
Copyright @ 2009 Ananda Gunawardena

Lecture 1
Introduction to Unix and C

In this lecture

• Operating System

• Unix system shell

• Why learn C

• Program Development Process

• Compilation, Linking and Preprocessing

• ANSI-C

• The C compiler – gcc

• Jobs and Processes

• Killing a Process

• Moving from Java to C

• Additional Readings

• Exercises

Operating System
Each machine needs an Operating System (OS). An operating

system is a software program that manages coordination

between application programs and underlying hardware. OS

manages devices such as printers, disks, monitors and

manage multiple tasks such as processes. UNIX is an

operating system. The following figure demonstrates the

high level view of the layers of a computer system. It

demonstrates that the end users interface with the computer

at the application level, while programmers deal with

utilities and operating system level. On the other hand, an

OS designed must understand how to interface with the

underlying hardware architecture.

Copyright @ 2009 Ananda Gunawardena

Unix is an operating system developed by AT&T in the late

60’s. BSD (Berkeley Unix) and Linux, are unix-like

operating systems that are widely used in servers and many

other platforms such as portable devices. Linux, an open

source version of Unix-like operating system was first

developed by Linus Torvalds. Linux has become a popular

operating system used by many devices. Many volunteer

developers have contributed to the development of many

linux based resources. Linux is free, open source, and have

very low hardware requirements. This makes linux a popular

operating system for devices with limited hardware

capabilities as well as running low cost personal

computers.

In this course, we will begin with an introduction to the

unix operating system. We will be using Andrew Linux and we

will see how we can use the power of unix to manipulate the

Andrew File System (AFS) and use unix tools and shell

scripting to accomplish interesting tasks. Our focus would

be on the unix features that are more directly related to

writing, debugging and maintaining C programs. We will also

focus on unix shell scripting, so we can develop powerful

scripts for managing tasks such as unix system calls, file

manipulation etc. To find out which version of the

operating system you are running type

% uname –o

At the shell prompt.

Application programs

Utilities

Operating System

Computer Hardware

OS Designer

End user Programmer

Copyright @ 2009 Ananda Gunawardena

In general, uname prints system information. Uname –a will

print all information.

The Unix System Shell
Although unix has graphical user interfaces (such as x-

windows) to access its tools, we will be focusing our work

at the shell level. After login, we interact with the unix

through a program called a “unix shell”. Shell is a command

interpreter. In other words, you provide commands that you

would like to be interpreted by the shell. The command

interpretation cycle of the shell is as follows.

 Prompt

 Read SHELL Execute

 Command command

 Transform

 command

First the shell prompts for the command. In order to see

how the shell works, we need to be able to have access to

Andrew linux shell. To set up SSH (secure shell) see Bb�

External Links � Setting up SSH in your machine. Once the

SSH client is installed, then you can connect to your

Andrew account by typing login information.

Copyright @ 2009 Ananda Gunawardena

Once logged in, you will have access to the unix shell that

will interpret the commands you provide.

Once a command is given to the shell, for example

% cp file1 file2

The shell interprets the command and executes it. Virtually

anything you do on Andrew linux is done by issuing a

command at the shell level. The generic form of a command

is

% command arg1, arg2, ….

Here are some of the first things for you to try

% mkdir 15123 --- makes a directory in your Andrew home

% cd 15123 --- change directory to subdirectory 15123

% emacs cheatingPolicy.txt --- start editing a file in linux

• We will cover emacs editor commands in the recitation.

% cp cheatingPolicy.txt /afs/andrew/course/15/123/handin/lab0

 --- copies your file to submission folder

% cd /afs/andrew/course/15/123/handin/lab0

 --- now switch to lab0 folder

% ls --- lists all files in the directory. (You should see your

submission. Make sure you do this after submitting each assignment)

% ls -l --- show long listings of all files in the directory.

Copyright @ 2009 Ananda Gunawardena

A typical record looks like this

-rw-r--r-- 1 guna staff 1749118 Mar 27 2005 Tsunami.zip

drwxr-xr-x 4 guna staff 2048 Jul 16 14:28 WebSite1

% fs la --- see what permission you have for the current folder

% fs sa . system:anyuser none

 --- remove all file permission from any user
To find the description of any command, simply type

% man command (eg: man ls)

(at the : prompt press the space bar to see more or type Q to quit the

man pages)

Linux manual pages are very handy tool for us to find out how to use

all the linux commands we need in this course and beyond. A summary of

commonly used commands are given below.

