Lab8: SAM Assembler and Simulator

Due Date: Wednesday April 29th 2009 by midnight

Background:

The Instruction Set Architecture (ISA) provides a view of a processor's features as seen from the
perspective of an assembly or machine language programmer. For our purposes, this means that
the ISA describes the instructions that the processor understands, the way those instructions are
presented to the processor, the register set, and the way memory is organized. A real-world
processor's ISA would also include a few additional items, such as its interrupt and/or exception
handling facilities, basic data types, and different modes of operation, e.g. supervisor vs. normal
mode.

Registers are a special type of memory built into the processor. They basically serve as special
variables accessible to the Arithmetic-Logic Unit (ALU), the brains of the processor that actually
executes most instructions. You'll find that most instructions operate on the values in the
registers instead of operating directly on memory. As a result, you'll load values from memory
into registers, operate on them, and then store them back into memory. This arrangement is
called a load-store architecture.

Assignment:

You are provided with a description of a simple computer's Instruction Set Architecture (ISA),
including its instruction set, instruction format, and register list. Your task is to write an
assembler (regular assignment) and a simulator (for extra credit) for the described architecture.
After completing this assignment, it will be possible to write programs in assembly, process them
with your assembler, and execute them on your simulator. We will provide a simulator that can
be used to test your assembler

This assignment is designed to help build your understanding of simple processors and the fetch-
decode-execute cycle as well as the role of assembly language in software development. It will
also provide reinforcement in C, especially in the use of the bit-wise operators and function
pointers if you complete the simulator part.

The SAM Instruction Set Architecture

There are seven (7) general purpose registers that can be used for any purpose. Additionally,
there is a zero register that always contains a constant value of 0 to be used for initializing other
registers to 0. It is possible for the same register to be read and written within the same
instruction, e.g., A = A + 5islegal,asisa = A + A.

The program counter (PC) is a special purpose register that keeps track of the current address in
memory, the address that the processor is currently executing. Since instructions are 4 bytes
wide, the PC moves forward by four bytes with each instruction cycle. The instruction register
(IR) is a scratch register used to decode instructions. The PC is 24 bits wide. The IR is 32 bits
wide.

The simulated machine has a 2-byte word size, so registers and immediate values are 2 bytes
wide. Integers are signed using the high-bit. In other words, the highest bit is O if the number is
positive and 1 otherwise. This bit is set correctly by the mathematical operations.

The simulated system also has two flags, overflow and compare which are set by various
instructions:

e when executing a mathematical operation, the overflow flag is set to true if an operation
overflows (carries) outside of 16 bits, and to false otherwise

e when executing a comparison operation, the compare flag is to true if the comparison
operation is true, and it is set to false otherwise.

The flags cannot be set directly.

Ports are a mechanism for accessing input and output devices that are independent from main
memory. Port #15 is a terminal device console used for output. Port #0 is a terminal device
console used for input. Each reads or writes one character at a time, translating from that
character to its corresponding ASCII value. The terminal device has sufficient buffering to avoid
dropping character in normal applications.

The system's main memory is byte-addressable. In other words, bytes are addressed and
addresses range from byte 0 through byte 2%*-1 (more than big enough for our purposes).

Ports

Purpose Binary Notes

Input 0000 0000 Returns ASCII code of character read from terminal
Output 0000 1111 Writes ASCII code of character to terminal
Registers

Register Number Notes

Z 000 Constant: Always zero (0)

A 001

B 010

C 0lln

D 100

E 101

F 110

G 111

PC Program Counter. 24 bits wide. Not addressable

IR Instruction Register. 32 bits wide. Not addressable.
Instructions

777777777777777 Control-————-=—————

Instruction -Op— ————————————— Address—————————————— Notes

HLT 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX Stop simulation
JMP 0001 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump (line number)
CJMP 0010 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if true

