
Ananda Gunawardena

Lecture 20
Assembler Fundamentals

All programs written in a high-level language like C are converted into machine language
so they can be executed by the underlying hardware. However, the process of converting
high level source code to machine language goes through several intermediate steps. One
of them is the conversion of source code into assembly language instructions native to
the hardware. Converted assembly code is optimized by the C compiler so they can be
executed more efficiently by the hardware. Assembly code is then assembled using a
program called “assembler” into object code which then in turn link up with supporting
library code to form the executable code. It is difficult to program in machine language,
and therefore assembly language provides an intermediate step where programs can be
written using English like instructions, yet instructions closely mimic how they are
carried out by the hardware. An assembly code instruction contains an operation code
(opcode), an English description of what operation a hardware is supposed to perform
and operands to support the operation(if any). For example, an assembly instruction to
add two “registers” and place the answer in another register may look like

add r1,r2,r3

where add is the operations code (opcode) for the assembly instruction.

A collection of assembly language instructions with other operating systems directives
form a complete assembly language program. An example of an assembly program in
unix is given by

#listing 1
.global main
main:
 movl $20, %eax
 ret

The program is a simple program that moves the content 20 to a register eax. The $
identifies immediate values and % identify a register. Assuming that above program is in
a file name first.s, the program can be compiled with gcc compiler and generate a binary
executable file called a.out by using

� gcc first.s
� ./a.out

The generic process of generating the executable from assembly code is shown below.

 Assembler linker

Assembly language instructions are architecture dependent. For example, Intel family of
processors may understand one type of assembly language instructions. The opcode of an
assembly language instruction may change from architecture to architecture. However,
opcodes like add, sub, mul instructions that represent addition, subtraction, and multiply
are common to most assembly language instructions.

Instruction Set Architecture (ISA)
Instruction set architecture (ISA) provides a perspective of the processor from assembly
language or machine language programmer’s point of view. In simple terms, ISA
describes the instructions that processor understands, including register set and how the
memory is organized etc. A real world processor ISA would include few additional items
such as data types; interrupt handlers, exception handling etc. ISA is part of the computer
architecture specific to a particular hardware.

Registers
Registers are special purpose memory locations built into the processor that are on the top
of the memory hierarchy. Most assembly instructions directly operate on registers,
loading values into registers from memory, performing operations on them and storing
answers back in the memory. The registers are named like eax, ebx, ecx etc and registers
ebp and esp are used for manipulating the base pointer and stack pointer, which we will
visit later. The size of a register (say 32-bit) and number of registers (say 8) depends on
particular computer architecture. A typical instruction written in GNU assembly that
operates on a register looks like

movl $10, %eax

instructs moving the value 10 immediately to register eax. There are address registers,
data registers, constant value registers, conditional registers etc used for purposes like
storing the address, storing data, storing a value used to initialize(eg:zero), or values used
for holding the truth value of a condition. There is also an instruction register(IR) that can
hold the instruction currently being executed.

assembly
code

Object
Code

Executable
code

Libraries

A Hypothetical Machine
To understand how computers are organized and how they carry out program
instructions, let us assume a hypothetical machine with seven general purpose registers
and an additional register that contains the value zero for initializing other registers. Our
computer also contains a special purpose register called program counter (PC) that
keeps track of the current address in the memory. After executing an instruction, PC
moves forward by 4 bytes to load and execute the next instruction. During the execution
of the program, an instruction is loaded from memory into the instruction register (IR).
Instruction register help decode and carry out the instruction. Let us take a look at the
registers and instruction set of our hypothetical machine.

Registers

 Register Number Notes
 --
 Z 000 Constant: Always zero (0)
 A 001
 B 010
 C 011
 D 100
 E 101
 F 110
 G 111
 PC Program Counter. 24 bits wide. Not addressable
 IR Instruction Register. 32 bits wide. Not addressable.

We assume that the PC is 24 bits wide and therefore our simulated memory has
224 – 1 addressable bytes. Now we can define a 4-bit instruction set for our
hypothetical architecture. The basic instructions for a computer are quite simple
consisting of branch instructions, I/O instructions, Arithmetic instructions, device

instructions and comparison instructions. Using 4-bits we can define 16 different
instructions as listed below.

