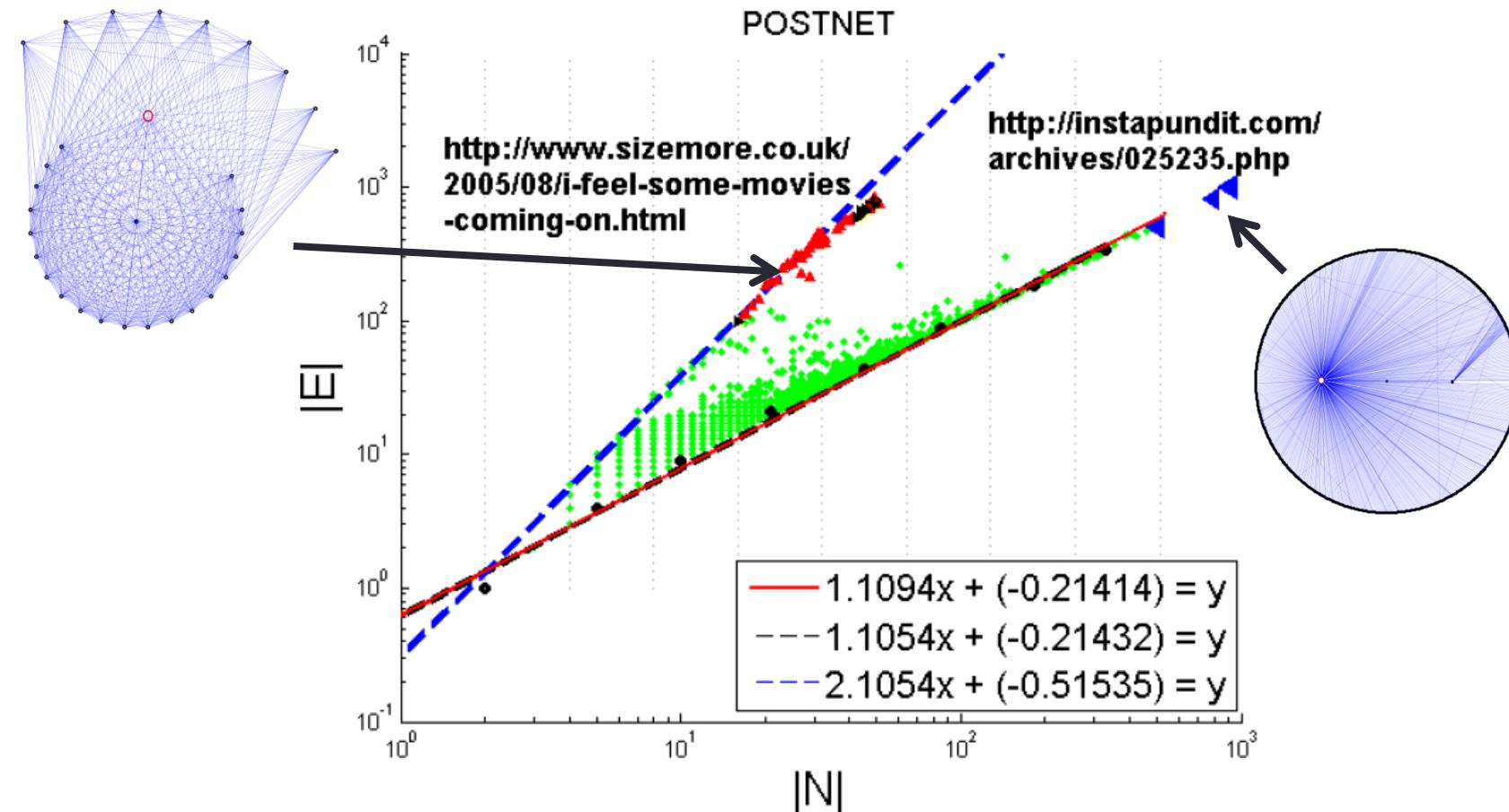
- Community of Interest:
 - top-K connections
 - d_2 community includes the COI for neighbors
 - Label known fraudsters
 - **Guilt-by-Association**
 - **More “guilt-by-association” in next section**

Communities of Interest

Corrinna Cortes, Daryl Pregibon, and Chris Volinsky

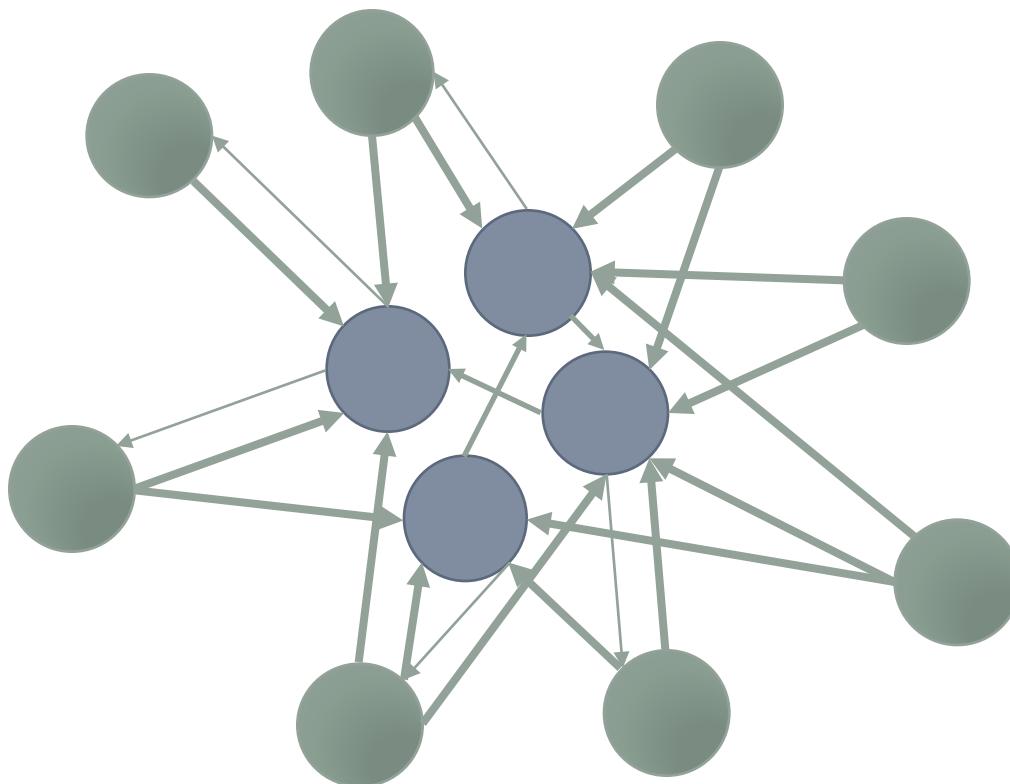
Springer, 2001

Pattern: Ego-net Power Law Density



Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010

Suspicious Subgraphs in Finance



Blackhole:
Group of nodes with
far more incoming
weight than outgoing.

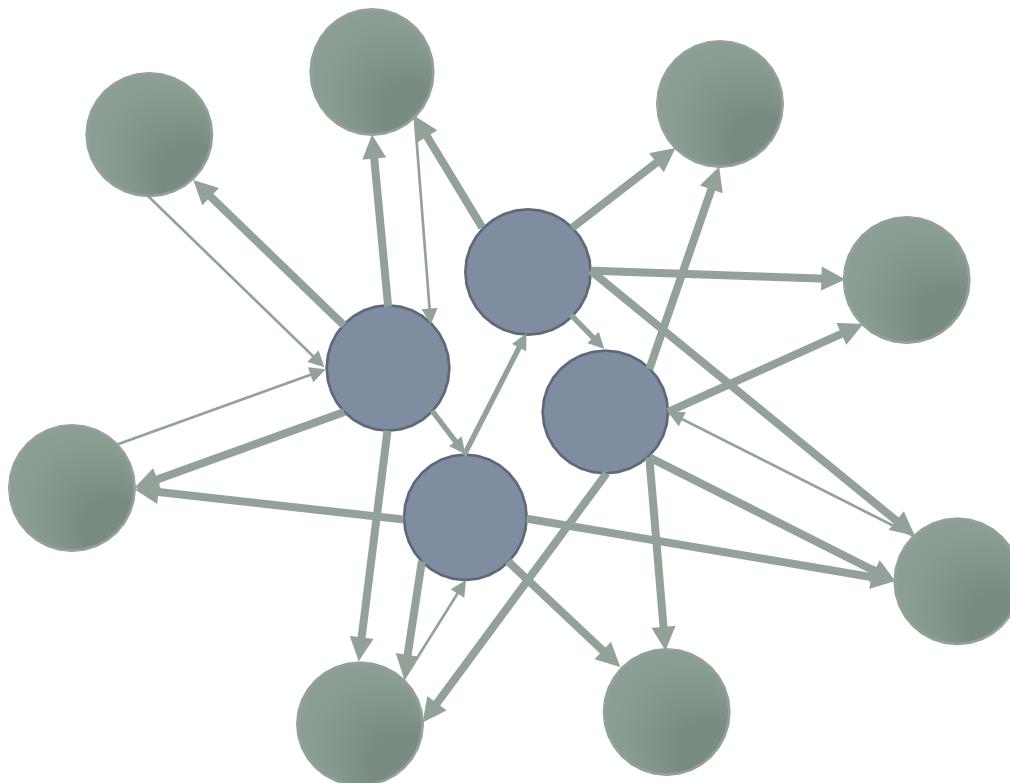
Could be indicative of
trading ring buying up
stock

Detecting Blackholes and Volcanoes in Directed Networks

Zhongmou Li, Hui Xiong, Yanchi Liu

ICDM 2010

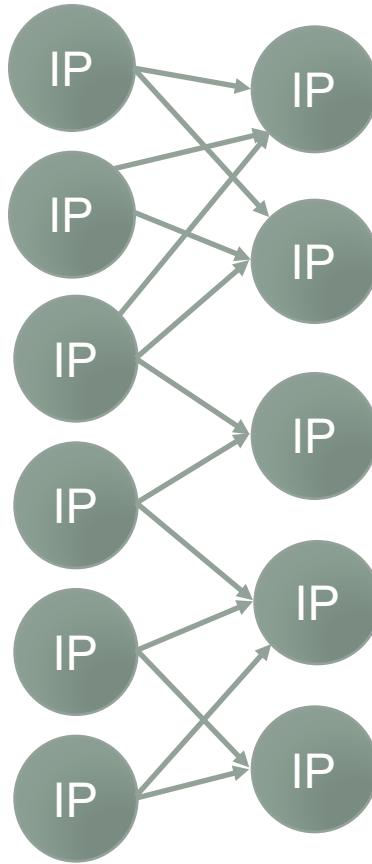
Suspicious Subgraphs in Finance



Volcano:
Group of nodes with far more outgoing weight than incoming.

Could be indicative of trading ring selling off inflated stock

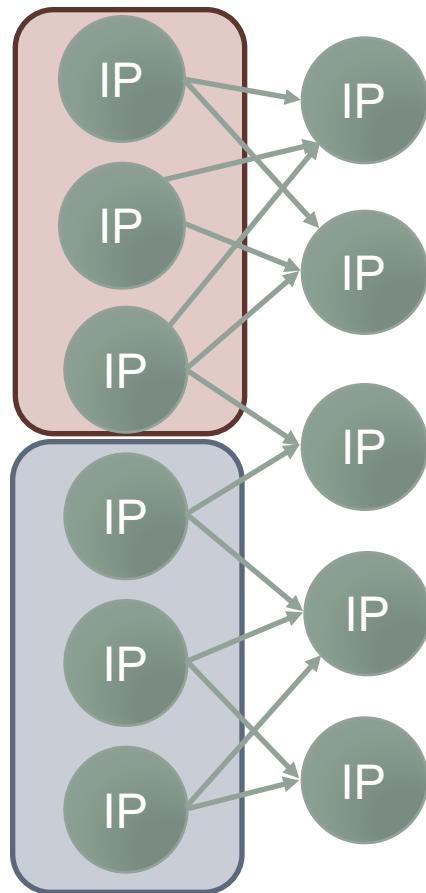
Graph Cuts for Intrusion Detection



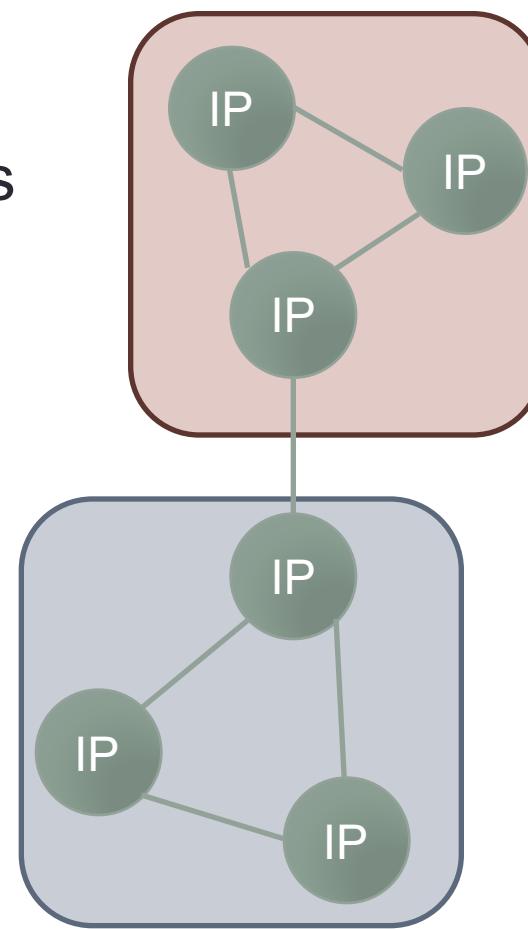
Bipartite graph between
source IPs and destination IPs

Intrusion as (Anti)social Communication: Characterization and Detection
Qi Ding, Natallia Katenka, Paul Barford,
Eric Kolaczyk, Mark Crovella
KDD 2012