Copyright @ 2009 Ananda Gunawardena

courtesy: Tim Hoffman

Why learn C?
C allows flexibility in program development and power to

write efficient code. Java forces more rigorous structure

and OO programming style. In applications where many

millions of data needs to be processed, or speed is

critical, java lacks the efficiency to provide a practical

solution. C is widely used in numerical applications such

as solving large systems of equations, developing low level

applications such as device drivers, data compression

algorithms, graphics, and computational geometry. C places

the “trust” on the programmer and allows the programmer to

use any construct freely. This provides flexibility and a

great deal of power, but programmers must take great care

in developing, debugging and maintaining programs. C and

UNIX provide the ideal programming environment for the

experienced programmer. Learning to program in C gives a

set of low level programming tools that are unmatched by

any other programming language. The power of C is its

ability to express programming instructions using a

combination of low level and high level constructs.

Program Development Process
Java programs are easier to develop (although the initial

OO design may be harder for some) since the programmers

have access to a large well documented API. Java programs

are easier to debug, since dynamic memory is automatically

managed (automated garbage collector) and error messages

and exceptions are more descriptive. C programs are harder

to develop and debug but they run faster.

C programmers must learn how to do procedural decomposition

in order to write good programs. C programmers must learn

how to use a debugger such as gdb in order to efficiently

debug programs. C program management can be automated using

make files. We will discuss gdb and makefile concepts later

in the course.

Compilation, Linking and Preprocessing
There are 3 major steps to developing a C program.

• Editing – The process of creating the source code

• Compiling – The process of translating source code to

object code

• Linking – The process of linking all libraries and

other object codes to generate the executable code

Copyright @ 2009 Ananda Gunawardena

The process of editing allows C programs to be written

using a UNIX editor such as emacs. The preprocessing is

performed to replace certain text in the file by others.

For example:

#define pi 3.14

The above statement causes C preprocessor to replace all

“pi” references by 3.14. Pi can be referred to as a

“macro”. We will discuss more about Macros later in the

course.

We can also include an external library (that is not part

of the standard libraries) such as “mylibrary.h”.

#include “mylibrary.h”

#include <stdio.h>

Note that the “ “ is used to distinguish external libraries

from standard libraries such as stdio.h.

ANSI C
American National Standards Institute (ANSI) formed a

committee to establish a C standard for all programmers.

The ANSI C standard is based on an extended form of

traditional C and allows greater portability among

platforms. The most important ANCI C feature is the syntax

of declaring and defining functions. The parameter types

are declared inside the function parameter list. This

allows compilers to easily detect mismatched function call

arguments. Other ANSI C features include assignment of user

defined structures, enumeration, single precision floating

point arithmetic (traditional C supports only double

precision arithmetic). The ANSI standard also bans

interchange of pointers and integers without explicit type

conversions. In ANSI programming all variables must be

declared before any statements. For example;

int y = 10;

Y = y + 1;

int x = 12;

may NOT compile under ANSI standard.

ANSI C does not allow commenting using “//” and must use /*

… */ style of commenting.

Copyright @ 2009 Ananda Gunawardena

ANSI C also provides standard libraries for IO, strings,

math, system calls etc. gcc compiler conform to ANSI

standard. You can compile your program under –ansi flag to

make sure it conforms to ANSI standards. To check if your

program is written according to ANSI C, compile as

� gcc –ansi myprogram.c

if the program is syntactically correct, if the proper

libraries are available for you to link, then a file called

a.out is created. The file a.out is a binary file that can

be executed only under the platform the program was

developed in. To see the current files in your working

folder type

% ls –l

To run the program, you type

% ./a.out

The shell command looks for the binaries in the working

folder and executes the program.

