
Lab8: SAM Assembler and Simulator 

 

Due Date: Wednesday April 29th 2009 by midnight 

 

Background: 

The Instruction Set Architecture (ISA) provides a view of a processor's features as seen from the 

perspective of an assembly or machine language programmer. For our purposes, this means that 

the ISA describes the instructions that the processor understands, the way those instructions are 

presented to the processor, the register set, and the way memory is organized. A real-world 

processor's ISA would also include a few additional items, such as its interrupt and/or exception 

handling facilities, basic data types, and different modes of operation, e.g. supervisor vs. normal 

mode. 

Registers are a special type of memory built into the processor. They basically serve as special 

variables accessible to the Arithmetic-Logic Unit (ALU), the brains of the processor that actually 

executes most instructions. You'll find that most instructions operate on the values in the 

registers instead of operating directly on memory. As a result, you'll load values from memory 

into registers, operate on them, and then store them back into memory. This arrangement is 

called a load-store architecture. 

 

Assignment: 

You are provided with a description of a simple computer's Instruction Set Architecture (ISA), 

including its instruction set, instruction format, and register list. Your task is to write an 

assembler (regular assignment) and a simulator (for extra credit) for the described architecture. 

After completing this assignment, it will be possible to write programs in assembly, process them 

with your assembler, and execute them on your simulator. We will provide a simulator that can 

be used to test your assembler 

This assignment is designed to help build your understanding of simple processors and the fetch-

decode-execute cycle as well as the role of assembly language in software development. It will 

also provide reinforcement in C, especially in the use of the bit-wise operators and function 

pointers if you complete the simulator part. 

 

 



The SAM Instruction Set Architecture 

There are seven (7) general purpose registers that can be used for any purpose. Additionally, 

there is a zero register that always contains a constant value of 0 to be used for initializing other 

registers to 0. It is possible for the same register to be read and written within the same 

instruction, e.g., A = A + 5 is legal, as is A = A + A. 

The program counter (PC) is a special purpose register that keeps track of the current address in 

memory, the address that the processor is currently executing. Since instructions are 4 bytes 

wide, the PC moves forward by four bytes with each instruction cycle. The instruction register 

(IR) is a scratch register used to decode instructions. The PC is 24 bits wide. The IR is 32 bits 

wide. 

The simulated machine has a 2-byte word size, so registers and immediate values are 2 bytes 

wide. Integers are signed using the high-bit. In other words, the highest bit is 0 if the number is 

positive and 1 otherwise. This bit is set correctly by the mathematical operations. 

The simulated system also has two flags, overflow and compare which are set by various 

instructions:  

• when executing a mathematical operation, the overflow flag is set to true if an operation 

overflows (carries) outside of 16 bits, and to false otherwise 

• when executing a comparison operation, the compare flag is to true if the comparison 

operation is true, and it is set to false otherwise. 

The flags cannot be set directly. 

Ports are a mechanism for accessing input and output devices that are independent from main 

memory. Port #15 is a terminal device console used for output. Port #0 is a terminal device 

console used for input. Each reads or writes one character at a time, translating from that 

character to its corresponding ASCII value. The terminal device has sufficient buffering to avoid 

dropping character in normal applications. 

The system's main memory is byte-addressable. In other words, bytes are addressed and 

addresses range from byte 0 through byte 2
24

-1 (more than big enough for our purposes). 

  



Ports 

Purpose  Binary  Notes 

Input  0000 0000 Returns ASCII code of character read from terminal 

Output 0000 1111 Writes ASCII code of character to terminal 

Registers 
Register Number  Notes 

 

-------------------------------------------- 

 

Z  000 Constant: Always zero (0) 

 

A  001 

 

B  010 

 

C  011n 

 

D  100 

 

E  101 

 

F  110 

 

G  111 

 

PC   Program Counter. 24 bits wide. Not addressable 

 

IR   Instruction Register. 32 bits wide. Not addressable. 