Graph Cuts for Intrusion Detection



Connect source IPs
if they connect to
same destinations

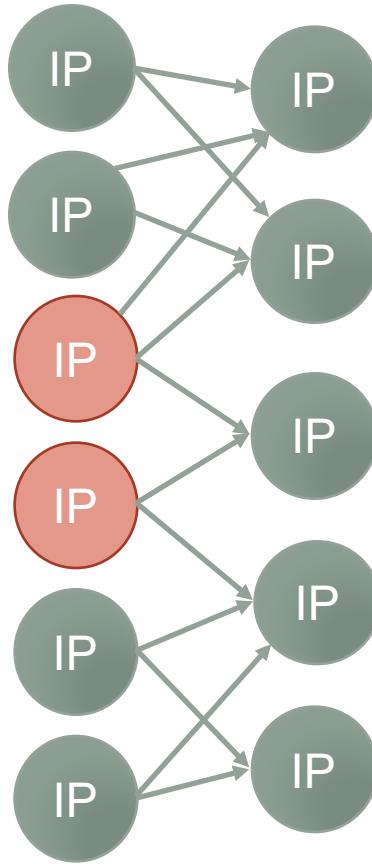


Intrusion as (Anti)social Communication: Characterization and Detection

Qi Ding, Natallia Katenka, Paul Barford,
Eric Kolaczyk, Mark Crovella

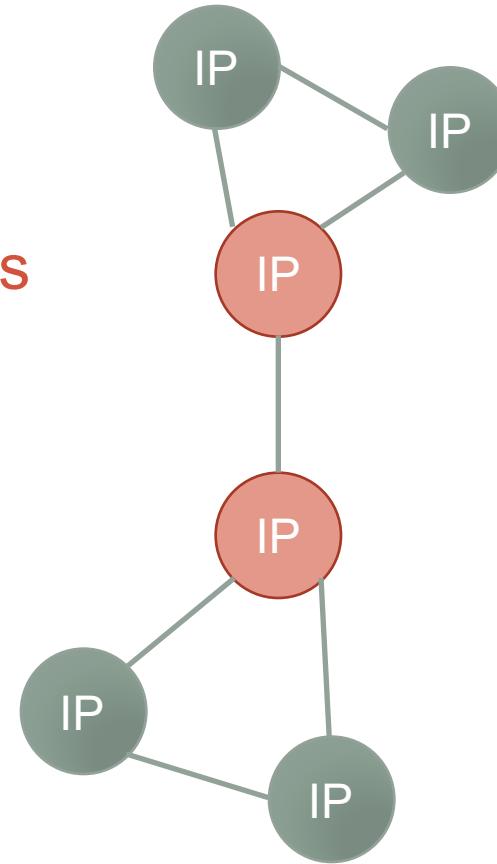
KDD 2012

Graph Cuts for Intrusion Detection



Nodes that
cross communities
are suspicious

Use min-cut to
find graph cuts



Intrusion as (Anti)social Communication: Characterization and Detection

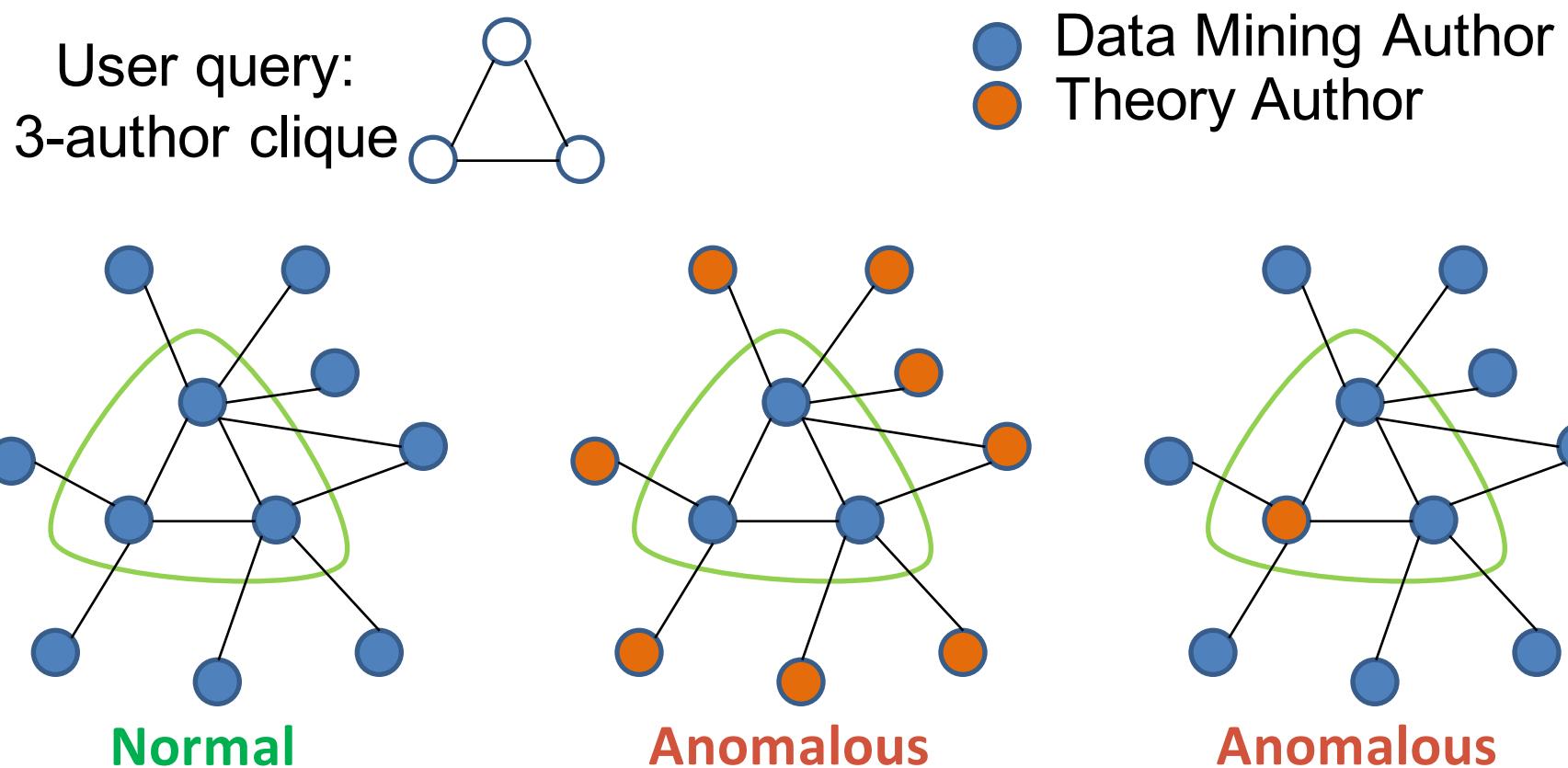
Qi Ding, Natallia Katenka, Paul Barford,
Eric Kolaczyk, Mark Crovella

KDD 2012

Practitioner's Guide to Detecting Fraud

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
COI	Undirected			✓
OddBall	Undirected			
Blackholes & Volcanoes	Directed			
(Anti)-Social	Bipartite			
SODA	Undirected	✓		
FocusCO	Undirected	✓		
glceberg	Undirected	✓		
CopyCatch	Bipartite		✓	
SynchoTrap	Bipartite+	✓	✓	
Co-Clustering	Bipartite*		✓	

Outlier Detection in Attributed Subgraphs



Local Learning for Mining Outlier Subgraphs from Network Datasets

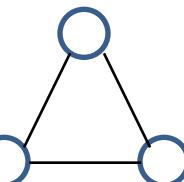
Manish Gupta, Arun Mallya, Subhro Roy,
Jason Cho, Jiawei Han

SDM 2014

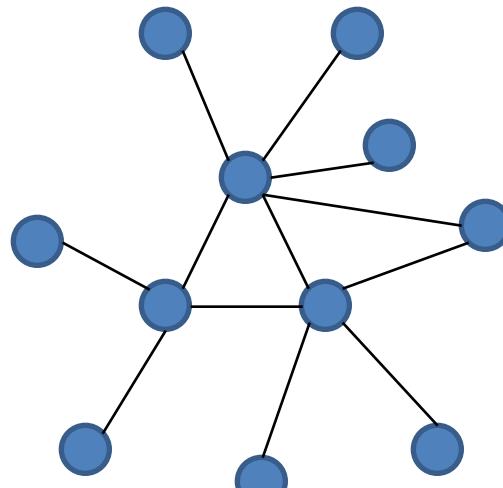
(slides adapted from Manish Gupta)

Outlier Detection in Attributed Subgraphs

User query:
3-author clique

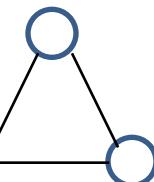


Learn a Max-Margin SVM to predict which edges in the neighborhood exist based on node features.

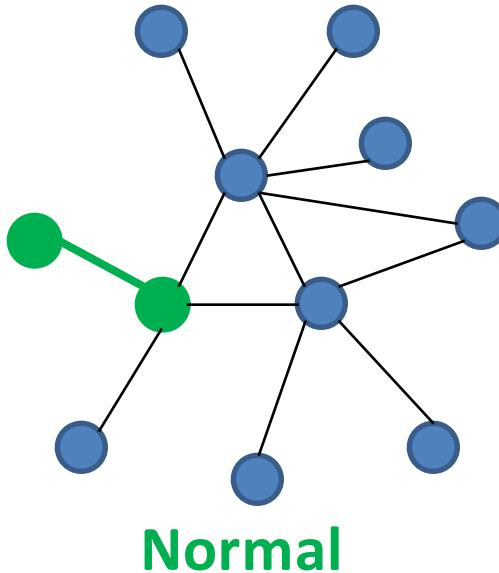
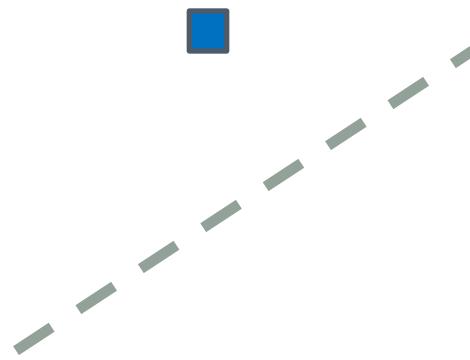


Outlier Detection in Attributed Subgraphs

User query:
3-author clique



Learn a Max-Margin SVM to predict which edges in the neighborhood exist based on node features.



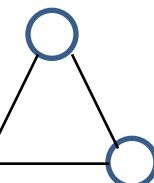
Local Learning for Mining Outlier Subgraphs from Network Datasets

Manish Gupta, Arun Mallya, Subhro Roy,
Jason Cho, Jiawei Han
SDM 2014

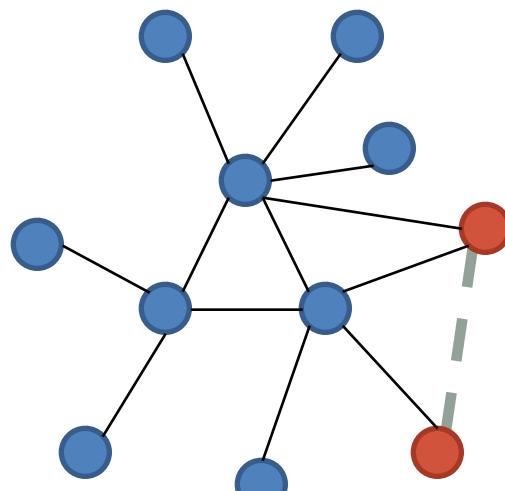
(slides adapted from Manish Gupta)

Outlier Detection in Attributed Subgraphs

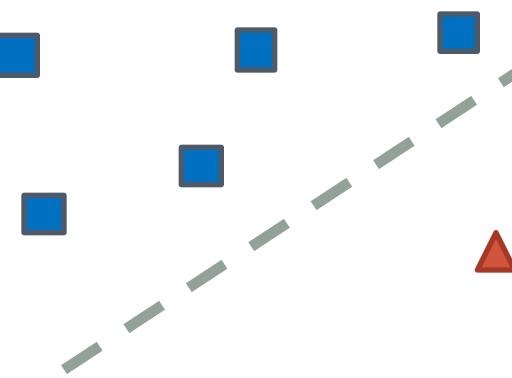
User query: 3-author clique



Learn a Max-Margin SVM to predict which edges in the neighborhood exist based on node features.



Normal



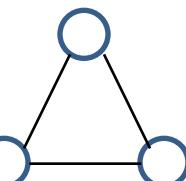
Local Learning for Mining Outlier Subgraphs from Network Datasets

Manish Gupta, Arun Mallya, Subhro Roy,
Jason Cho, Jiawei Han

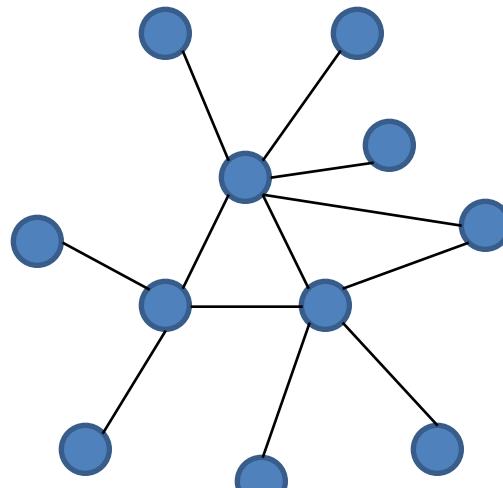
SDM 2014 (slides adapted from Manish Gupta)

Outlier Detection in Attributed Subgraphs

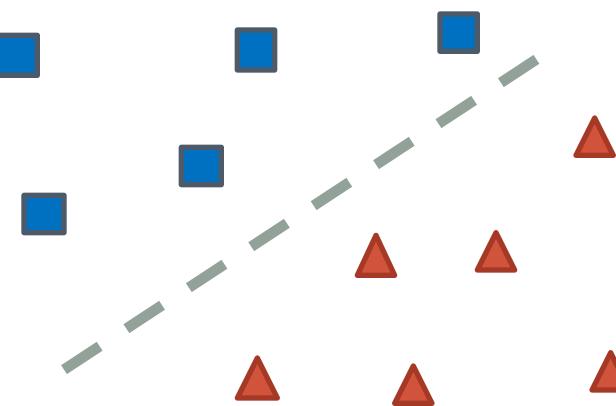
User query: 3-author clique



Learn a Max-Margin SVM to predict which edges in the neighborhood exist based on node features.



Normal



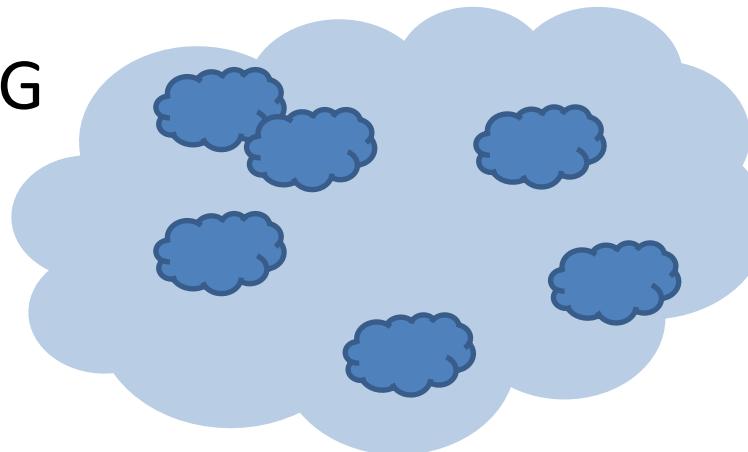
Local Learning for Mining Outlier Subgraphs from Network Datasets

Manish Gupta, Arun Mallya, Subhro Roy,
Jason Cho, Jiawei Han

SDM 2014 (slides adapted from Manish Gupta)

Outlier Detection in Attributed Subgraphs

Graph G



Subgraph Query

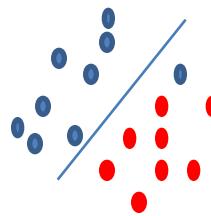
Match 1

Match 2

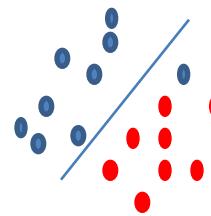
...

