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ABSTRACT
How do anomalies, fraud, and spam effect our models of nor-
mal user behavior? How can we modify our models to catch
fraudsters? In this tutorial we will answer these questions -
connecting graph analysis tools for user behavior modeling
to anomaly and fraud detection. In particular, we will focus
on three data mining techniques: subgraph analysis, label
propagation and latent factor models; and their application
to static graphs, e.g. social networks, evolving graphs, e.g.
“who-calls-whom” networks, and attributed graphs, e.g. the
“who-reviews-what” graphs of Amazon and Yelp.

For each of these techniques we will give an explanation of
the algorithms and the intuition behind them. We will then
give brief examples of recent research using the techniques
to model, understand and predict normal behavior. With
this intuition for how these methods are applied to graphs
and user behavior, we will focus on state-of-the-art research
showing how the outcomes of these methods are effected by
fraud, and how they have been used to catch fraudsters.

1. TUTORIAL PERSPECTIVE
In this tutorial we focus on fraud, spam and anomaly de-

tection through the lens of normal user behavior modeling.
The data mining and machine learning communities have de-
veloped a plethora of models and methods for understanding
user behavior. However, these methods generally assume
that the behavior is that of real, honest people. On the
other hand, fraud detection systems frequently use similar
techniques as those used in modeling “normal” behavior, but
are often framed as an independent problem. However, by
focusing on the relations and intersections of the two per-
spectives we can gain a more complete understanding of the
methods and hopefully inspire new research joining these
two communities.

2. TARGET AUDIENCE
This tutorial is aimed at anyone interested in understand-

ing user behavior data, from data miners to security re-
searchers to practitioners from industry and government.
For those new to these algorithms, the tutorial will cover the
necessary background material to understand these systems
and will offer a concise, intuitive overview of the state-of-
the-art in user behavior modeling. Additionally, the tutorial
aims to offer a new perspective that will be valuable and in-
teresting even for researchers with more experience in these
domains. In particular, for those researchers having worked
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on fraud detection systems, we hope to inspire new research
directions through connecting with recent developments in
modeling “normal” behavior.

3. INSTRUCTORS
Alex Beutel is a fifth year Ph.D. candidate at Carnegie
Mellon University in the Computer Science Department.
He previously received his B.S. from Duke University. His
Ph.D. research focuses on large scale user behavior model-
ing, covering both recommendation systems and fraud de-
tection systems. He has interned at Facebook on both the
Site Integrity and News Feed Ranking teams, at Microsoft
in the Cloud and Information Services Laboratory, and at
Google Research. His research is supported by a Facebook
Fellowship and the National Science Foundation Graduate
Research Fellowship Program. More details can be found at
http://alexbeutel.com.

Leman Akoglu is an Assistant Professor in the Department
of Computer Science at Stony Brook University. She re-
ceived her Ph.D. from the Computer Science Department at
Carnegie Mellon University in 2012. She also worked at IBM
T. J. Watson Research Labs and Microsoft Research at Red-
mond during summers. Her research interests span a wide
range of data mining and machine learning topics with a fo-
cus on algorithmic problems arising in graph mining, pattern
discovery, social and information networks, and especially
anomaly mining; outlier, fraud, and event detection. Dr.
Akoglu’s research has won 4 publication awards; Best Re-
search Paper at SIAM SDM 2015, Best Paper at ADC 2014,
Best Paper at PAKDD 2010, and Best Knowledge Discovery
Paper at ECML/PKDD 2009. She also holds 3 U.S. patents
filed by IBM T. J. Watson Research Labs. Dr. Akoglu is
a recipient of the NSF CAREER award (2015) and Army
Research Office Young Investigator award (2013). Her re-
search is currently supported by the National Science Foun-
dation, the US Army Research Office, DARPA, and a gift
from Northrop Grumman Aerospace Systems. More details
can be found at http://www.cs.stonybrook.edu/~leman.

Christos Faloutsos is a Professor at Carnegie Mellon Uni-
versity. He has received the Presidential Young Investi-
gator Award by the National Science Foundation (1989),
the Research Contributions Award in ICDM 2006, the In-
novations award in KDD’10, 20 “best paper” awards, and
several teaching awards. He has served as a member of
the executive committee of SIGKDD; he has published over
200 refereed articles, 11 book chapters and one monograph.
He holds five patents and he has given over 30 tutorials
and over 10 invited distinguished lectures. His research in-
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terests include data mining for graphs and streams, frac-
tals, database performance, and indexing for multimedia
and bio-informatics data. More details can be found at
http://www.cs.cmu.edu/~christos/.

