
Copyright @ 2008 Ananda Gunawardena

Lecture 18

Systems Programming in C

A C program can invoke UNIX system calls directly. A system call can be defined as a

request to the operating system to do something on behalf of the program. During the

execution of a system call, the mode is change from user mode to kernel mode (or

system mode) to allow the execution of the system call. The kernel, the core of the

operating system program in fact has control over everything. All OS software is trusted

and executed without any further verification. All other software needs to request kernel

mode using specific system calls to create new processes and manage I/O. A process is a

currently executing instance of a program. All programs by default execute in the user

mode. A high level programmer does not have to worry about the mode change from

user-mode to kernel-mode as it is handled by a predefined library of system calls.

Unlike processes in user mode, which can be replaced by another process at any time, a

process in kernel mode cannot be arbitrarily replaced by another process. A process in

kernel mode can only be suspended by an interrupt or exception. A C system call

software instruction generates an OS interrupt commonly called the operating system

trap. The system call interface handles these interruptions in a special way. The C library

function passes a unique number corresponding to the system call to the kernel, so kernel

can determine the specific system call user is invoking. After executing the kernel

command the operating system trap is released and the system returns to user mode.

Unix system calls are primarily used to manage the file system or control processes or

to provide communication between multiple processes.

A subset of the system calls include

creat(), open(), close() -- managing I/O channels

read(), write() – handling input and output operations

lseek() – for random access of files

link(), unlink() – aliasing and removing files

stat() – getting file status

access(), chmod(), chown() – for access control

exec(), fork(), wait(), exit() --- for process control

getuid() – for process ownership

getpid() -- for process ID

signal() , kill(), alarm() – for process control

chdir() – for changing working directory

pipe() – for creating inter-process communication

System calls interface often change and therefore it is advisable to place system calls in

subroutines so subroutines can be adjusted in the event of a system call interface change.

When a system call causes an error, it returns -1 and store the error number in a variable

called “errno” given in a header file called /usr/include/errno.h. When a system call

Copyright @ 2008 Ananda Gunawardena

returns an error, the function perror can be used to print a diagnostic message. If we call

perror(), then it displays the argument string, a colon, and then the error

message, as directed by "errno", followed by a newline.

if (unlink("text.txt")==-1){

 perror("");

}

If the file text.txt does not exists, unlink will return -1 and that in

return will cause the program to print the message “File does not

exists”

Managing the File System with Sys calls
File structure related system calls to manage the file system are quite common. Using file

structure related system calls, we can create, open, close, read, write, remove and alias,

set permission, get file information among other things. The arguments to these

functions include either the relative or absolute path of the file or a descriptor that defines

the IO channel for the file. A channel provides access to the file as an unformatted stream

of bytes. We will now look at some of the file related functions provided as system calls.

UNIX System I/O Calls
The high level library functions given by <stdio.h> provide most common input and

output operations. These high level functions are built on the top of low-level structures

and calls provided by the operating system. In this section, we will look at some low level

I/O facilities that will provide insight into how low level I/O facilities are handled and

therefore may provide ways to use I/O in ways that are not provided by the stdio.h. In

UNIX, I/O hardware devices are represented as special files. Input/Output to files or

special files (such as terminal or printers) are handled the same way. UNIX also supports

“pipes” a mechanism for input/output between processes. Although pipes and files are

different I/O objects, both are supported by low level I/O mechanisms.

A file can be open using the open system call as follows.

#include <sys/file.h> // can be replaced by <fcntl.h>

int open(char* filename, int access, int mode);

The above code opens the filename for reading or writing as specified by the access and

returns an integer descriptor for that file. Descriptor is an integer (usually less than 16)

that indicates a table entry for the file reference for the current process. File name can be

given as full path name, relative path name, or simple file name. If the file does not exist,

then open creates the file with the given name. Let us take a detail look at the arguments

to open.

filename : A string that represents the absolute, relative or filename of the file

access : An integer code describing the access (see below for details)

mode : The file protection mode usually given by 9 bits indicating rwx permission

Copyright @ 2008 Ananda Gunawardena

The access codes are given by

O_RDONLY -- opens file for read only

O_WRONLY – opens file for write only

O_RDWR – opens file for reading and writing

O_NDELAY – prevents possible blocking

O_APPEND --- opens the file for appending

O_CREAT -- creates the file if it does not exists

O_TRUNC -- truncates the size to zero

O_EXCL – produces an error if the O_CREAT bit is on and file exists

If the open call fails, a -1 is returned; otherwise a descriptor is returned. For example, to

open a file for read and truncates the size to zero we could use,

open(“filename”, O_RDONLY | O_TRUNC, 0);

We assume that the file exists and note that zero can be used for protection mode. For

opening files, the third argument can always be left at 0.