...

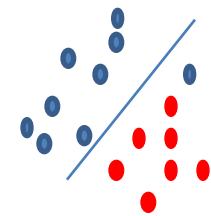
Match m



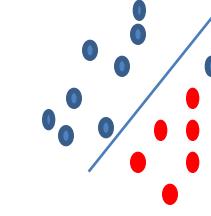
Outlier Score



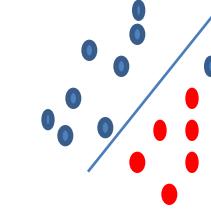
Outlier Score



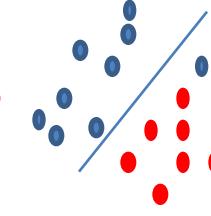
Outlier Score



Outlier Score



Outlier Score



Outlier Score

Local Learning for Mining Outlier Subgraphs from Network Datasets

Manish Gupta, Arun Mallya, Subhro Roy,

Jason Cho, Jiawei Han

SDM 2014

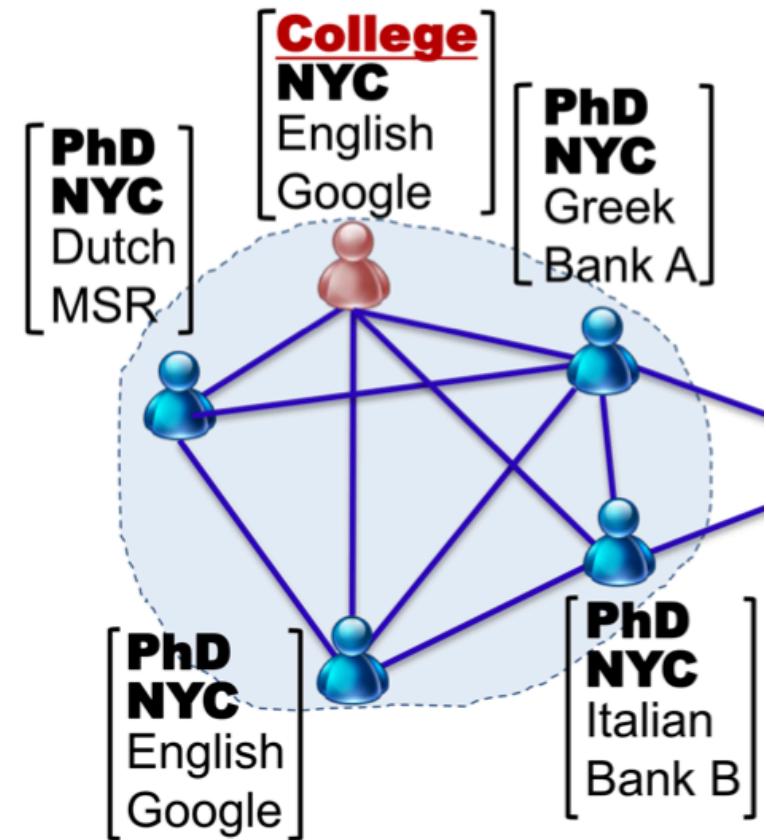
(slides adapted from Manish Gupta)

Clustering and Outlier Detection in Attributed Graphs

Given a graph with node attributes,

Find focused clusters that are dense and share attributes, and

Detect outliers, nodes whose attributes deviate from their cluster's attributes.



Focused Clustering and Outlier Detection in Large Attributed Graphs

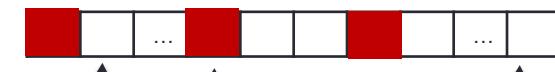
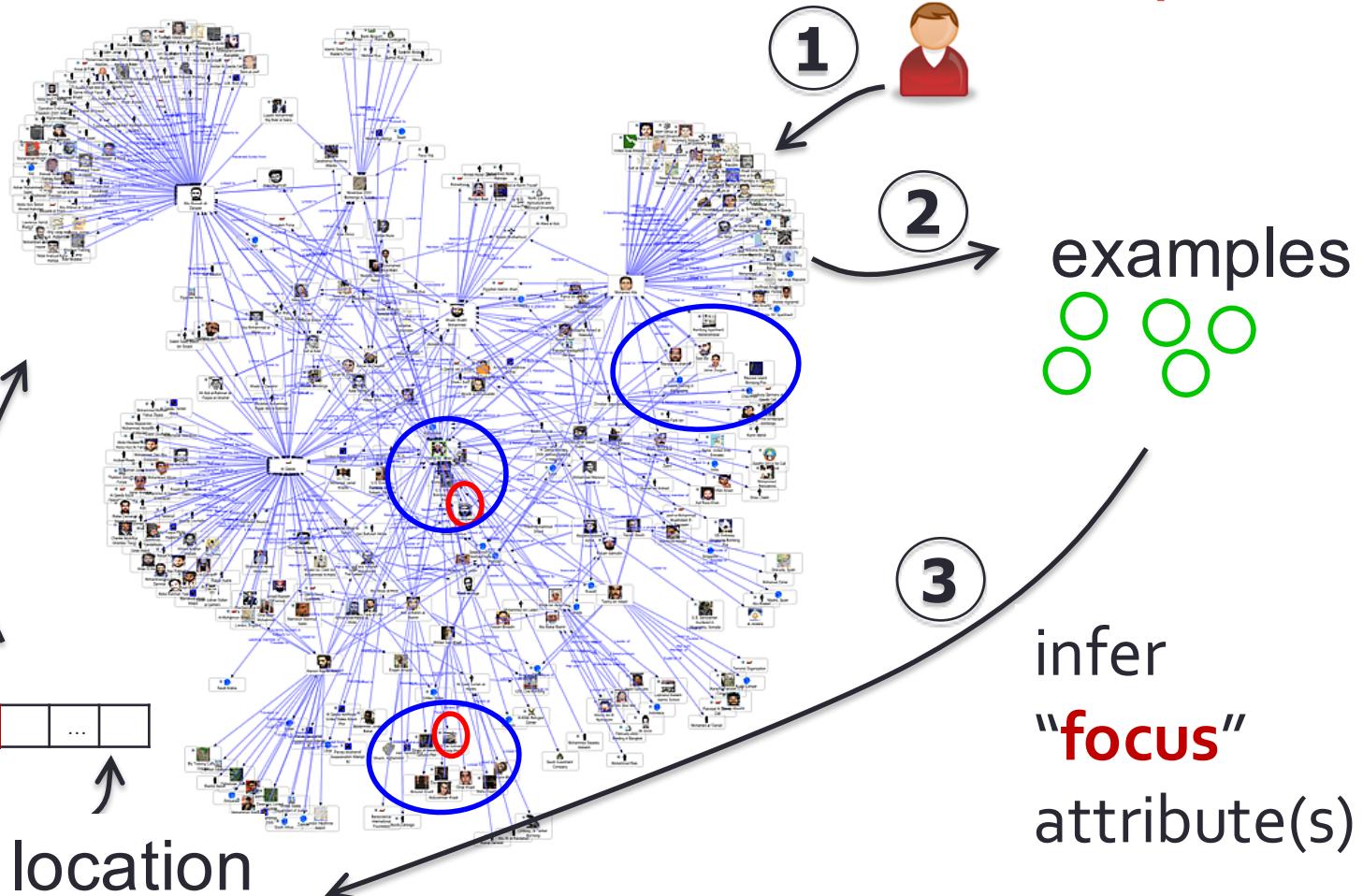
Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sanchez,
Emmanuel Muller

KDD 2014

(slides adapted from Bryan Perozzi)

Clustering & Outlier Detection in Attributed Graphs

4
detect
focused
clusters &
outliers

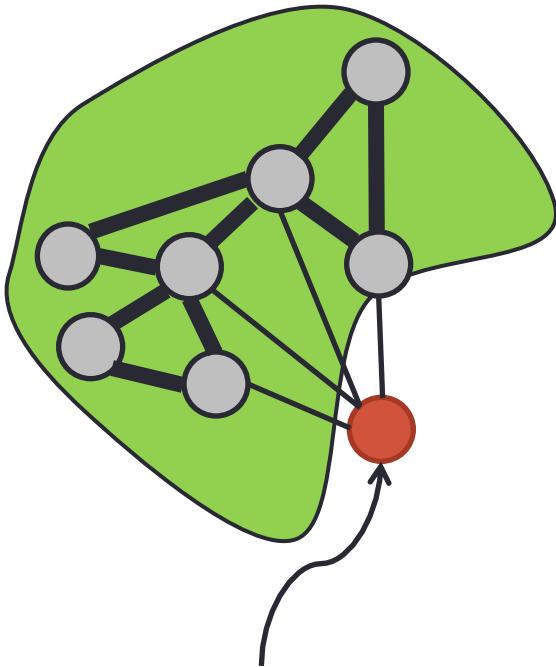


Focused Clustering and Outlier Detection in Large Attributed Graphs
Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sanchez,
Emmanuel Muller
KDD 2014

(slides adapted from Bryan Perozzi)

Clustering & Outlier Detection in Attributed Graphs

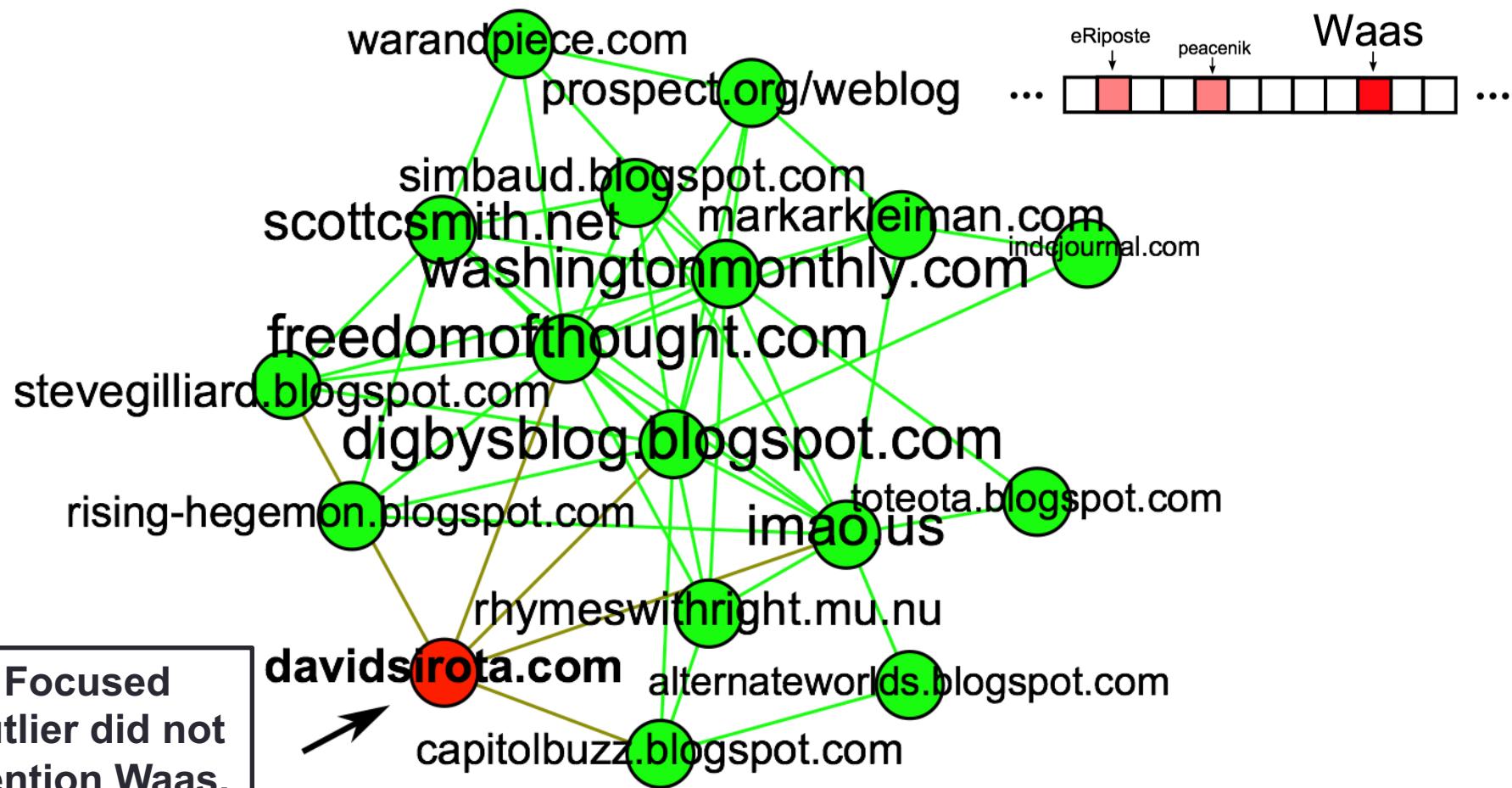
1. Clustering objective: conductance $\phi^{(w)}$ weighted by focus



$$\phi^{(w)}(C, G) = \frac{W_{cut}(C)}{WVol(C)}$$

2. At each step in cluster expansion:
 - 2.1 - Examine boundary nodes
 - 2.2 - Add node with best $\Delta\phi^{(w)}$
 - 2.3 - Record best structural node
3. Focused Outliers:
left-out best structural nodes

