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Three  Main  Questions:
1. How  can  we  
understand  
typical/normal user  
behavior  in  a  graph?

2. How  can  we  find  
suspicious user  
behavior?

3. How  can  we  
distinguish  the  two?
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Directed
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• Predict  edges
• Predict  node  attributes
• Predict  edge  attributes
• “Netflix  Problem”

• Frequent  Itemset
Mining  &  Community  
Detection
• Fraud  Detection

Deceives  users  and  
manipulates  recommendations!
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Modeling  normal  users  
and  detecting  anomalies  
are  two  sides  of  the  same  
coin  – understanding  

user  behavior.

More  complex  model  can  
capture  both  normal  and  
abnormal  patterns  –

micro-­clusters  with  small  
variance  are  particularly  

suspicious
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Modeling  normal  users  
and  detecting  anomalies  
are  two  sides  of  the  same  
coin  – understanding  

user  behavior.

Sometimes  domain  experts  
know  a  specific  pattern  is  
fraudulent,  and  we  can  
search  for  exactly  that  

pattern.
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THREE  MAIN  TECHNIQUES

1.  Local  Subgraph  Analysis:
Patterns  and  Features

2.  Global:  Propagation  Methods

3.  Global:  Latent  Factor  Models
and  Spectral  Methods
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FOR  ALL  THREE  PARTS

b)  Normal

a)  Background

c)  Abnormal