Create System Call
A file can be created using the creat function as given by the following prototype.

int creat(char* filename, mode)

The mode is specified as an octal number. For example, 0666 indicates that rw access for

USER, GROUP and ALL for the file. If the file exists, the creat is ignored and prior

content and rights are maintained. The library

/usr/include/sys/stat.h

provides following constants that can be used to set permissions.

S_IREAD --- read permission for the owner

S_IWRITE --- write permission for the owner

S_IEXEC --- execute/search permission for the owner

S_IRWXU --- read, write, execute permission for the user

S_IRGRP – read for group

S_IWGRP – write for group

S_IXGRP – execute for group

S_IRWXG – read, write, execute for the group

S_IROTH --- read for others

S_IWOTH – write for others

S_IXOTH -- execute for others

S_IRWXO – read , write , execute for others

Copyright @ 2008 Ananda Gunawardena

For example, to create a file with read and write access only to user, we can do the

following.

creat(“myfile”, S_IREAD | S_IWRITE);

Reading and Writing to Files
Reading and writing a file is normally sequential. For each open file, a current position

points to the next byte to be read or written. The current position can be movable for an

actual file, but not for stdin when connected to a keyboard.

Read System Call
#include <sys/types.h> // or #include <unistd.h>

size_t read(int fd, char *buffer , size_t bytes);

fd is the file descriptor, buffer is address of a memory area into which the data is read and

bytes is the maximum amount of data to read from the stream. The return value is the

actual amount of data read from the file. The pointer is incremented by the amount of

data read. Bytes should not exceed the size of the buffer.

Write System Call

The write system call is used to write data to a file or other object identified by a file

descriptor. The prototype is

#include <sys/types.h>

size_t write(int fd, char *buffer, size_t bytes);

fd is the file descriptor, buffer is the address of the area of memory that data is to be

written out, bytes is the amount of data to copy. The return value is the actual amount of

data written, if this differs from bytes then something may be wrong.

Example: Consider the C high level function readline(char [], int) that reads a line from

stdin and store the line in a character array. This function can now be rewritten using low

level read as follows

int readline(char s[], int size){

 char* tmp = s;

 while (--size>0 && read(0,tmp,1)!=0 && *tmp++ != '\n');

 *tmp = '\0';

 return (tmp-s);

}

Copyright @ 2008 Ananda Gunawardena

Close System Call

The close system call is used to close files. The prototype is

#include <unistd.h>

int close(int fd);

When a process terminates, all the files associated with the process are closed. But it is

always a good idea to close a file as they do consume resources and systems impose

limits on the number of files a process can keep open.

lseek System Call

Whenever a read() or write() operation is performed on a file, the position in the file at

which reading or writing starts is determined by the current value of the read/write

pointer. The value of the read/write pointer is often called the offset. It is always

measured in bytes from the start of the file. The lseek() system call allows programs to

manipulate this directly by providing the facility for direct access to any part of the file.

In other words, the lseek allows random access to any byte of the file. It has three

parameters and the prototype is

#include <sys/types.h>

#include <unistd.h>

long lseek(int fd,int offset,int origin)

origin position

0 beginning of the file

1 Current position

2 End of the file

Call Meaning

lseek(fd,0,0) places the current position at the first byte

lseek(fd,0,2) places the current position at EOF

lseek(fd,-10,1) Backs up the current position by 10 bytes

Other System Level Operations
Other system level operations include creating a file using

creat(filename, mode);

The mode can be selected from the following octal bit patterns

Octal Bit Pattern Meaning

00400 Read by owner

00200 Write by Owner

00100 Execute or search by owner

00070 Read, Write, Execute(search) by group

00007 Read, Write, Execute(search) by others

Copyright @ 2008 Ananda Gunawardena

Other system calls include link a way to give alternative names to a file (aliases), and

unlink a way to remove an alias to a file. The prototypes for the link and unlink are

int link (char* file1, char* file2);

int unlink(char* name);

The link() function creates an alias name file2 for file1, that exists in the current

directory. Use of unlink with the original file name will remove the file.