Clustering & Outlier Detection in Attributed Graphs



Focused Clustering and Outlier Detection in Large Attributed Graphs

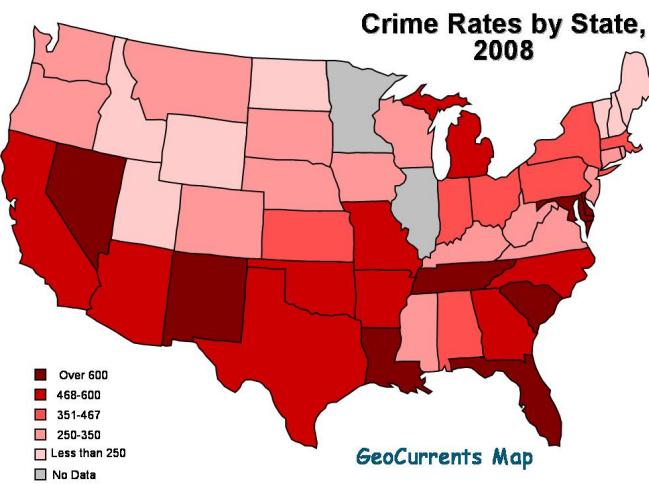
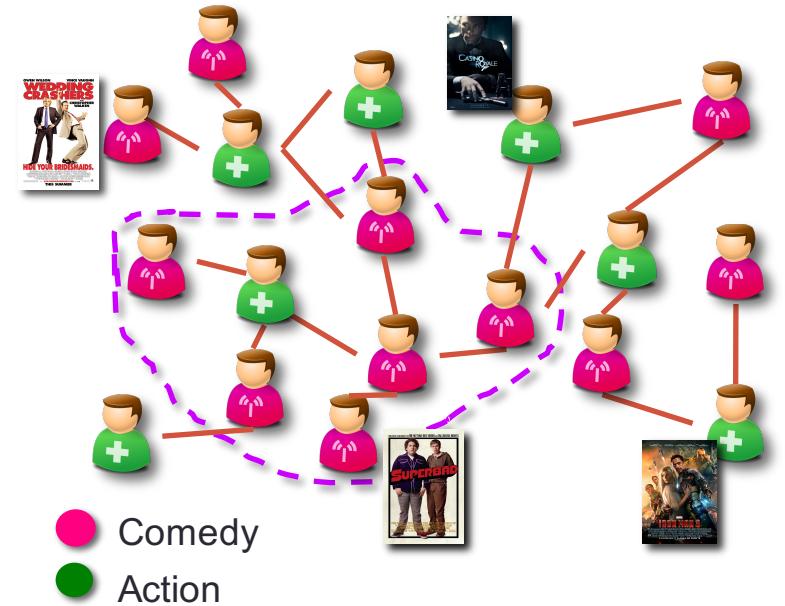
Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sanchez,

Emmanuel Muller

KDD 2014

(slides adapted from Bryan Perozzi)

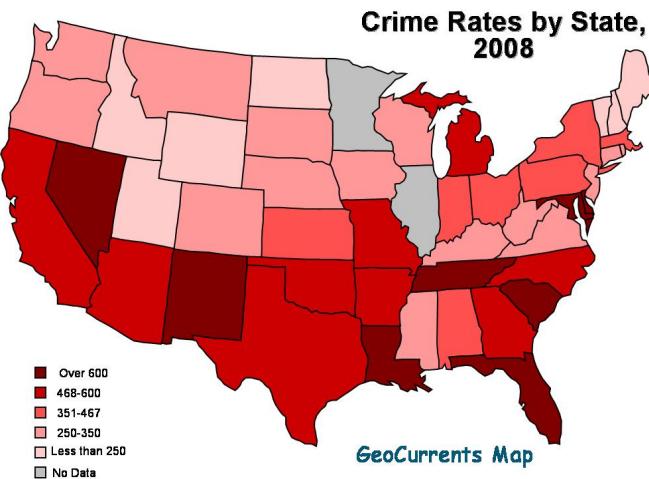
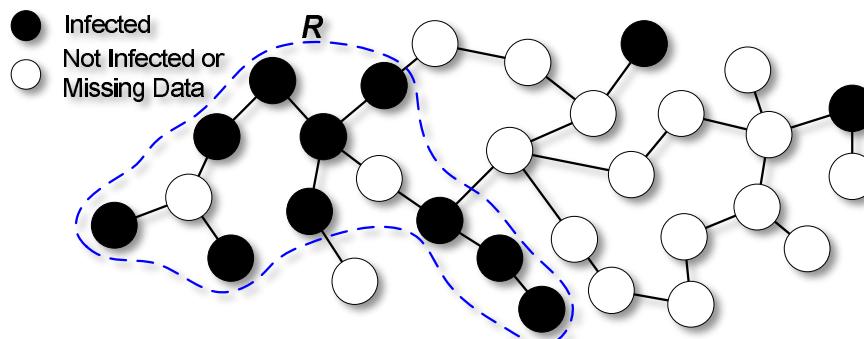
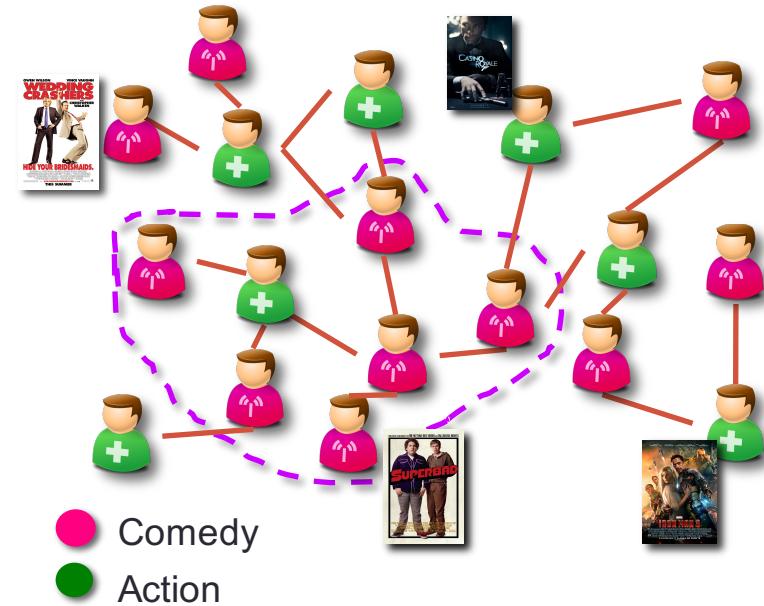
Anomalous-Attribute Subgraphs



A Probabilistic Approach to Uncovering Attributed Graph Anomalies

Nan Li, Huan Sun, Kyle Chipman,
Jemin George, Xifeng Yan
SDM 2014

Anomalous-Attribute Subgraphs

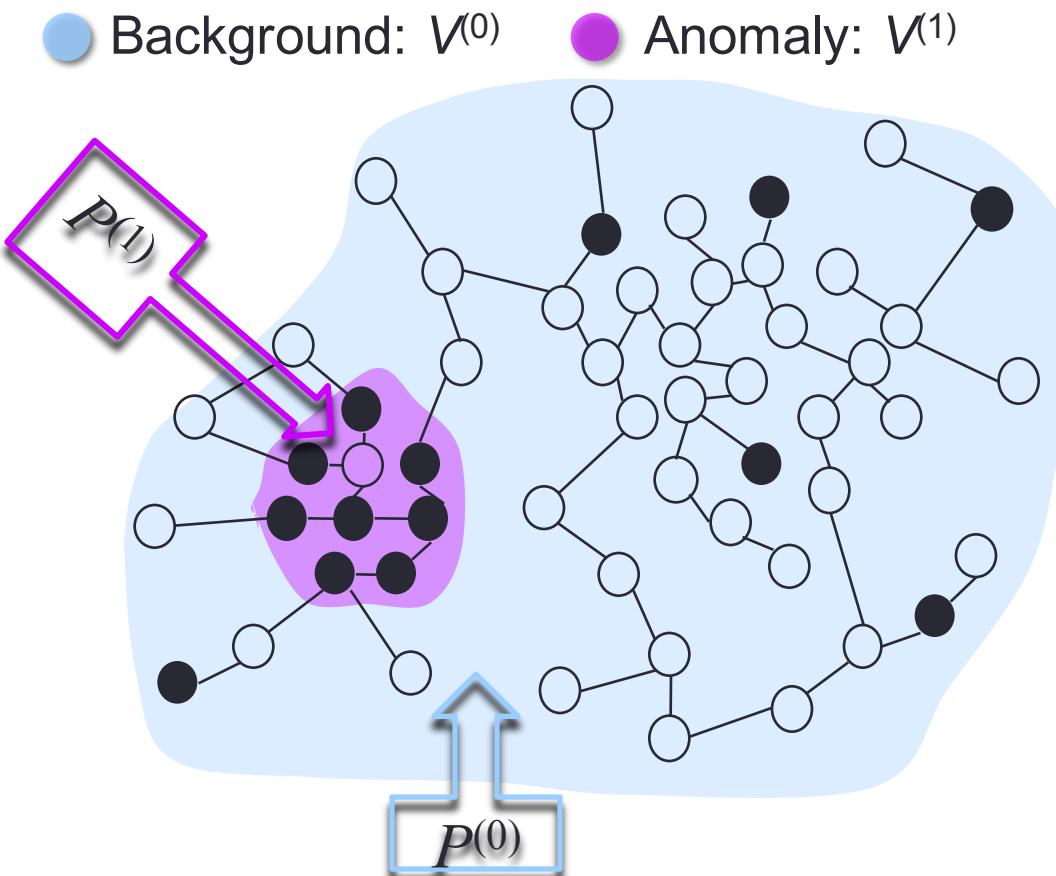


Subgraph with skewed attribute distribution

A Probabilistic Approach to Uncovering Attributed Graph Anomalies

Nan Li, Huan Sun, Kyle Chipman,
Jemin George, Xifeng Yan
SDM 2014

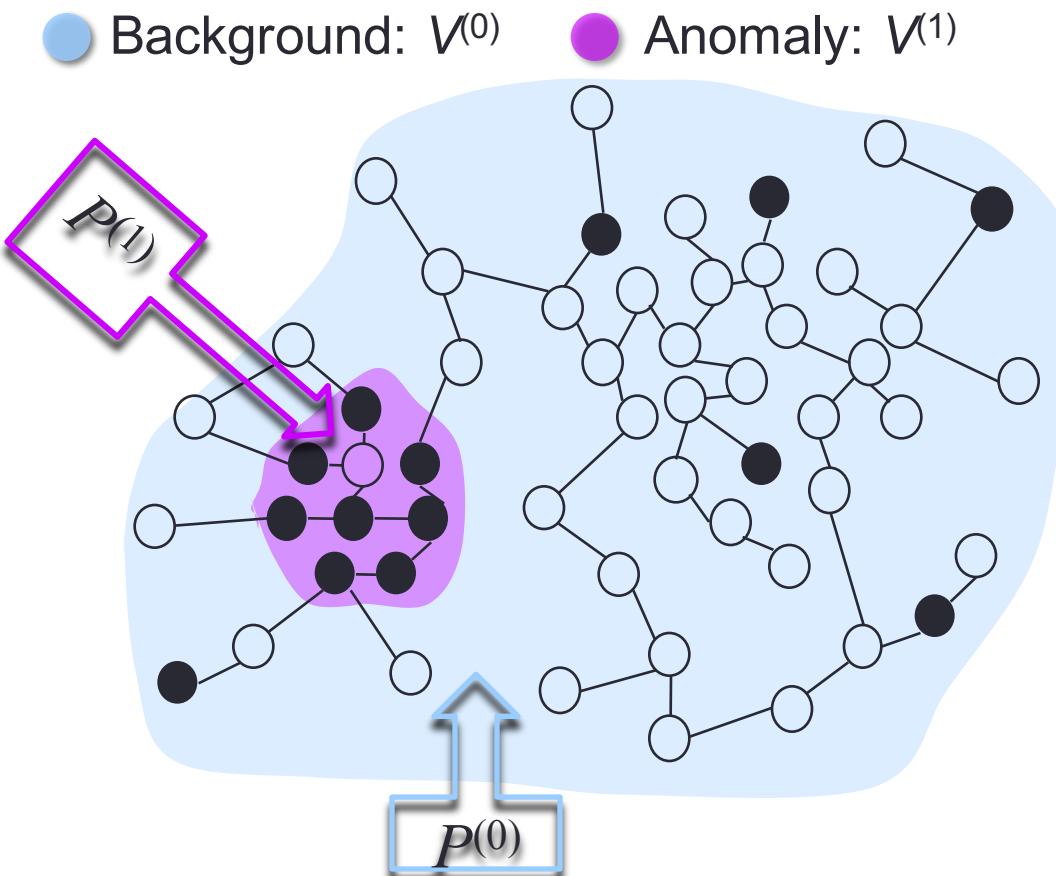
Anomalous-Attribute Subgraphs



Two generative processes:
1) anomaly distribution &
2) background distribution

A Probabilistic Approach to Uncovering Attributed Graph Anomalies
Nan Li, Huan Sun, Kyle Chipman,
Jemin George, Xifeng Yan
SDM 2014

Anomalous-Attribute Subgraphs



Two generative processes:

- 1) anomaly distribution &
- 2) background distribution

One overall mixture

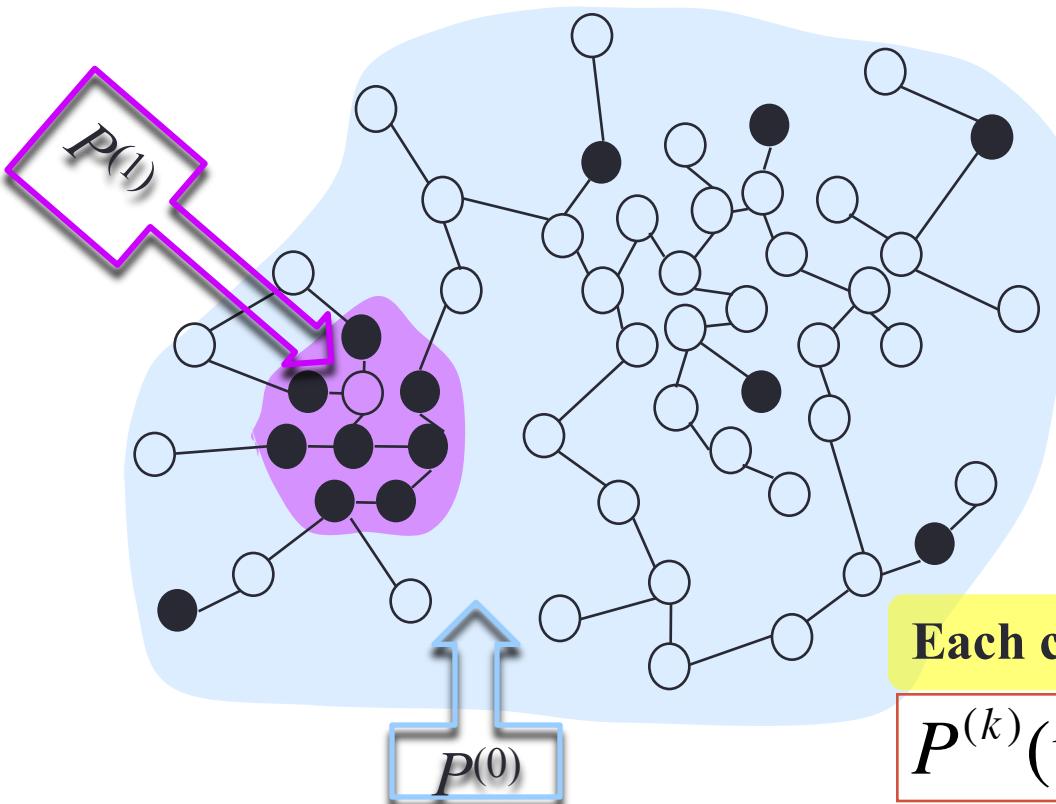
$$P(v_i) = \sum_{k=0}^1 \theta_i^{(k)} P^{(k)}(v_i)$$

With probability $\theta_i^{(0)}$, v_i belongs to the background component $V^{(0)}$, and with $\theta_i^{(1)}$ the anomaly component $V^{(1)}$.

