Ananda Gunawardena

Lecture 20
Assembler Fundamentals

All programs written in a high-level language like C are converted into machine language
so they can be executed by the underlying hardware. However, the process of converting
high level source code to machine language goes through several intermediate steps. One
of them is the conversion of source code into assembly language instructions native to
the hardware. Converted assembly code is optimized by the C compiler so they can be
executed more efficiently by the hardware. Assembly code is then assembled using a
program called “assembler” into object code which then in turn link up with supporting
library code to form the executable code. It is difficult to program in machine language,
and therefore assembly language provides an intermediate step where programs can be
written using English like instructions, yet instructions closely mimic how they are
carried out by the hardware. An assembly code instruction contains an operation code
(opcode), an English description of what operation a hardware is supposed to perform
and operands to support the operation(if any). For example, an assembly instruction to
add two “registers” and place the answer in another register may look like

add r1,r2,r3
where add is the operations code (opcode) for the assembly instruction.

A collection of assembly language instructions with other operating systems directives
form a complete assembly language program. An example of an assembly program in
unix is given by

#listing 1

.global main

main:
movl $20, % eax
ret

The program is a simple program that moves the content 20 to a register eax. The $
identifies immediate values and % identify a register. Assuming that above program is in
a file name first.s, the program can be compiled with gcc compiler and generate a binary
executable file called a.out by using

» gec first.s

» .Ja.out

The generic process of generating the executable from assembly code is shown below.

assembly | Object . | Executable
code Assembler Code linker code
Libraries

Assembly language instructions are architecture dependent. For example, Intel family of
processors may understand one type of assembly language instructions. The opcode of an
assembly language instruction may change from architecture to architecture. However,
opcodes like add, sub, mul instructions that represent addition, subtraction, and multiply
are common to most assembly language instructions.

Instruction Set Architecture (ISA)

Instruction set architecture (ISA) provides a perspective of the processor from assembly
language or machine language programmer’s point of view. In simple terms, ISA
describes the instructions that processor understands, including register set and how the
memory is organized etc. A real world processor ISA would include few additional items
such as data types; interrupt handlers, exception handling etc. ISA is part of the computer
architecture specific to a particular hardware.

Registers

Registers are special purpose memory locations built into the processor that are on the top
of the memory hierarchy. Most assembly instructions directly operate on registers,
loading values into registers from memory, performing operations on them and storing
answers back in the memory. The registers are named like eax, ebx, ecx etc and registers
ebp and esp are used for manipulating the base pointer and stack pointer, which we will
visit later. The size of a register (say 32-bit) and number of registers (say 8) depends on
particular computer architecture. A typical instruction written in GNU assembly that
operates on a register looks like

movl $10, % eax

instructs moving the value 10 immediately to register eax. There are address registers,
data registers, constant value registers, conditional registers etc used for purposes like
storing the address, storing data, storing a value used to initialize(eg:zero), or values used
for holding the truth value of a condition. There is also an instruction register(IR) that can
hold the instruction currently being executed.

A Hypothetical Machine

To understand how computers are organized and how they carry out program
instructions, let us assume a hypothetical machine with seven general purpose registers
and an additional register that contains the value zero for initializing other registers. Our
computer also contains a special purpose register called program counter (PC) that
keeps track of the current address in the memory. After executing an instruction, PC
moves forward by 4 bytes to load and execute the next instruction. During the execution
of the program, an instruction is loaded from memory into the instruction register (IR).
Instruction register help decode and carry out the instruction. Let us take a look at the
registers and instruction set of our hypothetical machine.

Registers
Register Number Notes
Z 000 Constant: Always zero (0)
A 001
B 010
C 011
D 100
E 101
F 110
G 111
PC Program Counter. 24 bits wide. Not addressable
IR Instruction Register. 32 bits wide. Not addressable.

We assume that the PC is 24 bits wide and therefore our simulated memory has
2** _ 1 addressable bytes. Now we can define a 4-bit instruction set for our
hypothetical architecture. The basic instructions for a computer are quite simple
consisting of branch instructions, I/O instructions, Arithmetic instructions, device
instructions and comparison instructions. Using 4-bits we can define 16 different
instructions as listed below.