 

  

Instructions 

---------------Control------------ 

 

Instruction  -Op- -------------Address--------------   Notes 

 

HLT 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX   Stop simulation 

 

JMP 0001 0000 AAAA AAAA AAAA AAAA AAAA AAAA   Jump (line number) 

 

CJMP 0010 0000 AAAA AAAA AAAA AAAA AAAA AAAA   Jump if true 

 

OJMP 0011 0000 AAAA AAAA AAAA AAAA AAAA AAAA   Jump if overflow 

 

 

 

 

 

 



------------Load/Store------------ 

 

Instruction  -Op- Reg0 ------------Value------------ 

 

LOAD 0100 0RRR AAAA AAAA AAAA AAAA AAAA AAAA   Load (hex address) 

 

STORE 0101 0RRR AAAA AAAA AAAA AAAA AAAA AAAA   Store (hex address) 

 

LOADI 0110 0RRR 0000 0000 IIII IIII IIII IIII   Load Immediate 

 

NOP 0111 0000 0000 0000 0000 0000 0000 0000   No operation 

 

-----------------Math-------------- 

Instruction  -Op- Reg0 Reg1 Reg2 0000 0000 0000 0000    

 

ADD  1000 0RRR 0RRR 0RRR 0000 0000 0000 0000   Reg0 = (Reg1 + Reg2) 

 

SUB  1001 0RRR 0RRR 0RRR 0000 0000 0000 0000   Reg0 = (Reg1 - Reg2) 

 

  

-----------Device/IO--------------  

 

Instruction  -Op- Reg0 0000 0000 0000 0000 ---Port-- 

 

IN 1010 0RRR 0000 0000 0000 0000 PPPP PPPP   Read Port into Reg0 

 

OUT 1011 0RRR 0000 0000 0000 0000 PPPP PPPP   Write Reg0 out to Port 

 

  

------------Comparison------------- 

 

Instruction  -Op- Reg0 Reg1  

 

EQU 1100 0RRR 0RRR 0000 0000 0000 0000 0000   Cflg = (Reg0 == Reg1) 

 

LT 1101 0RRR 0RRR 0000 0000 0000 0000 0000   Cflg = (Reg0 < Reg1) 

 

LTE 1110 0RRR 0RRR 0000 0000 0000 0000 0000   Cflg = (Reg0 <= Reg1) 

 

NOT 1111 0000 0000 0000 0000 0000 0000 0000   Cflg = (!Cflg) 

  

 
  



Writing and Assembling a Program by Hand 

A program is a text file with one instruction per line. Each line should be a very simple space-

delimited line. It can include comments, which begin with a #. When you first write out the 

program by hand, number the lines, ignoring blank and comment-only lines. Use the line 

numbers in place of addresses for jumps. 

 

# This program gets two single-digit numbers, A and B, from the user 

# Then prints out the numbers A through B 

 0 LOADI A 1 # Get the number 1 into register A 

 1 LOADI B 48 # 48 is int value of '0', pseudo-constant 

 2 IN  C 0 # Get starting point in ASCII 

 3 SUB  D C  B # Get integer value of input character 

 4 IN   C 0  # Get ending point in ASCII 

 5 SUB  E C B # Convert ending from ASCII to int val 

# Starting value is D, ending value is E 

 6 LTE  D E  # (D <= E) 

 7 NOT     # !(D <= E) --> (D > E) 

 8 CJMP {Line 13}  # If (D > E) from above, exit loop 

 9 ADD  C D B # Convert D as int into ASCII  

10 OUT  C 15  # Print out the number 

11 ADD  D D A # Increment D 

12 JMP  {Line 6}  # Go back to the top of the loop 

 

13 HLT 

 

Once you are done writing out the program, multiple each line number by 4. This will give you 

the address of that line of code within memory. This is because each instruction is 4 bytes long. 

Rewrite the program replacing the line numbers with addresses in hexadecimal. 

# This program gets two single-digit numbers, A and B, from the user 

# Then prints out the numbers A through B 

 0 LOADI A 1 # Get the number 1 into register A 

 4 LOADI B 48 # 48 is int value of '0', pseudo-constant 

 8 IN  C 0 # Get starting point in ASCII 

 C SUB  D C  B # Get integer value of input character 

10 IN   C 0  # Get ending point in ASCII 

14 SUB  E C B # Convert ending from ASCII to int val 

# Starting value is D, ending value is E 

18 LTE  D E  # (D <= E) 

1C NOT     # !(D <= E) --> (D > E) 

20 CJMP 34   # If (D > E) from above, exit loop 

24 ADD  C D B # Convert D as int into ASCII  

28 OUT  C F  # Print out the number 

2C ADD  D D A # Increment D 

30 JMP  18   # Go back to the top of the loop 

34 HLT 

 

Now, convert this program into binary, by translating each mnemonic into the binary equivalent 

shown in the "Instructions" section. Do the same with each value. 