Creating and removing Directories
Directories can be created and removed using mkdir and rmdir function calls. The

function prototypes are

int mkdir(char* name, int mode);

int rmdir(char* name);

returns 0 or 1 for success or failure. For example, creating a new directory called

“newfiles” with only the READ access for the user we can do the following.

mkdir(“newfiles”, 00400);

Later you can remove this directory by calling

rmdir(“newfiles”);

Caution: Be very careful about removing directories. These are system calls that are

executed w/o further confirmation.

Accessing Directories
A UNIX directory contains a set of files that can be accessed using the sys/dir.h library.

We include the library with

#include <sys/dir.h>

And the function

DIR *opendir(char* dir_name)

Opens a directory given by dir_name and provides a pointer to access files within the

directory. The open DIR stream can be used to access a struct that contains the file

information. The function

struct dirent *readdir(DIR* dp)

Copyright @ 2008 Ananda Gunawardena

returns a pointer to the next entry in the directory. A NULL pointer is returned when the

end of the directory is reached. The struct direct has the following format.

struct dirent {

 u-long d_ino; /* i-node number for the dir entry */

 u_short d_reclen; /* length of this record */

 u_short d_namelen ; /* length of the string in d_name */

 char d_name[MAXNAMLEN+1] ; /* directory name */

};

Using system libraries, we can write our own “find” function for example. The following

function, search (char* file, char* dir) returns 0 if the file is found in the directory and

returns 1 otherwise.

#include <string.h>

#include <sys/types.h>

#include <sys/dir.h>

int search (char* file, char* dir){

 DIR *dirptr=opendir(dir);

 struct dirent *entry = readdir(dirptr);

 while (entry != NULL) {

 if (entry->d_name == strlen(file) && (strcmp(entry->d_name, file) == 0)

 {

 return 0;

 }

 entry = readdir(dirptr);

 }

 return 1;

}

Accessing File Status
Status of a file such as file type, protection mode, time when the file was last modified

can be accessed using stat and fstat functions. The prototypes of stat and fstat functions

are

stat(char* file, struct stat *buf);

fstat(int fd, struct stat *buf);

stat and fstat functions are equivalent except that former takes the name of a file, while

the latter takes a file descriptor. For example, we can get the status of a file as follows.

struct stat buf; // defines a struct stat to hold file information

stat(“filename”, &buf) ; // now the file information is placed in the buf

Copyright @ 2008 Ananda Gunawardena

The status of the file that is retrieved and placed in the buf has many information about

the file. For example, the stat structure contains useful information such as

st_atime --- Last access time

st_mtime --- last modify time

st_ctime --- Last status change time

st_size --- total size of file

st_uid – user ID of owner

st_mode – file status (directory or not)

Example
#include <sys/types.h>

#include <sys/stat.h>

#include <dirent.h>

struct stat statbuf;

char dirpath[256];

getcwd(dirpath,256);

DIR *dir = opendir(dirpath);

struct dirent *dp;

for (dp=readdir(dir); dp != NULL ; dp=readdir(dir)){

stat(dp->d_name, &statbuf);

printf("the file name is %s \n", dp->d_name);

printf("dir = %d\n", S_ISDIR(statbuf.st_mode));

printf("file size is %ld in bytes \n", statbuf.st_size);

printf("last modified time is %ld in seconds \n",

statbuf.st_mtime);

printf("last access time is %ld in seconds \n",

statbuf.st_atime);

printf("The device containing the file is %d\n", statbuf.st_dev);

printf("File serial number is %d\n\n", statbuf.st_ino);

}

More can be found at

http://www.opengroup.org/onlinepubs/000095399/functions/stat.html

Working Directory
The working directory of the program can be found using getcwd. The prototype is given

by

#include <unistd.h>

char* getcwd(char * dirname, int);

This copies the full path name of the current working directory into the dirname and

returns a pointer to it. The description can be found

Copyright @ 2008 Ananda Gunawardena

EXERCISES
1. Write a function foo(int fd, char* buf, int b_size, int n, int skip) that reads to buf

from file with file descriptor fd, n blocks of size b_size each. The last argument

specifies how many bytes to skip after reading each block. Return -1 if the

operation is unsuccessful. Else return total number of bytes read.

2. Write a program to read all txt files (that is files that ends with .txt) in the current

directory and merge them all to one txt file and returns a file descriptor for the

new file.

3. Write a program that a string as an argument and return all the files that begins

with that name in the current directory. For example > ./a.out foo will return all

file names that begins with foo.