OJMP 0011 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if overflow

Instruction -Op- Reg0 ———————————- Value—-———————————
LOAD 0100 ORRR AAAA AAAA AAAA AAAA AAAA AAAA Load (hex address)
STORE 0101 ORRR AAAA AAAA AAAA AAAA AAAA AAAA Store (hex address)

LOADI 0110 ORRR 0000 0000 IIIT IIII IIII IIII Load Immediate

NOP 0111 0000 0000 0000 0000 0000 0000 0000 No operation
77777777777777777 Math-—-————-----———-

Instruction -Op- Reg0 Regl Reg2 0000 0000 0000 0000

ADD 1000 ORRR ORRR ORRR 0000 0000 0000 0000 Reg0 = (Regl + Reg2)
SUB 1001 ORRR ORRR ORRR 0000 0000 0000 0000 Reg0 = (Regl - Reg2)
——————————— Device/I0—————————————~—

Instruction -Op- Reg0 0000 0000 0000 0000 ——-Port—--—

IN 1010 ORRR 0000 0000 0000 0000 PPPP PPPP Read Port into Reg0

OUT 1011 ORRR 0000 0000 0000 0000 PPPP PPPP Write Reg0 out to Port
———————————— Comparison-——————————-——-

Instruction -Op—- Reg0 Regl

EQU 1100 ORRR ORRR 0000 0000 0000 0000 0000 Cflg = (Reg0 == Regl)

LT 1101 ORRR ORRR 0000 0000 0000 0000 0000 Cflg = (Reg0 < Regl)

LTE 1110 ORRR ORRR 0000 0000 0000 0000 0000 Cflg = (Reg0 <= Regl)

NOT 1111 0000 0000 O0OOO O0OOO OOOO 0000 0000 Cflg (!Cflqg)

Writing and Assembling a Program by Hand

A program is a text file with one instruction per line. Each line should be a very simple space-
delimited line. It can include comments, which begin with a #. When you first write out the
program by hand, number the lines, ignoring blank and comment-only lines. Use the line
numbers in place of addresses for jumps.

This program gets two single-digit numbers, A and B, from the user
Then prints out the numbers A through B

0 LOADI A 1 # Get the number 1 into register A

1 LOADI B 48 # 48 is int value of '0', pseudo-constant

2 IN C 0 # Get starting point in ASCII

3 SUB D C B # Get integer value of input character
4 IN C 0 # Get ending point in ASCII

5 SUB E C B # Convert ending from ASCII to int wval
Starting value is D, ending value is E

6 LTE D E # (D <= E)

7 NOT # !'(D <= E) ——> (D > E)

8 CJMP {Line 13} # If (D > E) from above, exit loop

9 ADD C D B # Convert D as int into ASCII

10 OoUT C 15 # Print out the number

11 ADD D D A # Increment D

12 JMP {Line 6} # Go back to the top of the loop

13 HLT

Once you are done writing out the program, multiple each line number by 4. This will give you
the address of that line of code within memory. This is because each instruction is 4 bytes long.
Rewrite the program replacing the line numbers with addresses in hexadecimal.

This program gets two single-digit numbers, A and B, from the user
Then prints out the numbers A through B

0 LOADI A 1 # Get the number 1 into register A

4 LOADI B 48 # 48 is int value of '0', pseudo-constant

8 IN C 0 # Get starting point in ASCII

C SUB D C B # Get integer value of input character
10 IN C 0 # Get ending point in ASCII

14 SUB E C B # Convert ending from ASCII to int wval
Starting value is D, ending value is E

18 LTE D E # (D <= E)

1C NOT # !(D <= E) ——> (D > E)

20 CJMP 34 # If (D > E) from above, exit loop

24 ADD C D B # Convert D as int into ASCII

28 OUT C F # Print out the number

2C ADD D D A # Increment D
30 JMP 18 # Go back to the top of the loop
34 HLT

Now, convert this program into binary, by translating each mnemonic into the binary equivalent
shown in the "Instructions" section. Do the same with each value.