# This program gets two single-digit numbers, A and B, from the user 

# Then prints out the numbers A through B 

# Get the number 1 into A register 

 

# 0 LOADI A 1 

0110 0001 0000 0000 0000 0000 0000 0001 

# 4 LOADI B 48  # Subtract 48: ascii char -> int value 

0110 0010 0000 0000 0000 0000 0011 0000 

# Get starting point in ASCII from port 0 

# 8 IN C 0 

1010 0011 0000 0000 0000 0000 0000 0000 

 

# Get integer value of input character 

# C SUB D C B 

1001 0100 0011 0010 0000 0000 0000 0000 

 

# Get ending point in ASCII from point 0 

# 10 IN  C 0 

1010   0011 0000 0000 0000 0000 0000 0000 

 

# Convert ending from ASCII to int val 

# 14 SUB E C B 

1001 0101 0011 0010 0000 0000 0000 0000 

 

 

 

# Starting value is D, ending value is E 

# (D <= E) 

# 18 LTE  D E 

1110 0100 0101 0000 0000 0000 0000 0000 

 

# !(D > E) --> (D > E) 

# 1C NOT 

1111 0000 0000 0000 0000 0000 0000 0000 

 

# If (D > E) from above, exit loop 

# 20 CJMP 34 

0010 0000 0000 0000 0000 0000 0011 0100 

 

# Convert D as int into ASCII 

# 24 ADD C D B 

1000 0011 0100 0010 0000 0000 0000 0000 

 

# Print out the number to port 15 

# 28 OUT C F 

1011 0011 0000 0000 0000 0000 0000 1111 

 

# Increment the number 

# 2C ADD D D A 

1000 0100 0100 0001 0000 0000 0000 0000 

 

# Go back to the top of the loop 

# 30 JMP 18 

0001 0000 0000 0000 0000 0000 0001 1000 

 

# 34 HLT 

0000 0000 0000 0000 0000 0000 0000 0000 



Lastly, convert the binary representation into hexadecimal. This is a fully assembled program 

and is what you will output as output.o. Each line represents a single 4-byte instruction. The 

first line resides at address 0, the second line resides at address 4, the third at address 8, and so 

on (although real-world computers use an actual binary representation without new lines, we 

think you'll appreciate this format which captures the same information in a more human-

readable, and debuggable, form): 

0x61000001 

0x62000030 

0xA3000000 

0x94320000 

0xA3000000 

0x95320000 

0xE4500000 

0xF0000000 

0x20000034 

0x83420000 

0xB300000F  

0x84410000 

0x10000018 

0x00000000 

 

 

The Assembler  

Your assembler is called samas. It accepts an assembly source file, parses it, and translates it into 

an executable object file. It uses the same process as you used by hand. In other words, the 

program parses each line of the source file and translates it into hexadecimal (i.e., each op code 

is recognized, looked up in a table, translated, and outputted and then each operand is 

recognized, translated, and outputted). This is your regular assignment 

The name of the input and output files are specified at the command line, for example:  

samas input.s output.o 

We have provided two sample input files to start with, input1.s and input2.s. input1.s has no 

comments or blank lines and input2.s has comments and blank lines (probably easier not to 

worry about these things in your initial attempt at parsing the file). 

 

The Tester  

The second part of your assignment is to write three assembly programs in the simulated 

language and test to see if they produce the desired output when executed as follows. 

1. First write the assembly program (see readme.txt for suggested programs) 

2. Second assemble the program using samas you wrote 

%  samas yourprogram.as output.o  



3. Third run the program using samsim executable (that we provided) 

%  samsim 10000 output.o -- 10000 is the memory size  

 

In the extra credit section you will get a chance to write your own version of samsim.  

 

EXTRA CREDIT  

 

The Simulator (extra credit) 

The simulator models the processor, the main memory, and the described terminal devices via 

ports. When run, it loads an assembled program into memory and simulates its execution until it 

halts. 

Memory 

Memory can be simulated as simply an array of unsigned chars (1 byte) of this size. This 

provides a byte-indexed memory. In order to interpret the lower addresses that contain the 

program text, you can assign an unsigned int (4 byte) pointer to the same array. This way, 

when accessing word-oriented instructions, you can use the unsigned int * to give you a 

whole word at a time (just be careful about pointer arithmetic!). 