A Probabilistic Approach to Uncovering Attributed Graph Anomalies
Nan Li, Huan Sun, Kyle Chipman,
Jemin George, Xifeng Yan
SDM 2014

Anomalous-Attribute Subgraphs

Background: $V^{(0)}$ Anomaly: $V^{(1)}$



Two generative processes:

- 1) anomaly distribution &
- 2) background distribution

One overall mixture

$$P(v_i) = \sum_{k=0}^1 \theta_i^{(k)} P^{(k)}(v_i)$$

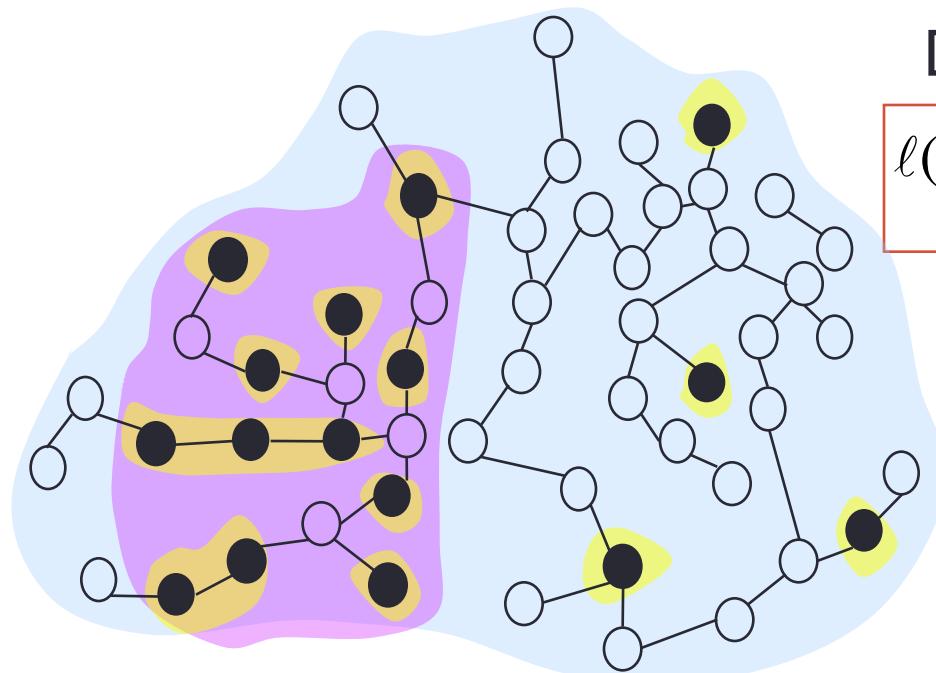
With probability $\theta_i^{(0)}$, v_i belongs to the background component $V^{(0)}$, and with $\theta_i^{(1)}$ the anomaly component $V^{(1)}$.

Each component is a Bernoulli distribution

$$P^{(k)}(v_i) = p^{(k)}(1)^{X_i} (1 - p^{(k)}(1))^{1-X_i}$$

A Probabilistic Approach to Uncovering Attributed Graph Anomalies
Nan Li, Huan Sun, Kyle Chipman,
Jemin George, Xifeng Yan
SDM 2014

Anomalous-Attribute Subgraphs

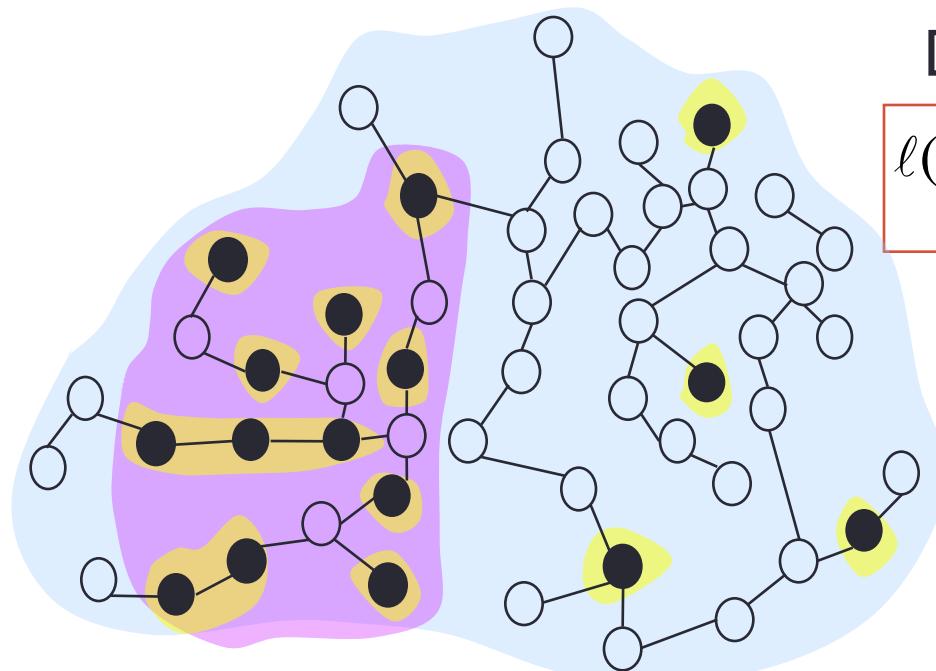


Data loglikelihood of vertex set V

$$\ell(V) = \sum_{v_i \in V} \log P(v_i) = \sum_{v_i \in V} \log \sum_k \theta_i^{(k)} P^{(k)}(v_i)$$

A Probabilistic Approach to Uncovering Attributed Graph Anomalies
Nan Li, Huan Sun, Kyle Chipman,
Jemin George, Xifeng Yan
SDM 2014

Anomalous-Attribute Subgraphs



Data loglikelihood of vertex set V

$$\ell(V) = \sum_{v_i \in V} \log P(v_i) = \sum_{v_i \in V} \log \sum_k \theta_i^{(k)} P^{(k)}(v_i)$$

Maximize:

$$\ell(V) - \lambda R_N(\Theta) + \gamma R_E(\Theta)$$

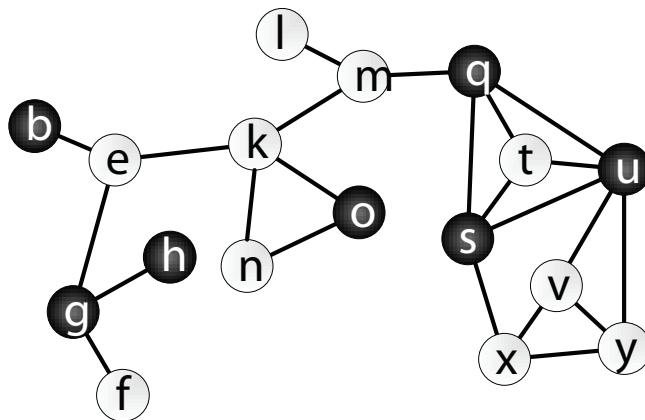
Network regularizer
(enhances connectivity within each component)

Entropy regularizer
(enhances polarity of mixture weights)

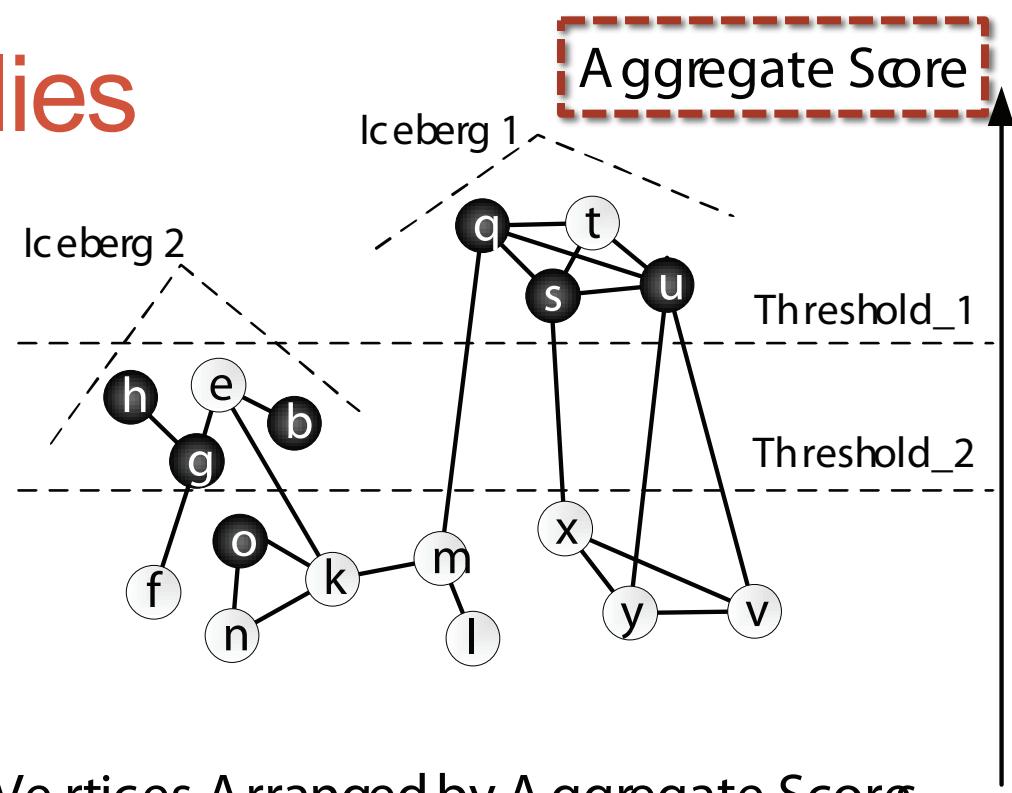
A Probabilistic Approach to Uncovering Attributed Graph Anomalies

Nan Li, Huan Sun, Kyle Chipman,
Jemin George, Xifeng Yan
SDM 2014

glceberg Anomalies



(a) Original Graph



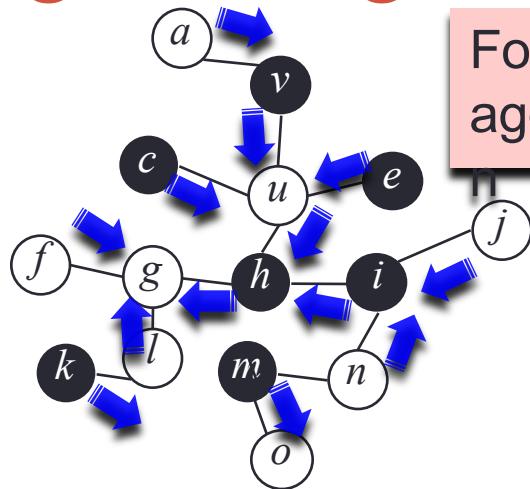
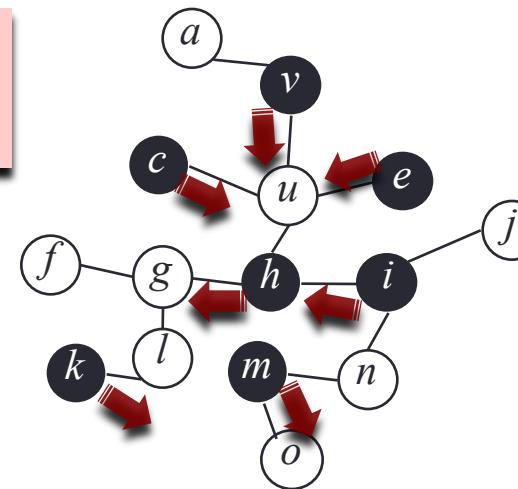
(b) Vertices Arranged by Aggregate Score

Aggregate score: concentration of attribute in vertex's vicinity

glceberg: Towards Iceberg Analysis in Large Graphs

Nan Li, Ziyu Guan, Lijie Ren, Jian Wu,
Jiawei Han, Xifeng Yan,
ICDE 2013

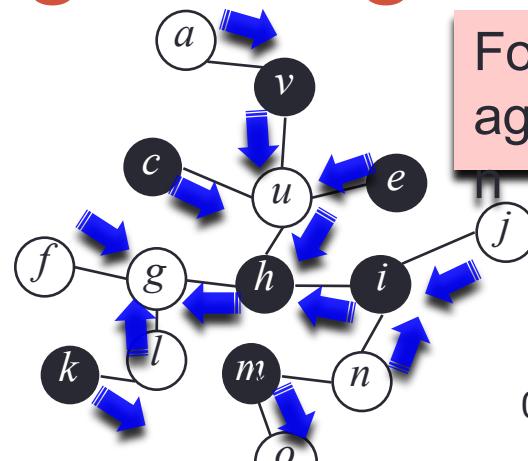
glceberg Anomalies



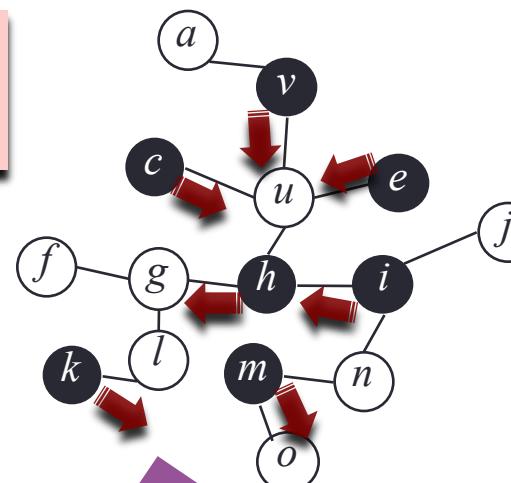
$$\mathbf{p}_u(v) = \frac{d_v}{d_u} \mathbf{p}_v(u)$$

glceberg: Towards Iceberg Analysis in Large Graphs
Nan Li, Ziyu Guan, Lijie Ren, Jian Wu,
Jiawei Han, Xifeng Yan,
ICDE 2013

