
Copyright @ 2009 Ananda Gunawardena

Lecture 13

Function Pointers

In this lecture

• Functions with variable number of arguments

• Introduction to function pointers

• Example of passing a function pointer to a function (qsort)

• Defining a function pointer

• Generic Data Types

Functions with variable number of arguments
Sometimes we may want to define a function that can take variable numbers of

arguments. For example printf and scanf are two IO functions that take variable number

of arguments.

The prototype of printf is

printf(char*, …);

where first argument char* is a string that contains the format statement for the print

string (eg: “%d %x %i “) and the 3 dots (…) indicate a variable number of arguments

equal to number of format symbols in the print string.

Let us consider writing our own function sum that can take a variable number of

arguments. That is, we can call the function as sum(2,x,y) or sum(3,x,y,z) etc.

#include <stdarg.h> /* header for variable argument list */

int sum(int argcnt, …) /* argcnt supplies count of other args */

{ va_list ap; /* argument pointer */

 int ans = 0;

 va_start(ap, argcnt); /* initialize ap */

 while (argcnt-- > 0) /* process all args */

 ans += va_arg(ap, int);

 va_end(ap) ; /* clean up before function returns */

 return (ans);

 }

The <stdarg.h> is a macro library that contains a set of macros, which allows portable

functions, that, accepts variable argument lists to be coded. Functions that have variable

argument lists (such as printf()) do not use these macros are inherently non-portable, as

different systems use different argument-passing conventions. There are few things in the

above code that we need to understand.

Copyright @ 2009 Ananda Gunawardena

va_start() This is a macro that is invoked to initialize ap, a pointer to argument list.

This macro must be called to initialize the list before any calls to va_arg().

va_arg() This macro returns the next argument in the list pointed to by ap. Each

invocation of va_arg() modifies ap so that the values of successive arguments are

returned in turn. The type parameter is the type the argument is expected to be. This is the

type name specified such that the type of a pointer to an object that has the specified type

can be obtained simply by suffixing a * to type. Different types can be mixed, but it is up

to the routine to know what type of arguments are expected.

va_end() This macro is used to clean up; it invalidates ap for use (unless va_start() is

invoked again).

Introduction to Function Pointers

Function Pointers provide an extremely interesting, efficient and elegant programming

technique. You can use them to replace switch/if-statements, and to realize late-binding.

Late binding refers to deciding the proper function during runtime instead of compile

time. Unfortunately function pointers have complicated syntax and therefore are not

widely used. If at all, they are addressed quite briefly and superficially in textbooks. They

are less error prone than normal pointers because you will never allocate or deallocate

memory with them.

What is a Function Pointer?

Function Pointers are pointers, i.e. variables, which point to an address of a function. The

running programs get a certain space in the main memory. Both, the executable compiled

program code and the used variables, are put inside this memory. Thus a function in the

program code is also an address. It is only important how the compiler and processor

interpret the memory the function pointer points to. A function can take many types of

arguments including the address of another function. This can be an extremely elegant

way to bind a function to a specific algorithm at runtime. For example, let us assume that

we plan to use a sorting algorithm in one of our functions. At the compile time, we are

not sure which sorting algorithm to use since we may not know the size of the data set n.

For example, if n < 100 we may use something like insertion sort, or if n is large, then

we may decide to use something like quicksort. C provides an interesting way to achieve

this by allowing the programmer to decide the algorithm at runtime.

Copyright @ 2009 Ananda Gunawardena

Example of Passing a Function Pointer to a function
Perhaps a good example to understand the role of function pointers is to study the qsort

utility in unix.

% man qsort

NAME

 qsort - sorts an array

SYNOPSIS

 #include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,

 int(*compar)(const void *, const void *));

DESCRIPTION

 The qsort() function sorts an array with nmemb elements of size size.

 The base argument points to the start of the array.

 The contents of the array are sorted in ascending order according to a

 comparison function pointed to by compar, which is called with two

 arguments that point to the objects being compared.

 The comparison function must return an integer less than, equal to, or

 greater than zero if the first argument is considered to be respec-

 tively less than, equal to, or greater than the second. If two members

 compare as equal, their order in the sorted array is undefined.

RETURN VALUE

 The qsort() function returns no value.