Instructions

CONTROL INSTRUCTIONS

Instruction Op Address Function

HLT 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX Stop simulation
IMP 0001 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump (line number)
CIMP 0010 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if true
OJMP 0011 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if overflow
LOAD-STORE INSTRUCTIONS

Instruction Op Register Value Function

LOAD 0100 ORRR AAAA AAAA AAAA AAAA AAAA AAAA Load (hex address)
STORE 0101 ORRR AAAA AAAA AAAA AAAA AAAA AAAA Store (hex address)
LOADI 0110 ORRR 0000 0000 IIIT IIIT ITIT I11T Load Immediate

STOREI 0111 ORRR 0000 0000 IIII IIIT ITIT ITIT Store Imdt (Indirect)

MATH INSTRUCTIONS
Instruction Op Reg0 Regl Reg2

ADD 1000 ORRR ORRR ORRR 0000 0000 0000 0000
SUB 1001 ORRR ORRR ORRR 0000 0000 0000 0000
DEVICE I/O

Instruction -Op- Reg0 0000 0000 0000 0000 Port

IN 1010 ORRR 0000 0000 0000 0000 PPPP PPPP
ouT 1011 ORRR 0000 0000 0000 0000 PPPP PPPP
COMPARISON

Instruction -Op- Reg0 Regl

EQU 1100 ORRR ORRR 0000 0000 0000 0000 0000
LT 1101 ORRR ORRR 0000 0000 0000 0000 0000
LTE 1110 ORRR ORRR 0000 0000 0000 0000 0000
NOT 1111 0000 0000 0000 0000 0000 0000 0000

Writing an Assembly Program

Function
Reg0 = (Regl + Reg2)
Reg0 = (Regl - Reg2)

Function
Read Port into Reg0
Write Reg0 out to Port

Function
Cflg = (Reg0 == Regl)
Cflg = (Reg0 < Regl)
Cflg = (Reg0 <= Regl)
Cflg = (ICflg)

Now let us write a simple program in the assembly language defined for our hypothetical
machine. Writing an assembly program requires the understanding of the language as
well how underlying hardware will carry out your instructions. We will start with some

simple programs.

Program 1: Write a program to add the numbers 10 and 15 and output to port #15

(output port)

0 LOADI A 10 # Load number 10 into register A

1 LOADI B 15 # Load number 15 into register B

2 ADD C A B # Add registers A and B, store in C

3 ouT C 15 # Print out the number to output port

Program 2: Write a program that reads a single digit integer from keyboard and output

(in)

0 LOADI A 48 # Load number ‘0’ into register A

1 IN B 0 # read a character from Port 0

2 SUB C B A # convert character to int and store in C
3 0OUT C 15 # print out the number to output port

Program 3: Write a program that reads a single digit integer from keyboard and output

the number if the number is greater or equal to 5.

0 LOADI A 48 # Load number ‘0’ into register A

1 IN B 0 # read a character from Port 0 (in)

2 SUB C B A # convert character to int and store in C
3 LOADI B 5 # load number 5 into register B

4 LTE C B # C < B

5 CJMP {line 7} # if true jump to end of program

6 OUT C 15 # print out the number to output port

7 HLT # terminate the program

Program 4: Write a program that reads a single digit integer from keyboard and output
all numbers between 1 and number

IN
SUB

LTE

OouT
SUB
JMP
HLT

00 JO0O Ul WDNEFE O

LOADI

LOADI

CJIMP

AOWOUJCD
- wo s
>

line 7}
C 15
C C B
{line 4}

Exercises:

1.

Write an assembly
language) to read
output the answer

Write an assembly
output the max of

integers and find

Write an assembly

HE oo e 3 o3 S 9 HE 3E 3

Load number ‘0’ into register A

read a

character from Port 0 (in)

convert character to int and store in C
load number 1 into register B

is C <

17

if true jump to end of program
print out the number to output port

C=c¢C -

1

go to line 4
terminate the program

program

(using our hypothetical assembly

two integers from stdin(port #0), multiply and
to stdout (port #15)

program

the two.

max.

program

from the stdin and output

Write an assembly program
and find the factorial of

that reads two one digit numbers and
Extend the program to read 3 one digit

that can read an integer of any length
the number.

that can read any integer (as in #2)
the number.

Convert each of the assembly programs you wrote in (1)-(4) to
machine code using the codes defined above. That is each program
is displayed as instructions containing 0’s and 1's.