4. OUTLINE

I. Introduction

A. Graphs are a useful abstraction for a wide vari-
ety of domains: social networks, movie or product
ratings and reviews, text in articles, medical di-
agnoses, financial transactions, etc.

B. How can we make sense of the data? What does
normal behavior look like? For example, we can
predict ratings on Netflix or friends on Twitter
and fill in missing information on Facebook.

C. Fraud is rampant in nearly all of these applica-
tions - fake reviews on Yelp, purchased followers
on Twitter, inflated trust on eBay, medical fraud,
bank fraud. This activity deceives users and ma-
nipulates our prediction algorithms. Therefore it
is important to understand how fraud influences
our models and how we can isolate and catch
anomalous behavior.

II. Subgraph Analysis and Patterns

A. Background: Graph clustering and partition-
ing

i. Local search and graph queries [4, 19]

ii. Co-clustering and cross associations [23, 13]

B. Normal Behavior: Subgraph Patterns

i. Ego-nets: [30, 5]

ii. Subgraph patterns in social networks: [41]

iii. Influence of subgraphs on recommendation:
[42]

iv. Co-clustering for recommendation: ACCAMS
[6]

C. Abnormal Behavior: What are anomalous or
fraudulent subgraphs?

i. Ego-net analysis: COI [14], OddBall [3]

ii. Attributed subgraphs: FocusCO [36], SODA
[20], CODA [16]

iii. Temporal lockstep behavior: CopyCatch [8];
extended in [11]

iv. Subsets of attributes: CrossSpot [25]

v. Graph queries: “volcanoes” and “blackholes”
on static graphs [31], attributed subgraph [47]

vi. Detecting fraud with co-clustering [35]

vii. Graph cut for intrusion detection [15]

III. Label Propagation Methods

A. Random Walks and Eigenvectors

i. Background: Why do random walks “find”
important parts of a graph?

ii. Normal Behavior: Power method, HITS
[28], and PageRank [9]

B. Belief and Label Propagation

i. Background: What is semi-supervised learn-
ing? What are belief and label propagation?

ii. Normal Behavior: Predict attributes on
nodes or why certain people are friends [12]

C. Abnormal Behavior: How can random walks
help us find fraud?

i. Surprising patterns in HITS: CatchSync [26]

ii. Modifications of PageRank: TrustRank [22],
SybilRank[10], CollusionRank[17], BadRank
[44]

iii. Use belief propagation for“guilt-by-association:”

• Binary graphs: NetProbe [32]

• Attributed graphs: FraudEagle [2], [27]

• “Guilt-by-constellation” [43]

IV. Latent Factor Models

A. Background: What is the singular vector de-
composition?

i. Generalization from Eigenvectors and HITS

ii. Why do latent factor models, like SVD, work
well for relational data?

iii. What do the factors typically represent? Why?
For example, the factorization of a user by
movie ratings matrix gives genres; the decom-
position of a word by document matrix gives
topics.

B. Normal Behavior: Modifications for different
settings:

i. Finding communities (binary matrices): MMSB
[1], overlapping communities [45]

ii. Missing data and prediction: SVD++ [29],
BPMF [38], CoBaFi [7]

iii. Multi-modal data: PARAFAC, Tensor fac-
torization [34, 33]

iv. Coupled factorization [40, 21]

C. Abnormal Behavior: What happens if there is
fraud in the data?

i. Surprising patterns in latent factors (binary
matrices): EigenSpokes [37], Get-the-scoop
[24], fBox [39]

ii. Surprising group patterns in ratings data: CoBaFi
[7]

iii. Surprising pattern in coupled factorization for
heterogeneous graphs [18]

iv. Group anomalies: GLAD [46]

V. Looking forward

A. How can we handle multiple data sources and com-
plex data?

B. With more complex data and methods, how can
maintain the interpretability of discovered fraud?

C. Can we provide stronger provable limits and guar-
antees on our systems?
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