This program gets two single-digit numbers, A and B, from the user
Then prints out the numbers A through B
Get the number 1 into A register

0 LOADI A 1
0110 0001 0000 0000 0000 0000 0000 0001
4 LOADI B 48 # Subtract 48: ascii char -> int value

0110 0010 0000 0000 0000 0000 0011 0000
Get starting point in ASCII from port 0

8 IN C 0

1010 0011 0000 0000 0000 0000 0000 0O0OO

Get integer value of input character
C SUB D C B
1001 0100 0011 0010 0000 0000 0000 0000

Get ending point in ASCII from point O
10 IN C 0
1010 0011 0000 0000 0000 0000 0000 0000

Convert ending from ASCII to int wval
14 SUB E C B
1001 0101 0011 0010 0000 0000 0000 0000

Starting value is D, ending value is E

(D <= E)

18 LTE D E

1110 0100 0101 0000 0000 0000 0000 0000

!(D > E) ——> (D > E)
1C NOT
1111 0000 0000 0000 0000 0000 0000 0000

If (D > E) from above, exit loop
20 CJIMP 34
0010 0000 0000 0000 0000 0000 0011 0100

Convert D as int into ASCII
24 ADD C D B
1000 0011 0100 0010 0000 0000 0000 0OOO0O

Print out the number to port 15
28 OUT C F
1011 0011 0000 0000 0000 0000 0000 1111

Increment the number
2C ADD D D A
1000 0100 0100 0001 0000 0000 0000 0000

Go back to the top of the loop
30 JMP 18
0001 0000 0000 0000 0000 0000 0001 1000

34 HLT
0000 0000 0000 0000 O0OOO OOOO 0000 0000

Lastly, convert the binary representation into hexadecimal. This is a fully assembled program
and is what you will output as output .o. Each line represents a single 4-byte instruction. The
first line resides at address 0O, the second line resides at address 4, the third at address &, and so
on (although real-world computers use an actual binary representation without new lines, we
think you'll appreciate this format which captures the same information in a more human-
readable, and debuggable, form):

0x61000001
0x62000030
0xA3000000
0x94320000
0xA3000000
0x95320000
0xE4500000
0xF0000000
0x20000034
0x83420000
0xB300000F
0x84410000
0x10000018
0x00000000

The Assembler

Your assembler is called samas. It accepts an assembly source file, parses it, and translates it into
an executable object file. It uses the same process as you used by hand. In other words, the
program parses each line of the source file and translates it into hexadecimal (i.e., each op code
is recognized, looked up in a table, translated, and outputted and then each operand is
recognized, translated, and outputted). This is your regular assignment

The name of the input and output files are specified at the command line, for example:
samas input.s output.o
We have provided two sample input files to start with, inputl.s and input2.s. inputl.s has no

comments or blank lines and input2.s has comments and blank lines (probably easier not to
worry about these things in your initial attempt at parsing the file).

The Tester

The second part of your assignment is to write three assembly programs in the simulated
language and test to see if they produce the desired output when executed as follows.

1. First write the assembly program (see readme.txt for suggested programs)

2. Second assemble the program using samas you wrote

% samas yourprogram.as output.o

3. Third run the program using samsim executable (that we provided)
% samsim 10000 output.o -- 10000 is the memory size

In the extra credit section you will get a chance to write your own version of samsim.

EXTRA CREDIT

The Simulator (extra credit)

The simulator models the processor, the main memory, and the described terminal devices via
ports. When run, it loads an assembled program into memory and simulates its execution until it
halts.

Memory

Memory can be simulated as simply an array of unsigned chars (1 byte) of this size. This
provides a byte-indexed memory. In order to interpret the lower addresses that contain the
program text, you can assign an unsigned int (4 byte) pointer to the same array. This way,
when accessing word-oriented instructions, you can use the unsigned int * to give you a
whole word at a time (just be careful about pointer arithmetic!).

