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User Behavior Challenges

Three Main Questions:

1. How can we
understand
typical/normal user
behavior in a graph?

2. How can we find
suspicious user
behavior?

3. How can we
distinguish the two?
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Graphs of User Behavior
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Modeling "Normal” Behavior
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Modeling User Behavior

- Predict edges
- Predict node attributes

- Predict edge attributes
- “Netflix Problem”

- Frequent ltemset
Mining & Community
Detection

- Fraud Detection

Deceives users and
manipulates recommendations!
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Modeling User Behavior

Modeling normal users
and detecting anomalies
are two sides of the same

coin — understanding
user behavior.
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coin — understanding
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detect general outliers
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Modeling User Behavior

/ Modeling normal users
and detecting anomalies
are two sides of the same
coin — understanding
user behavior.

More fine grained model of
normal can find more subtle
outliers
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Modeling User Behavior

Modeling normal users
and detecting anomalies
are two sides of the same

coin — understanding
user behavior.

More complex model can
capture both normal and
abnormal patterns —
micro-clusters with small
variance are particularly
suspicious
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Modeling User Behavior

Modeling normal users
and detecting anomalies
are two sides of the same

coin — understanding
user behavior.

Sometimes domain experts
know a specific pattern is
fraudulent, and we can
search for exactly that
pattern.
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THREE MAIN TECHNIQUES

1. Local Subgraph Analysis:
Patterns and Features

2. Global: Propagation Methods

3. Global: Latent Factor Models
and Spectral Methods
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FOR ALL THREE PARTS

a) Background

b) Normal

c) Abnormal