Since relatively few programs will require a simulation of the entire physical memory, the 

program should accept the size of physical memory as a command line argument. It need only 

simulate the requested amount of memory. 

Loading A Program Into Simulated Memory 

To load the program, read each input line into memory. We suggest that you first do this by 

reading it into a temporary variable, an unsigned int, and then copying this into the unsigned char 

array simulating memory. The code below illustrates the idiom: 

unsigned int instruction; 

fscanf(file, "0x%x", &instruction); 

memcpy(memory + address, &instruction, sizeof(instruction)); 

address += 4; 

 

You are, of course, free to take a different approach. But, we strongly suggest the technique 

above — it dodges some potentially complicating issues.  

The Register File 

Since general purpose registers are 16 bits wide, they can be implemented as an array of 

unsigned shorts (2 bytes). This way the register number can serve as the index. Since the special 

purpose registers are larger, they should be implemented using unsigned ints (4 bytes). 



The Processor and Execution 

Assuming that all of the instructions have been loaded into memory, the processor can be 

simulated using a fetch-decode-execute work loop. During execution, the processor fetches the 

next instruction by loading the instruction referenced by the PC from memory into the 

instruction register (IR). This is simply a scratch register used by the processor to decode the 

instruction. 

Once this is done, the PC is incremented to prepare for the eventual next processor cycle. The 

next step is to decode the op code, the 4-bit number associated with the operation. This can be 

done by shifting right to eliminate the other bits. Careful here — unless you are using unsigned 

ints, you'll get bitten while shifting because of the sign bit. 

At this point, you are able to dispatch the instruction. Because one goal of this assignment is to 

reinforce your understanding of function pointers, you are asked to use an array of function 

pointers for this purpose. 

For each instruction, you should create a function. Then, each of these functions should be 

mapped into an array of function pointers, where each function's index is its op code. This makes 

the dispatch very easy. For example, if your array is called ops, the dispatch is as easy as (* 

ops[opcode])(), i.e., 

ops 

 

0 --> HLT() 

1 --> JMP() 

2 --> CJMP() 

3 --> OJMP() 

4 --> LOAD() 

... 

15 --> NOT() 

 

Once within the instruction, you'll need to decode the operands and execute. Before considering 

the implementation, take a second look at the instructions. Notice that there are six different 

instruction formats. It will probably be helpful to write macros that use bit masks to decode the 

operands present in each of the six formats: 
 

ADDRESS 

IMMEDIATE 

REG0 

REG1 

REG2 

PORT 

 

For example:  
#define REG0 ((IR >> 24) & 0x0F) 

 

Once the operands have been decoded, you are free to implement the logic of the instruction. 

Perform any needed computation (be careful about math and negative numbers!), then write back 

the values to the registers. If the instruction is a jump you'll need to update the PC. The 



simulation ends when the HLT instruction is called. This instruction should exit rather than 

returning. Once the function implementing the operation returns, the simulation can loop back to 

the beginning of the fetch-decode-execute loop and repeat. 

The Terminal Devices via Ports 

The terminal devices are simulated only within the IN and OUT instructions. Implementing the 

OUT instruction is as simple as printf("%c", ...). The IN instruction can similarly be 

implemented using ch = getchar( ).  

 

Running the Simulator 

The simulator should be called samsim. It should actually load and then execute a correct, 

assembled program. It should be implemented in accordance with the model described above. 

The physical memory size and executable file name should be specified as command-line 

arguments:  

• argv[1] - provides the size of your physical memory in bytes 

• argv[2] - provides the name of the assembled program 

For example:  

samsim 0x1000 output.o 

The simulator model does not include an exception handling facility. As a consequence, it cannot 

handle error states, such as invalid executables, bad memory accesses, and the like. Should any 

of these circumstances arise, it should simply terminate with an informative error message. 

 

Downloading Files: As usual, download files from 

/afs/andrew/course/15/123/downloads/lab8 

Handing in your Solution 

Your solution should be in the form of a .zip file. Just zip and HANDIN all the .c AND.h and .as 

(assembly) files for your program. 

/afs/andrew/course/15/123/course/handin/lab8/ID 

Don't hand in any input or .txt or .o or exe files. 

Modified from a write up by Greg Kesden 