glceberg Anomalies



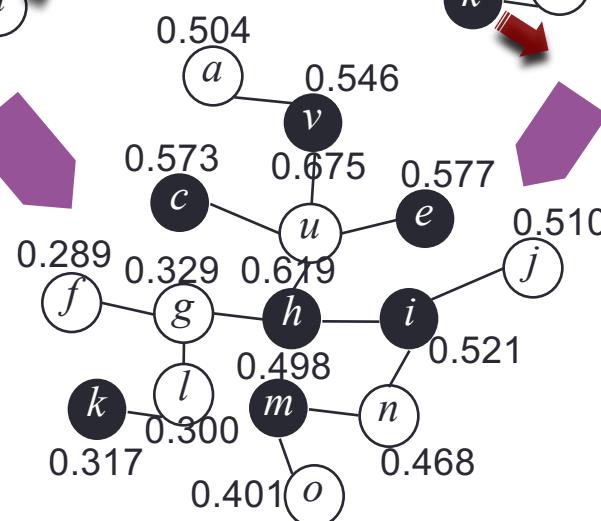
Forward
aggregatio



Backward
aggregatio

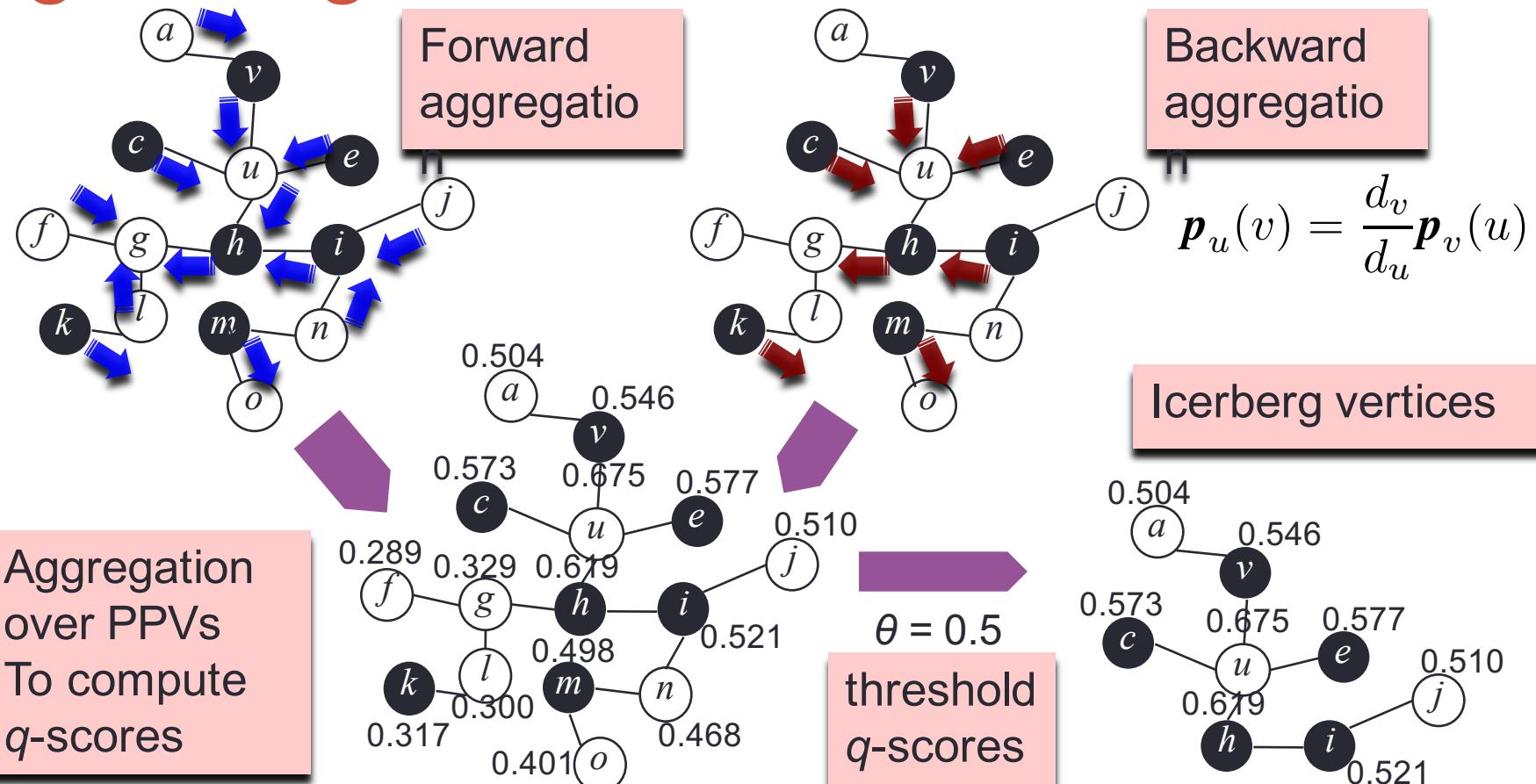
$$\mathbf{p}_u(v) = \frac{d_v}{d_u} \mathbf{p}_v(u)$$

Aggregation
over PPVs
To compute
 q -scores



glceberg: Towards Iceberg Analysis in Large Graphs
Nan Li, Ziyu Guan, Lijie Ren, Jian Wu,
Jiawei Han, Xifeng Yan,
ICDE 2013

glceberg Anomalies

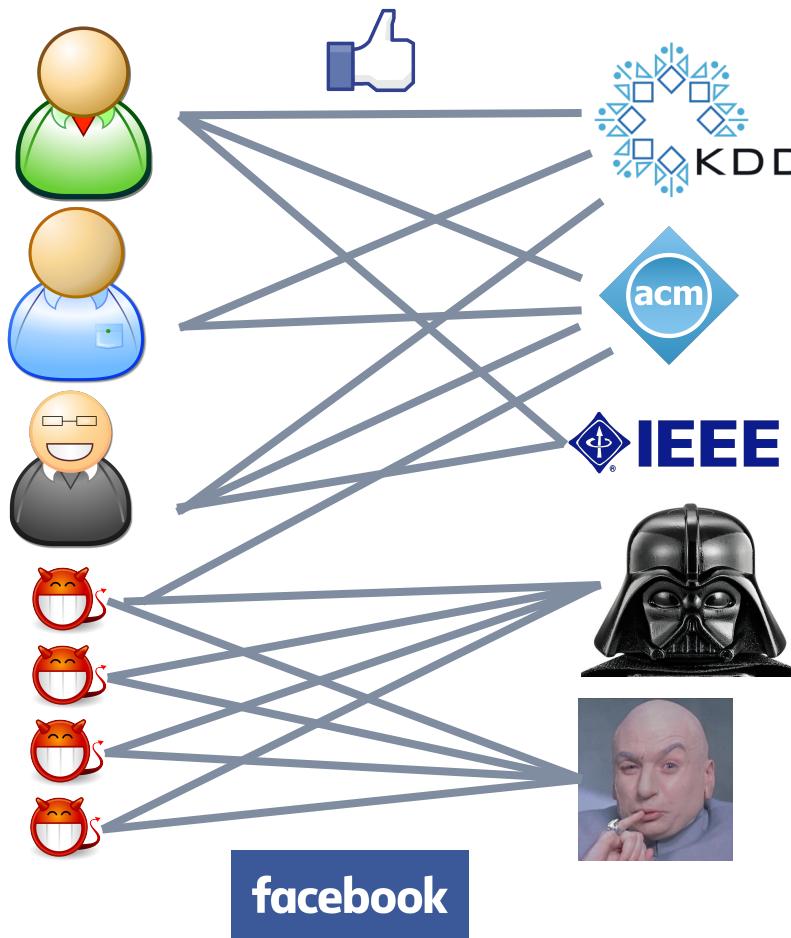


glceberg: Towards Iceberg Analysis in Large Graphs
 Nan Li, Ziyu Guan, Lijie Ren, Jian Wu,
 Jiawei Han, Xifeng Yan,
 ICDE 2013

Practitioner's Guide to Detecting Fraud

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
COI	Undirected			✓
OddBall	Undirected			
Blackholes & Volcanoes	Directed			
(Anti)-Social	Bipartite			
SODA	Undirected	✓		
FocusCO	Undirected	✓		
glceberg	Undirected	✓		
CopyCatch	Bipartite		✓	
SynchoTrap	Bipartite+	✓	✓	
Co-Clustering	Bipartite*		✓	

Lockstep Behavior in the Graph

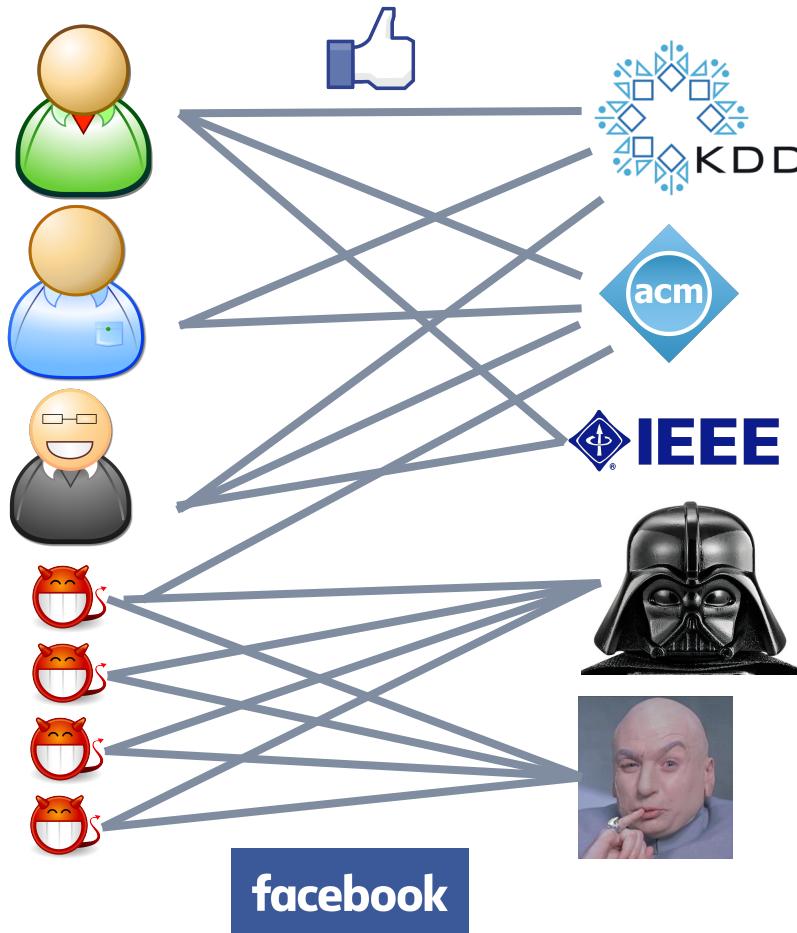


Dense group of data miner
Page Likes

Dense group of
purchased Page Likes

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks
Alex Beutel, WanHong Xu, Venkatesan Guruswami,
Christopher Palow, Christos Faloutsos
WWW, 2013

Lockstep Behavior in the Graph



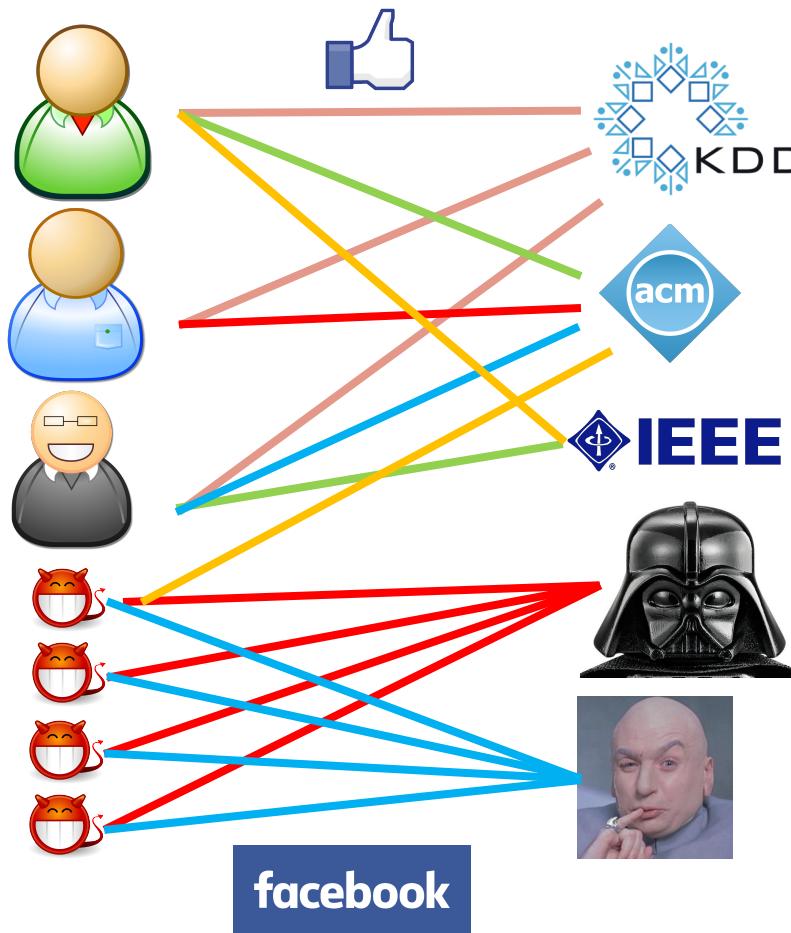
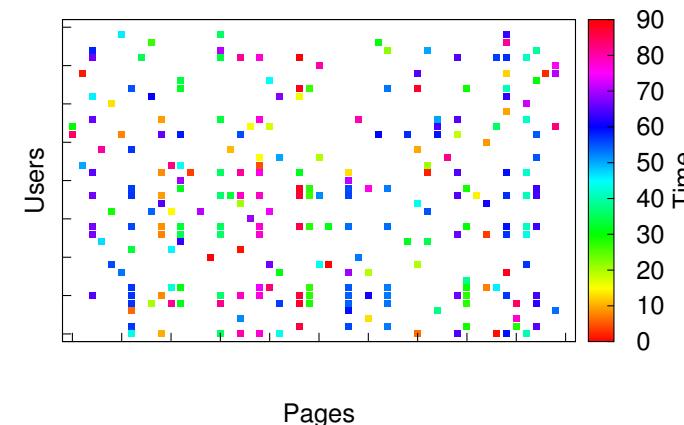
Dense group of data miner
Page Likes

How can we tell which
is fraudulent?