Examples of using qsort
Using qsort function requires defining the compare function that will be used to sort the

array in order. For example, suppose we have an array of ints and we are to sort the

integers in ascending order. Then we can define a compare function as follows.

int intcompare(const void* x, const void* y){

 int val = *((int*)x) - *((int*)y);

 if (val<0) return -1;

 else if (val>0) return 1;

 else return 0;

}

Copyright @ 2009 Ananda Gunawardena

If the array is an array of strings and we sort the array using just the first character, then

we can define a compare function as follows.

int namecmp(const void* s1, const void* s2){

 return (((char*)s1)[0] - ((char*)s2)[0]);

}

To use the functions the following program can be used.

int A[1000],i;

for (i=0;i<1000;i++)

 A[i] = rand()%1000;

qsort(A,1000,sizeof(int),intcompare);

char B[][10]={"guna","mccain","obama","paul","barr"};

qsort(*B,5,10,namecmp);

for (i=0;i<5;i++)

 printf("%s \n",B[i]);

Defining a Function Pointer
Functions like variables, can be associated with an address in the memory. We call

this a function pointer. A specific function pointer variable can be defined as follows.

 int (*fn)(int,int) ;

Here we define a function pointer fn, that can be initialized to any function that takes

 two integer arguments and return an integer. Here is an example of such a function

 int sum(int x, int y) {

 return (x+y);

 }

Now to initialize fn to the address of the sum, we can do the following.

fn = ∑ /* make fn points to the address of sum */

or simply

fn = sum; /* just ignore the & . Function names are just like array names

 they are pointers to the structure they are referring to */

So we use the sum function in two ways.

int x = sum(10,12); /* direct call to the function */
 or

 int x = (*fn)(12,10); /* call to the function through a pointer */

Copyright @ 2009 Ananda Gunawardena

More Examples
Let us consider the following mystery function that takes 3 arguments, two ints a and b

and a function pointer fn that tells mystery what to do with the two ints

int mystery(int a, int b, int (*fn)(int,int)) {

 return ((*fn)(a,b));

 }

Now let us define two functions as follows.

int gcd(int a, int b) { ….}

int sumofsquares(int x, int y) { return (x*x + y*y);}

We can call mystery function with gcd or sumofsquares or sum function.

int main(){

 printf(“%d \n”, mystery(10,12,sum));

 printf(“%d \n”, mystery(10,12,gcd));

 printf(“%d \n”, mystery(10,12,sumofsqures));

}

Using Typedef’s
The syntax of function pointers can sometimes be confusing. So we can use a typedef

statement to make things simpler.

typedef <return_type> (* fpointer)(argument list);

so we can define a variable of type fpointer as follows

fpointer fp;

Another Example

typedef int (*Ptr)(int,int);

Ptr fp = sum;

This can also be very useful in writing functions that return function pointers such as

follows.

int (*Convert(const char code)) (int, int) {

 if (code = = ‘+’) return ∑

 if (code = = ‘-’) return &Difference;

}

The above function takes a char as an argument and returns a function pointer of type Ptr

(as defined above) based on if the char is + or –

Copyright @ 2009 Ananda Gunawardena

Now we can simplify the Convert definition as follows.

Ptr Convert(const char code) {

 if (code = = ‘+’) return ∑

 if (code = = ‘-’) return &Difference;

}

Use the Convert function as follows

int main () {

 int (*ptr)(int,int); /* or: Ptr ptr; if you have a typedef */

 ptr = Convert(‘+’);

 printf(“%d \n”, ptr(2,4));

}

Function pointer is the address where the function begins in the memory. Function name

can be used to refer to this address just as we use the name of an array to refer to the

address of the first element of the array. Although function name can be preceded by &,

we can ignore the & when referring to a function pointer. As an example, consider the

function average defined as

double average(double n, double m){

 return (n+m)/2;

}

Now we can define a function pointer variable fn to hold the address of average as:

double (*fn)(double, double);

and then assign fn to the function average as follows.

fn = average;

Now fn is an alias for average and we can compute the value of the function at 10.5 and

20.5 as, for example using the code,

double x = (*fn)(10.5, 20.5);

In fact any function, that takes two doubles as arguments and return a double can be

assigned this function pointer fn. Many programmers try to avoid function pointers

because of the complex syntax. However, to make things easy, we can define a function

pointer type alias using

typedef double (*ftype)(double, double);

and then define fn as follows.

Copyright @ 2009 Ananda Gunawardena

ftype fn;

This makes it easy to deal with the confusing function pointer notation.

Passing Function Pointers to a Another Function
Function pointers can be passed in or return from function. For example, the function,

void foo(void* A, int n, ftype fp);

takes a function pointer of type ftype as an argument. Similarly, we can return a function

pointer from a function as follows. The function foo

ftype foo(void* A, int n);

returns a function pointer of type ftype from the function foo. Next we will look at an

important application of the function pointers. We do know that Java 5 and C++ Standard

Template Library (STL) contains constructs to define generic functions. Generic

functions are great programmer tool, as the programmer needs to write the code once for

any data type and bind the type at the run time. Unfortunately C does not have any built

in API’s or libraries to handle algorithms that take generic data types. But we can easily

define generic functions using C. Generic functions are quite useful, as they can be

adapted to data of many types. In other words, we can implement an algorithm in

the most general way so that any data type can be used with the function.

Generic Functions
One of the major benefits of a function pointer is that it can be passed to another function

as one of the arguments. This can be quite useful when we try to write generic functions.