Since relatively few programs will require a simulation of the entire physical memory, the
program should accept the size of physical memory as a command line argument. It need only
simulate the requested amount of memory.

Loading A Program Into Simulated Memory

To load the program, read each input line into memory. We suggest that you first do this by
reading it into a temporary variable, an unsigned int, and then copying this into the unsigned char
array simulating memory. The code below illustrates the idiom:

unsigned int instruction;

fscanf (file, "0x%x", &instruction);

memcpy (memory + address, &instruction, sizeof (instruction));
address += 4;

You are, of course, free to take a different approach. But, we strongly suggest the technique
above — it dodges some potentially complicating issues.

The Register File
Since general purpose registers are 16 bits wide, they can be implemented as an array of

unsigned shorts (2 bytes). This way the register number can serve as the index. Since the special
purpose registers are larger, they should be implemented using unsigned ints (4 bytes).

The Processor and Execution

Assuming that all of the instructions have been loaded into memory, the processor can be
simulated using a fetch-decode-execute work loop. During execution, the processor fetches the
next instruction by loading the instruction referenced by the PC from memory into the
instruction register (IR). This is simply a scratch register used by the processor to decode the
instruction.

Once this is done, the PC is incremented to prepare for the eventual next processor cycle. The
next step is to decode the op code, the 4-bit number associated with the operation. This can be
done by shifting right to eliminate the other bits. Careful here — unless you are using unsigned
ints, you'll get bitten while shifting because of the sign bit.

At this point, you are able to dispatch the instruction. Because one goal of this assignment is to
reinforce your understanding of function pointers, you are asked to use an array of function
pointers for this purpose.

For each instruction, you should create a function. Then, each of these functions should be
mapped into an array of function pointers, where each function's index is its op code. This makes
the dispatch very easy. For example, if your array is called ops, the dispatch is as easy as (*
ops[opcode]) (), 1.e.,

ops
0 ——> HLT()
1 ——> JMP ()
2 ——> CJMP ()
3 ——> OJMP ()
4 ——> LOAD()
15 ——> NOT ()

Once within the instruction, you'll need to decode the operands and execute. Before considering
the implementation, take a second look at the instructions. Notice that there are six different
instruction formats. It will probably be helpful to write macros that use bit masks to decode the
operands present in each of the six formats:

ADDRESS
IMMEDIATE
REGO

REG1

REG2

PORT

For example:
#define REGO ((IR >> 24) & 0xOF)

Once the operands have been decoded, you are free to implement the logic of the instruction.
Perform any needed computation (be careful about math and negative numbers!), then write back
the values to the registers. If the instruction is a jump you'll need to update the PC. The

simulation ends when the HLT instruction is called. This instruction should exit rather than
returning. Once the function implementing the operation returns, the simulation can loop back to
the beginning of the fetch-decode-execute loop and repeat.

The Terminal Devices via Ports

The terminal devices are simulated only within the IN and OUT instructions. Implementing the

OUT instruction is as simple as printf ("$c", ...).The IN instruction can similarly be
implemented using ch = getchar().

Running the Simulator

The simulator should be called samsim. It should actually load and then execute a correct,
assembled program. It should be implemented in accordance with the model described above.

The physical memory size and executable file name should be specified as command-line
arguments:

e argv[l] - provides the size of your physical memory in bytes
e argv[2] - provides the name of the assembled program

For example:

samsim 0x1000 output.o
The simulator model does not include an exception handling facility. As a consequence, it cannot
handle error states, such as invalid executables, bad memory accesses, and the like. Should any

of these circumstances arise, it should simply terminate with an informative error message.

Downloading Files: As usual, download files from
/afs/andrew/course/15/123/downloads/lab8

Handing in your Solution

Your solution should be in the form of a .zip file. Just zip and HANDIN all the .c AND.h and .as
(assembly) files for your program.

/afs/andrew/course/15/123/course/handin/lab&8/ID
Don't hand in any input or .txt or .o or exe files.

Modified from a write up by Greg Kesden