Dense group of
purchased Page Likes

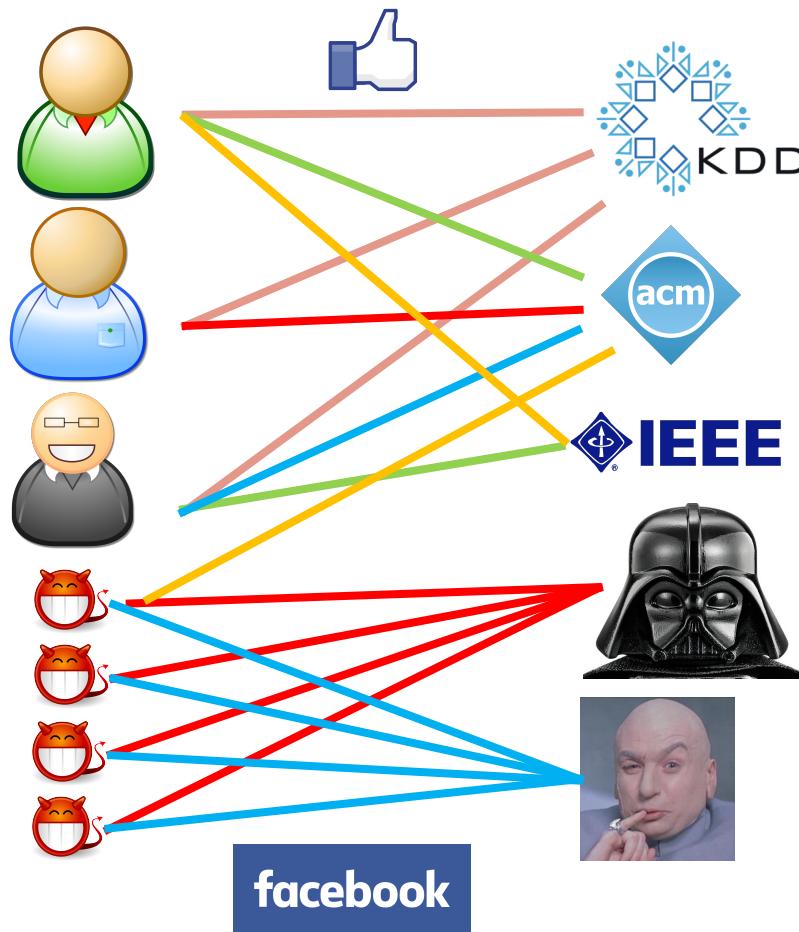
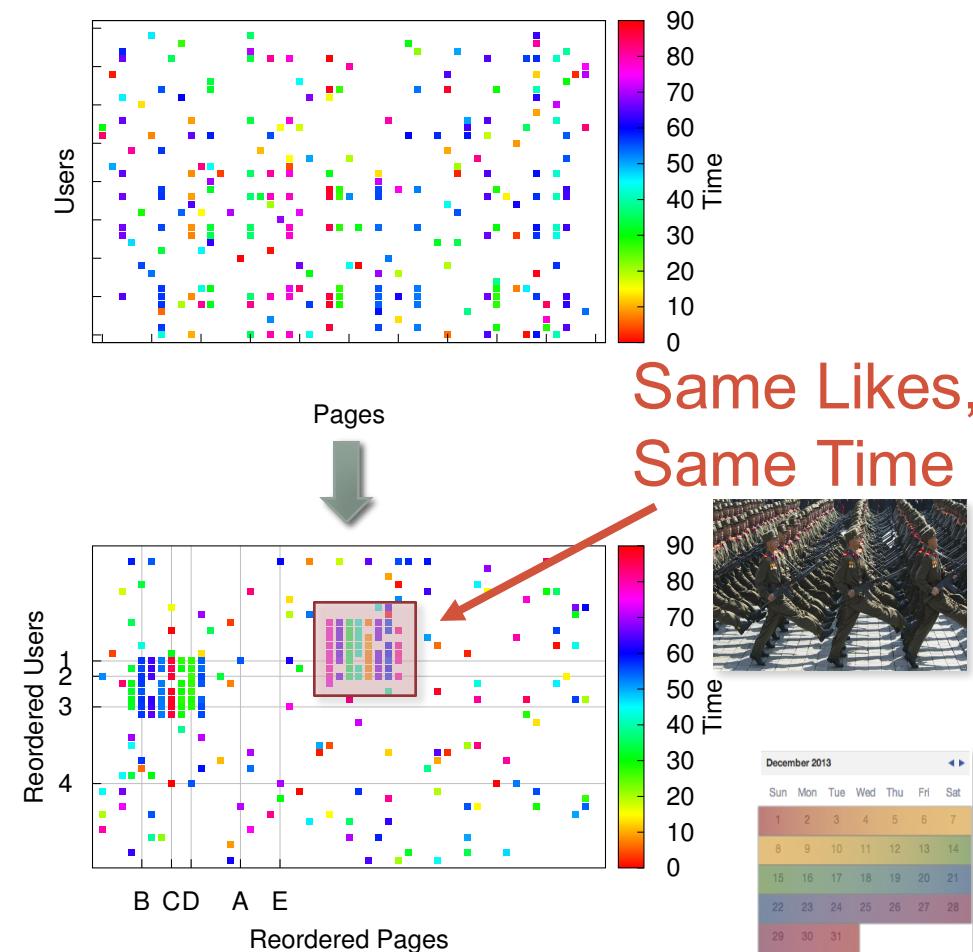
CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks
Alex Beutel, WanHong Xu, Venkatesan Guruswami,
Christopher Palow, Christos Faloutsos
WWW, 2013

Lockstep Behavior in the Graph



CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks
Alex Beutel, WanHong Xu, Venkatesan Guruswami,
Christopher Palow, Christos Faloutsos
WWW, 2013

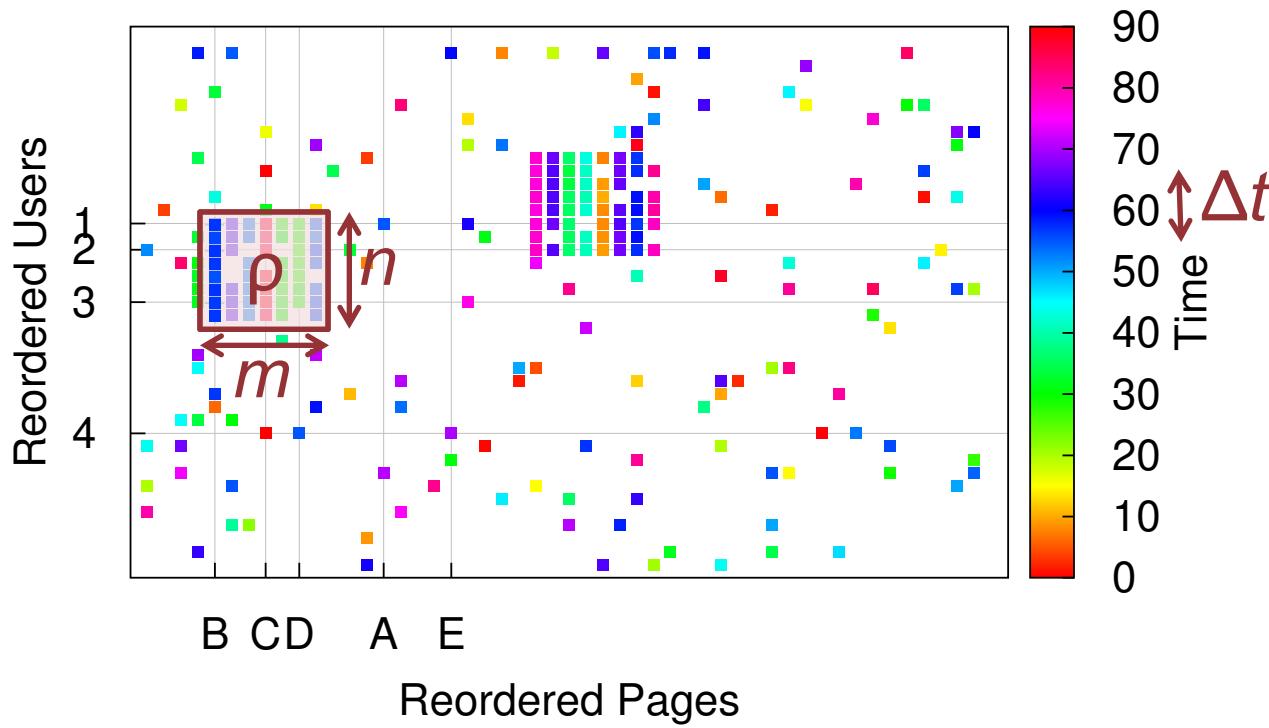
Lockstep Behavior in the Graph



CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks
 Alex Beutel, WanHong Xu, Venkatesan Guruswami,
 Christopher Palow, Christos Faloutsos
 WWW, 2013

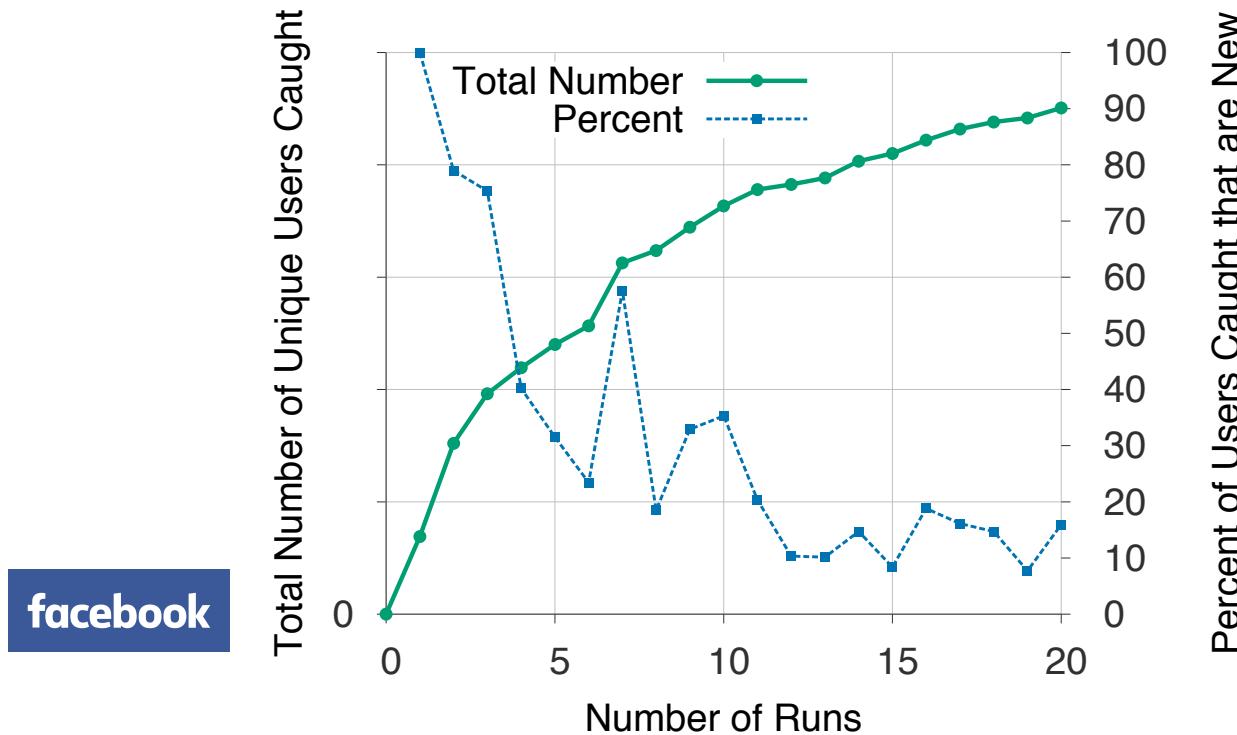
Lockstep Behavior in the Graph

Find $[n, m, \Delta t, \rho]$ -Temporally Coherent Near Bipartite Cores (TNBC)



CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks
Alex Beutel, WanHong Xu, Venkatesan Guruswami,
Christopher Palow, Christos Faloutsos
WWW, 2013

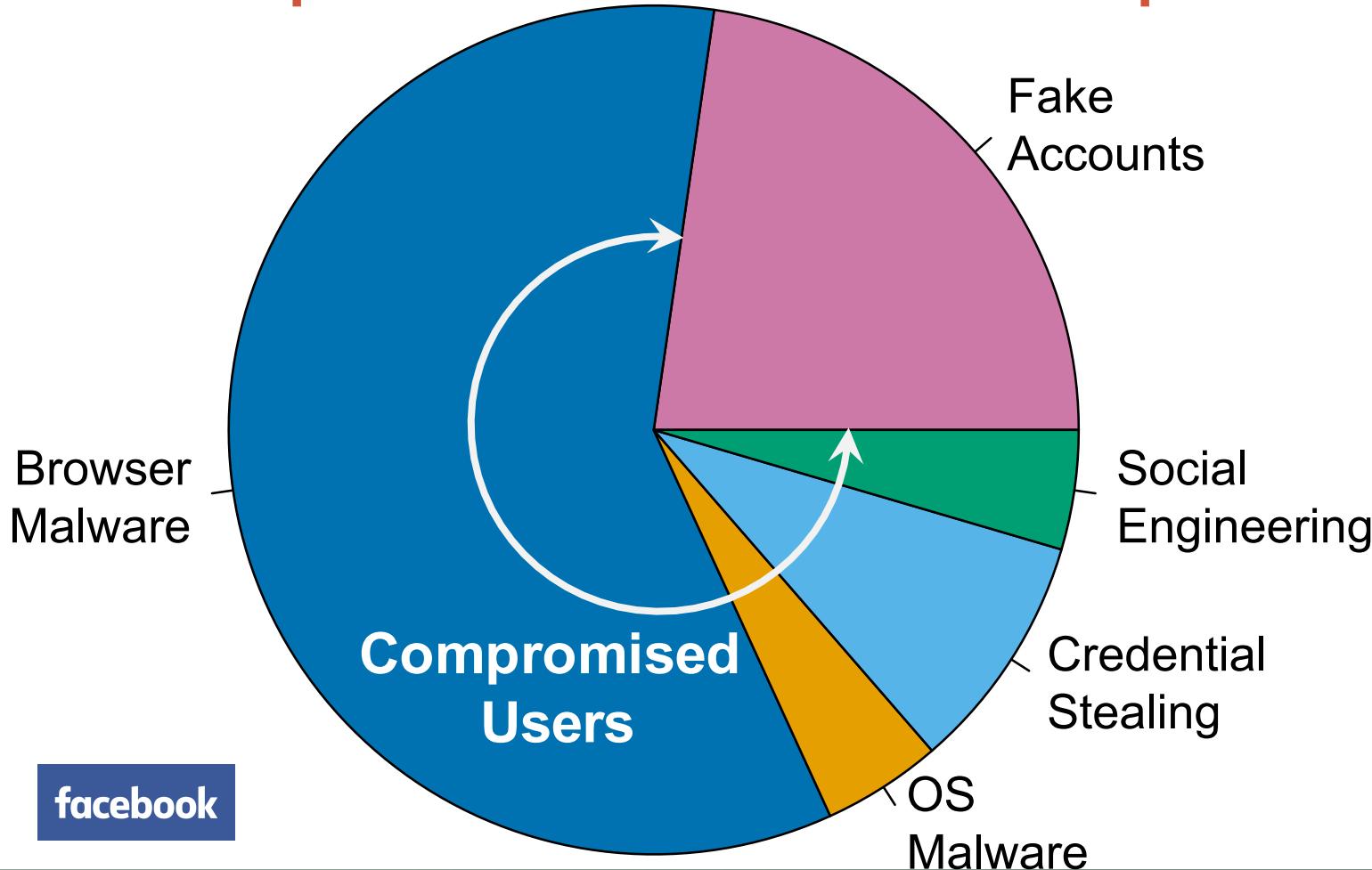
Lockstep Behavior in the Graph



CopyCatch works [quickly] – Few runs are enough

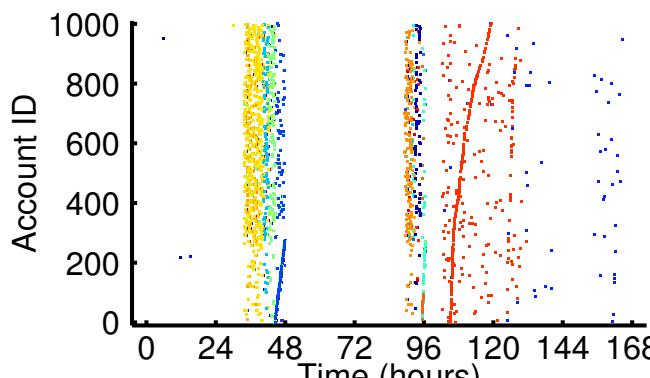
CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks
Alex Beutel, WanHong Xu, Venkatesan Guruswami,
Christopher Palow, Christos Faloutsos
WWW, 2013