In this course, we will be using many switches during

compilation to help us debug and manage and make our

programs more efficient. For examples we will typically

compile code using

% gcc –Wall –ansi -pedantic –O2 main.c

-ansi -pedantic -W -Wall -O2 these are switches that customize the

behavior of our compilation. Remember we promised to show you how to

get all the help the compiler can give you. Using these switches tells

the compiler to apply more scrutiny to your code so that those things

which can be detected at compile time will be reported to you as

warnings and errors. The -ansi switch warns you when your code does

non-ANSI things like call functions that are not part of the standard

ANSI libraries or mixing code and data. The -pedantic -W -Wall switches

are requests for more scrutiny on such things as unused arguments

passed into functions. The -O2 ("oh two" not "zero two") switch is

calling for code optimization at a level of 2. This course does not

really address code optimization with any rigor or formality, but -O2

switch does detect use of un-initialized variables. There are many

other switches you can in your compilation command that we will not

cover in this course. The history of how these switches came about -

and what things they detect is a rather random and spurious. As the

language evolved switches were added or changed in a very ad-hoc

manner. For example -Wall means "warnings all". So you might think that

means it warns on all infractions. Well, not quite. If you want to

detect failure to use argv or argc then you must add -W which is just

"warnings". Go figure. Better yet, use them as shown and never ignore

Copyright @ 2009 Ananda Gunawardena

warnings. In this course you are never allowed to hand in code with

warnings. You will be penalized.

Source: Tim Hoffman

The Compiler
A compiler, such as GNU C Compiler(gcc) translates a

program written in a high level language to object code

that can be interpreted and executed by the underlying

hardware. Compilers go through multiple levels of

processing such as, syntax checking, pre-processing macros

and libraries, object code generation, linking, and

optimization among many other things. A course in compiler

design will expose you to many of the tasks a compiler

typically does. Writing a compiler is a substantial

undertaking and one that requires a lot of attention to

detail and understanding of many theoretical concepts in

computer science.

Jobs and Processes
Each C program executable, when executed creates a process.

Unix can maintain multiple processes at the same time. Each

process is a job executed by the shell. To see what current

jobs are running in your environment, we type

% jobs -l

To see what processes are running in the background of your

environment, we type

% ps

 PID TTY TIME CMD

31977 pts/3 00:00:00 csh

31988 pts/3 00:00:00 ps

Any process can be killed by using the command

% kill PID --- PID is the process ID

Killing a Process
It is very common that as we do programming assignments in

this course, we run into situations where program does not

terminate. This can be caused by an infinite loop or some

weird behavior in the program. In such cases, we need to

forcefully terminate the program by using

Control C

Ctrl-C kills the foreground process. If you press

Copyright @ 2009 Ananda Gunawardena

Cntrl-Z, then the current process is placed in the

background and shell returns a prompt.

You can bring background processes to foreground by typing

% fg

Or find the process ID using ps and kill the process.

Moving from Java to C
There are some major differences between Java and C

programming. Java is an object oriented language where

applications are developed using classes that encapsulates

the methods and states. Each object instantiated from the

class communicates with other objects by sending messages.

Java programs are interpreted and runs under the Java

virtual machine(JVM). Java programs are converted into byte

code that executes under JVM. This allows Java programs to

be portable across multiple platforms.

On the other hand, C is a procedural programming language

where programs are developed using procedural

decomposition. That is, application tasks are divided into

meaningful procedures and procedures are called from the

main program to solve the problem. An executable version of

the program is called C binaries and C binaries are not

portable across platforms.

One of the best ways for you to start learning C (if you

are a die hard java programmer) is to convert a simple Java

program into C code. Let us consider the following java

program. This is a java program that sorts a set of random

numbers using a sorting algorithm called bubble sort. It

takes the number of elements in the array as a command line

argument. Assuming that the name of the java source file is

javasort.java, you can run the program by typing

� javac javasort.java
� java javasort 10000

where 10000 is the number of elements in the array. When

you consider command line arguments, this number can be

obtained by using args[0]

Copyright @ 2009 Ananda Gunawardena

import java.io.*;

import java.util.*;

public class javasort {

 public static void main(String[] args) throws Exception {

 long begin, end;

 begin = System.currentTimeMillis();

 int n = Integer.parseInt(args[0]);

 int[] A = new int[n];

 Random R = new Random();

 for (int i=0;i<n;i++)

 A[i] = R.nextInt();

 for (int i=0; i<n;i++)

 for (int j=0; j<n-1;j++)

 if (A[j+1]<A[j])

 {int temp = A[j];

 A[j] = A[j+1];

 A[j+1] = temp;

 }

 end = System.currentTimeMillis();

 System.out.println("The elapsed time is " + (end-begin)/1000);

 }

}

Lets think about how to convert this code to C. Java import

statements allows specific libraries to be included in the

project. In C, inclusion of external libraries are

accomplished by using include statement. First you need to

find equivalent libraries for java.io.* and java.util.*

Java.io.* is used for System.out.println operation and

java.util.* is used for Random class.