Suppose we want to write a function to find how many elements are in an array (not the

capacity, but how many places are taken). The Array can be an array of ints or array of

characters or array of any other type. All we need to know is how to find the end of the

array. For example, if we have an array of ints that has a sentinel (say ends with -999 or

something like that), we can write a function that returns “true” when array element is

equal to -999. Otherwise it returns false. Consider the following function.

int intfunc(int A[], int i){

 return (A[i] == -999);

}

The above function returns “true” if A[i] = -999 for some i. So how do we use such a

function?

Suppose we build a generic function arraylen as follows. The purpose of the function is to

find the size of the array (not the capacity) regardless of the data type. For example, an

array of ints may have -999 as a sentinel elements, an array of characters may have ‘\0’ as

the sentinel, or an array of strings may have something like “end” as the final string. So

regardless of the sentinel we need to write a function that can find the array length (not

Copyright @ 2009 Ananda Gunawardena

the capacity). So we write the following function arraylen. The function takes two

arguments, any array and a function pointer that defines sentinel criteria. We start with

length = 0 and continue to apply term function until term(array, length) returns

something other than 0.

typedef int (*fn)(void*, int);

int arraylen(void* any, fn term){

 int length = 0;

 while ((*term)(any, length) == 0) length++;

 return length;

}

Convince yourself that this function returns the length of the array when called with

arraylen(A, (fn)intfunc)

Exercise: Write a function stringfunc as in intfunc that returns “true” if S[i] =’\0’

We can give more examples of how to use generic functions for doing lots of interesting

things. Generally, if we write a sort function, using bubble sort algorithm for an array of

ints, it would look something like:

void bubblesort(int A[], int n) {

int i, j;

for (i=0; i<n; i++)

 for (j=0; j<n-i-1; j++)

 if (A[j]>A[j+1]){

 int tmp = A[j];

 A[j] = A[j+1];

 A[j+1] = tmp;

 }

}

The problem with the above function is that it works only for an array of ints. Now let us

suppose we need to write a sort function using bubble sort algorithm for a generic array.

We now not only pass the array and its size, we also pass another function cmp, that will

define how to compare two values from the array. We may also need to pass a swap

function that defines how to swap two elements in the array. This is important since

comparison and swap can be very specific to a data type. For example, while we can

compare ints or doubles using < or >, we need to use strcmp to compare strings.

First let us develop a compare functions that returns 1, 0 or -1 based on if the first

argument is greater, the same or smaller than the second argument. As an example, we

will develop a compare function that compares strings using just its first character.

Copyright @ 2009 Ananda Gunawardena

int stringcmp(char* s1, char* s2){

 if (s1[0] > s2[0]) return 1;

 else if (s1[0] < s2[0]) return -1;

 return 0;

}

The above function can be passed to any other function that can use the algorithm of how

to compare two strings using just the first characters of the string.

Now let us suppose that we have an array of ANY TYPE and we need to sort it using

bubble sort algorithm. We will need to send four arguments to this function.

• An array of any type - void* A

• The size of the array – int n

• The compare function – a function pointer that compares two array elements

• The swap function – a function pointer that swaps two array elements

We note that this is needed since the way we compare and swap integers may be different

from way we compare and swap strings. No matter what data type we have in the array,

we need to define a generic bubble sort algorithm.

 First we will define two type aliases cmpfunc and swapfunc. The cmpfunc, takes any

array and compares two elements and return 1, 0 or -1. The swapfunc, takes an array and

two indices, swap the content of the array. Given below are the two typedefs that can be

used.

typedef int (*cmpfunc)(void*, int, int);

typedef void (*swapfunc)(void*, int, int);

Now we define our generic bubble sort as follows.

void bubblesort(void* A, int n, cmpfunc cp, swapfunc sp) {

 int i, j;

 for (i=0; i<n-1;i++)

 for (j=0; j<n-i-1;j++)

 if ((*cp)(A,j,j+1) > 0)

 (*sp)(A,j,j+1);

}

We note that the function takes any array, its size, and a compare function and a swap

function that can help compare and swap array elements.

Copyright @ 2009 Ananda Gunawardena

Let us now consider the functions defined for array of ints.

int intcomp(int A[],int i, int j){

 return (A[i]-A[j]);

}

void intswap(int A[], int i, int j){

 int temp = A[i];

 A[i] = A[j];

 A[j] = temp;

}

The above functions clearly define how to compare and swap two elements in an integer

array. How do we use these functions in our bubble sort?

We can define an array of ints and simply call the bubble sort as follows.

int A[] ={34,12,67,45,90,16,46,99,10};

bubblesort(A,9,(cmpfunc)intcomp,(swapfunc)intswap);

This technique can be used to write any function for an array of any type. We only need

to write the algorithm once and send the proper functions based on the type of the array.

Copyright @ 2009 Ananda Gunawardena