Instructions

CONTROL INSTRUCTIONS
Instruction Op Address Function
HLT 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX Stop simulation
JMP 0001 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump (line number)
CJMP 0010 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if true
OJMP 0011 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if overflow

LOAD-STORE INSTRUCTIONS
Instruction Op Register Value Function
LOAD 0100 0RRR AAAA AAAA AAAA AAAA AAAA AAAA Load (hex address)
STORE 0101 0RRR AAAA AAAA AAAA AAAA AAAA AAAA Store (hex address)
LOADI 0110 0RRR 0000 0000 IIII IIII IIII IIII Load Immediate
STOREI 0111 0RRR 0000 0000 IIII IIII IIII IIII Store Imdt (Indirect)

MATH INSTRUCTIONS
Instruction Op Reg0 Reg1 Reg2 Function
ADD 1000 0RRR 0RRR 0RRR 0000 0000 0000 0000 Reg0 = (Reg1 + Reg2)
SUB 1001 0RRR 0RRR 0RRR 0000 0000 0000 0000 Reg0 = (Reg1 - Reg2)

DEVICE I/O
Instruction -Op- Reg0 0000 0000 0000 0000 Port Function
IN 1010 0RRR 0000 0000 0000 0000 PPPP PPPP Read Port into Reg0
OUT 1011 0RRR 0000 0000 0000 0000 PPPP PPPP Write Reg0 out to Port

COMPARISON
Instruction -Op- Reg0 Reg1 Function
EQU 1100 0RRR 0RRR 0000 0000 0000 0000 0000 Cflg = (Reg0 == Reg1)
LT 1101 0RRR 0RRR 0000 0000 0000 0000 0000 Cflg = (Reg0 < Reg1)
LTE 1110 0RRR 0RRR 0000 0000 0000 0000 0000 Cflg = (Reg0 <= Reg1)
NOT 1111 0000 0000 0000 0000 0000 0000 0000 Cflg = (!Cflg)

Writing an Assembly Program
Now let us write a simple program in the assembly language defined for our hypothetical
machine. Writing an assembly program requires the understanding of the language as
well how underlying hardware will carry out your instructions. We will start with some
simple programs.

Program 1: Write a program to add the numbers 10 and 15 and output to port #15
(output port)

0 LOADI A 10 # Load number 10 into register A

1 LOADI B 15 # Load number 15 into register B

2 ADD C A B # Add registers A and B, store in C

3 OUT C 15 # Print out the number to output port

Program 2: Write a program that reads a single digit integer from keyboard and output

0 LOADI A 48 # Load number ‘0’ into register A

1 IN B 0 # read a character from Port 0 (in)

2 SUB C B A # convert character to int and store in C

3 OUT C 15 # print out the number to output port

Program 3: Write a program that reads a single digit integer from keyboard and output
the number if the number is greater or equal to 5.

0 LOADI A 48 # Load number ‘0’ into register A

1 IN B 0 # read a character from Port 0 (in)

2 SUB C B A # convert character to int and store in C

3 LOADI B 5 # load number 5 into register B

4 LTE C B # C < B

5 CJMP {line 7} # if true jump to end of program

6 OUT C 15 # print out the number to output port

7 HLT # terminate the program

Program 4: Write a program that reads a single digit integer from keyboard and output
all numbers between 1 and number

0 LOADI A 48 # Load number ‘0’ into register A

1 IN B 0 # read a character from Port 0 (in)

2 SUB C B A # convert character to int and store in C

3 LOADI B 1 # load number 1 into register B

4 LTE C B # is C < 1?

5 CJMP {line 7} # if true jump to end of program

6 OUT C 15 # print out the number to output port

7 SUB C C B # C = C - 1

8 JMP {line 4} # go to line 4

7 HLT # terminate the program

Exercises:

1. Write an assembly program (using our hypothetical assembly
language) to read two integers from stdin(port #0), multiply and

output the answer to stdout(port #15)

2. Write an assembly program that reads two one digit numbers and
output the max of the two. Extend the program to read 3 one digit

integers and find max.

3. Write an assembly program that can read an integer of any length
from the stdin and output the number.

4. Write an assembly program that can read any integer (as in #2)
and find the factorial of the number.

5. Convert each of the assembly programs you wrote in (1)-(4) to

machine code using the codes defined above. That is each program

is displayed as instructions containing 0’s and 1’s.