Lockstep Behavior in the Graph

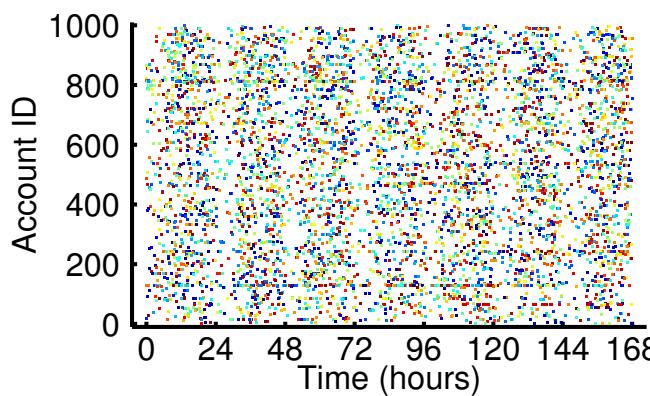


CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks
Alex Beutel, WanHong Xu, Venkatesan Guruswami,
Christopher Palow, Christos Faloutsos
WWW, 2013

Lockstep Behavior in the Graph



(a) Synchronized attack

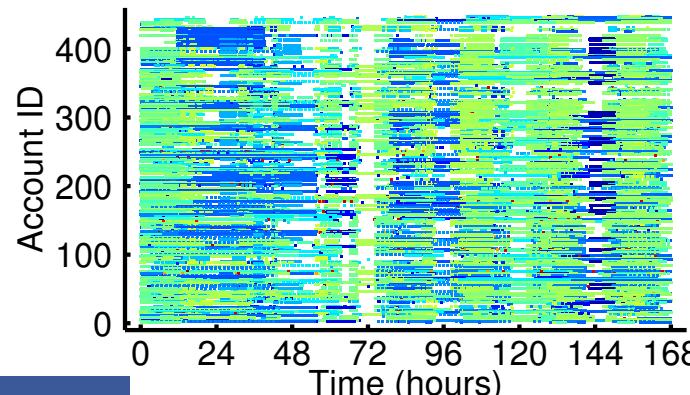


(b) Normal

Temporal lockstep behavior found in Instagram followers

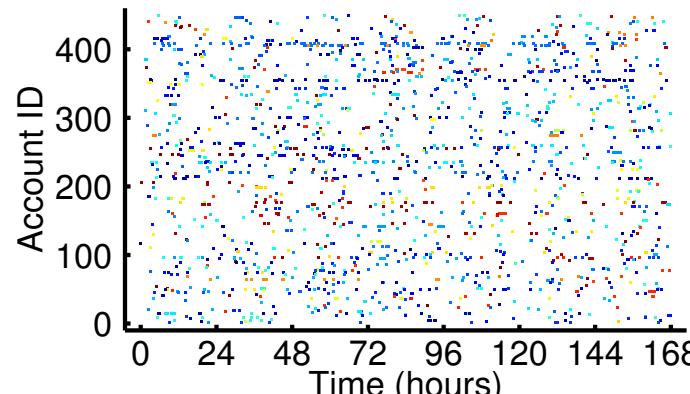
Uncovering Large Groups of Active Malicious Accounts in Online Social Networks
Qiang Cao, Xiaowei Yang, Jieqi Yu, Christopher Palow
ACM CCS 2014

Lockstep Behavior in the Graph



facebook

(a) Synchronized attack



(b) Normal

Accounts perform wide variety of synchronized tasks

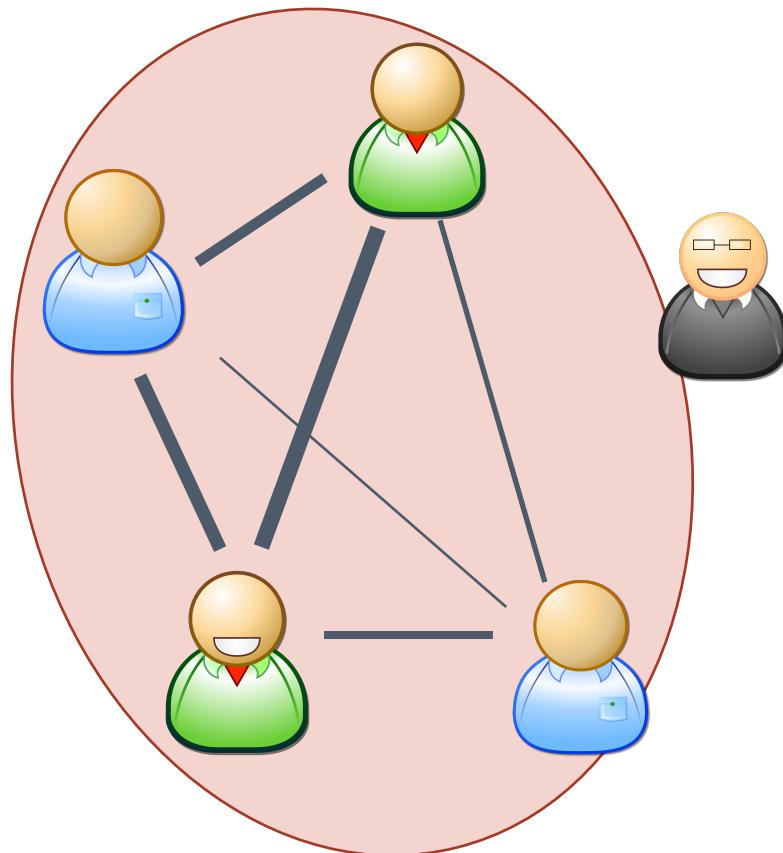
Upload spammy photos
Share IP addresses (color)

Algorithmic Challenge:
Repeated actions

Uncovering Large Groups of Active Malicious Accounts in Online Social Networks
Qiang Cao, Xiaowei Yang, Jieqi Yu, Christopher Palow
ACM CCS 2014



Lockstep Behavior in the Graph



SynchoTrap

Define edge weight by
similarity of actions
(including time, IP, action, etc.)

Cluster to find synchronized users

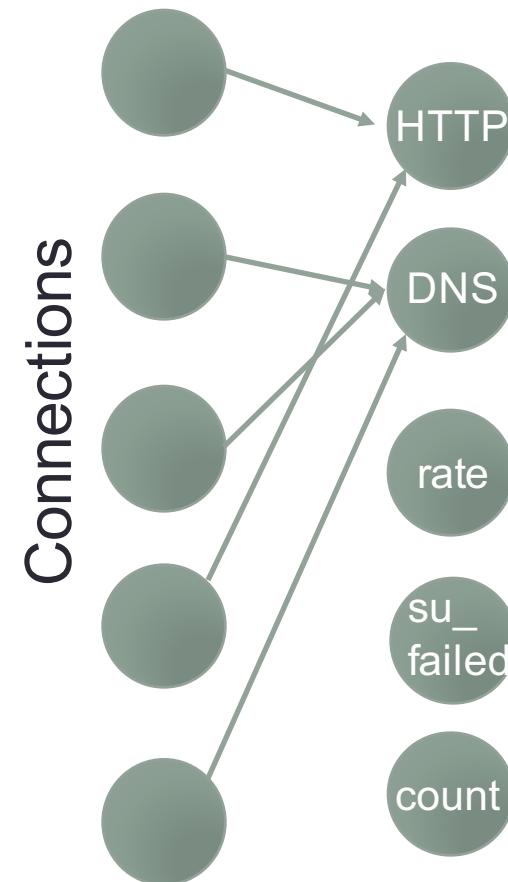
Lockstep Behavior in the Graph

Application	Page like	Instagram follow	App install	Photo upload	Login
Campaigns	201	531	74	29	321
Accounts	730K	589K	164K	120K	564K
Actions	357M	65M	4M	48M	29M
Precision	99.0%	99.7%	100%	100%	100%

The logo for the social media platform Facebook, featuring the word "facebook" in a white, lowercase, sans-serif font inside a dark blue rounded rectangle.

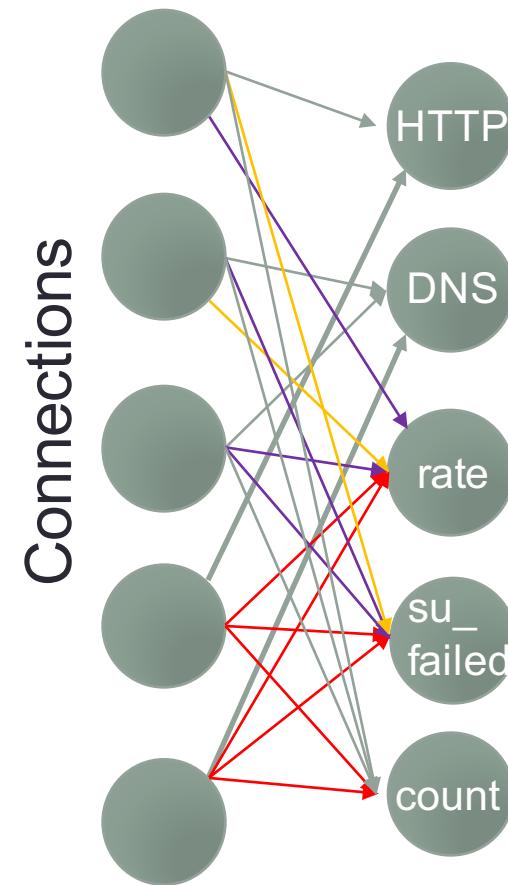
Uncovering Large Groups of Active Malicious Accounts in Online Social Networks
Qiang Cao, Xiaowei Yang, Jieqi Yu, Christopher Palow
ACM CCS 2014

Co-clustering to find network fraud



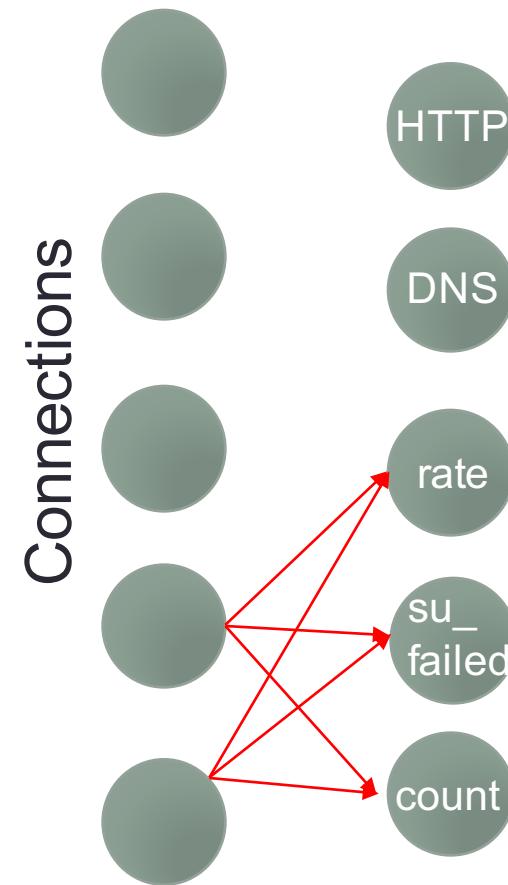
Handles binary features
(edges without side information)
e.g., connection type

Co-clustering to find network fraud



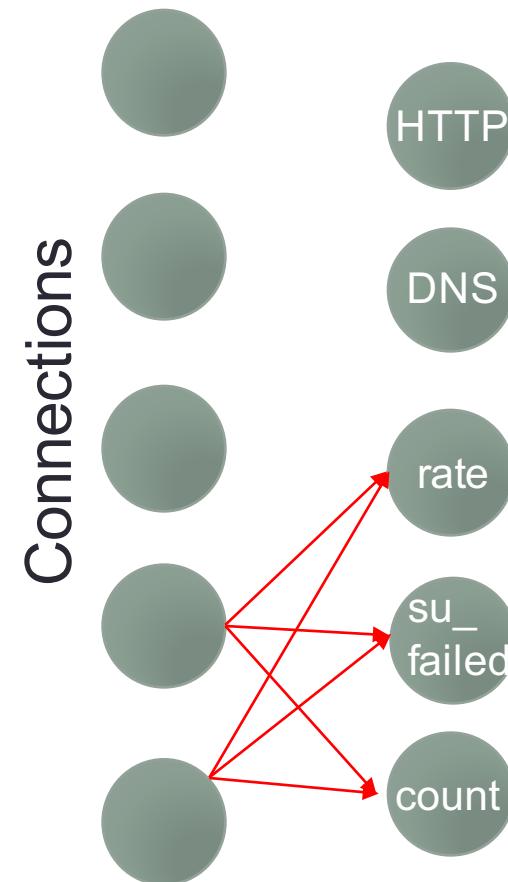
As well as features with
continuous values
(edges with side information)
e.g., round-trip time, number of
requests, etc.

Co-clustering to find network fraud



Co-clustering finds
groups of connections
with very similar edges
through partitioning
all rows and columns

Co-clustering to find network fraud



Cluster	Number of Connections	Percent Normal	Percent Attacks
1	20,156	97.74%	2.26%
2	116,822	5.30%	94.70%
3	29,591	93.34%	6.66%
4	281,437	0.21%	99.79%
5	46,014	93.85%	6.15%

Each cluster is nearly all normal connections or all attacks

Practitioner's Guide to Detecting Fraud

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
COI	Undirected			✓
OddBall	Undirected			
Blackholes & Volcanoes	Directed			
(Anti)-Social	Bipartite			
SODA	Undirected	✓		
FocusCO	Undirected	✓		
glceberg	Undirected	✓		
CopyCatch	Bipartite		✓	
SynchoTrap	Bipartite+	✓	✓	
Co-Clustering	Bipartite*		✓	
PICS	Undirected	✓		

Recap

- **COI**: Guilt-by-Association
- **Oddball**: Unusually dense graphs are suspicious (along with other surprising patterns described in the paper)
- **Blackholes and Volcanos** can be indicative of trading rings
- **(Anti)social behavior** – In packet traces, cliques are normal and bridges connecting cliques are suspicious
- **SODA**: Attributed subnetwork anomalies
- **FocusCO**: Learn model of normal attributes among communities and find outliers in the community
- **glceberg**: Subgraph with anomalous distribution of attribute
- **CopyCatch**: Temporally near-bipartite cores are extra-suspicious
- **SynchoTrap**: Generalize CopyCatch to handle extra data like IP addresses and repeat actions
- **Co-clustering**: Global partitioning to find locally similar regions; can include edges with side information.