There are few other things you need to convert. Java

command line arguments args[] need to be replaced by argc

and char* argv[]. In C, argc gives the number of command

line arguments and argv[] is the array of char* or Strings.

char* is interpreted as a pointer to (or an address of) a

char. String in C is an array of characters ending with

null character ‘\0’. You can see the equivalent Java and C

programs at the end of this lecture.

Copyright @ 2009 Ananda Gunawardena

Additional Readings:

 [1] K & R – Chapter 1 – Tutorial Introduction to C – pages 5-21

[2] http://www.cs.cmu.edu/~thoffman/S09-15123/Chapter-1/Chapter-

1.html#CHAP_1.1

Exercises

1.1: What libraries in C contain a functions equivalent to

java println and Random.nextInt?

1.2: Write a program to search an array of strings in Java

and then convert it to a C program. (see example below)

1.3: Using unix commands find out how many sub-folders are

under the current working folder. You need to recursively

count all the sub-folders (later we will write a script to

do this. For now, we do this manually)

import java.io.*;

import java.util.*;

public class javasort {

 public static void main(String[] args)

 throws Exception {

 long begin, end;

 begin = System.currentTimeMillis();

 int n = Integer.parseInt(args[0]);

 int[] A = new int[n];

 Random R = new Random();

 for (int i=0;i<n;i++)

 A[i] = R.nextInt();

 for (int i=0; i<n;i++)

 for (int j=0; j<n-1;j++)

 if (A[j+1]<A[j])

 {int temp = A[j];

 A[j] = A[j+1];

 A[j+1] = temp;

 }

 end = System.currentTimeMillis();

 System.out.println("The elapsed time is " +

(end-begin)/1000);

 }

}

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int parseInt(char*);

int main(int argc, char* argv[]){

 long begin, end;

 int i, j;

 begin = time(NULL);

 int n = parseInt(argv[1]);

 int A[n];

 for (i=0;i<n;i++)

 A[i] = random();

 for (i=0; i<n;i++)

 for (j=0; j<n-1;j++)

 if (A[j+1]<A[j])

 {int temp = A[j];

 A[j] = A[j+1];

 A[j+1] = temp;

 }

 end = time(NULL);

 printf("The elapsed time is %lf ",end-begin);

 }

int parseInt(char* s){

 // complete this code

 // note: all strings end with null ‘\0’

 return 0;

Copyright @ 2009 Ananda Gunawardena

1.4: type ls –l at the command shell. Interpret the meaning

of the output given.
-rwxr-xr-x 1 guna nfsnobody 7530 Aug 25 15:20 a.out

-rw-r--r-- 1 guna nfsnobody 846 Aug 25 12:05 csort.c

-rw-r--r-- 1 guna nfsnobody 1061 Aug 25 15:19 javasort.class

-rw-r--r-- 1 guna nfsnobody 687 Aug 25 11:47 javasort.java

-rw-r--r-- 1 guna nfsnobody 89 Apr 30 2008 main.c

Copyright @ 2009 Ananda Gunawardena

Answers

1.1: What libraries in C contain a functions equivalent to

java println and Random.nextInt?

Ans: println � printf in C in <stdio.h>

 Random.nextInt � rand() in <stdlib.h>

1.2: Write a program to search an array of strings in Java

and then convert it to a C program. (see example below)

Ans: see 1.2.java and 1.2.c in demo/codeexamples folder

1.3: Using unix commands find out how many sub-folders are

under the current working folder. You need to recursively

count all the sub-folders (later we will write a script to

do this. For now, we do this manually)

Ans: ls –R will recursively display all the files and folders in the

current directory. Then you may want to “pipe” the output to “wc” to

count the number of entries. For example,

% ls –R | wc –l

1.4: type ls –l at the command shell. Interpret the meaning

of the output given.
-rwxr-xr-x 1 guna nfsnobody 7530 Aug 25 15:20 a.out

-rw-r--r-- 1 guna nfsnobody 846 Aug 25 12:05 csort.c

-rw-r--r-- 1 guna nfsnobody 1061 Aug 25 15:19 javasort.class

-rw-r--r-- 1 guna nfsnobody 687 Aug 25 11:47 javasort.java

-rw-r--r-- 1 guna nfsnobody 89 Apr 30 2008 main.c

Ans: This lists the file type (directory or file), file permission

(rwx) for user, groups and other, login id (guna), size of the file,

date it is created, file name etc.

