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Abstract

The detection of anomalous activity in graphs is a statistical problem that arises in
many applications, such as network surveillance, disease outbreak detection, and
activity monitoring in social networks. Beyond its wide applicability, graph struc-
tured anomaly detection serves as a case study in the difficulty of balancing com-
putational complexity with statistical power. In this work, we develop from first
principles the generalized likelihood ratio test for determining if there is a well
connected region of activation over the vertices in the graph in Gaussian noise.
Because this test is computationally infeasible, we provide a relaxation, called the
Lovész extended scan statistic (LESS) that uses submodularity to approximate the
intractable generalized likelihood ratio. We demonstrate a connection between
LESS and maximum a-posteriori inference in Markov random fields, which pro-
vides us with a poly-time algorithm for LESS. Using electrical network theory,
we are able to control type 1 error for LESS and prove conditions under which
LESS is risk consistent. Finally, we consider specific graph models, the torus, k-
nearest neighbor graphs, and e-random graphs. We show that on these graphs our
results provide near-optimal performance by matching our results to known lower
bounds.

1 Introduction

Detecting anomalous activity refers to determining if we are observing merely noise (business as
usual) or if there is some signal in the noise (anomalous activity). Classically, anomaly detection
focused on identifying rare behaviors and aberrant bursts in activity over a single data source or
channel. With the advent of large surveillance projects, social networks, and mobile computing,
data sources often are high-dimensional and have a network structure. With this in mind, statistics
needs to comprehensively address the detection of anomalous activity in graphs. In this paper, we
will study the detection of elevated activity in a graph with Gaussian noise.

In reality, very little is known about the detection of activity in graphs, despite a variety of real-world
applications such as activity detection in social networks, network surveillance, disease outbreak de-
tection, biomedical imaging, sensor network detection, gene network analysis, environmental moni-
toring and malware detection. Sensor networks might be deployed for detecting nuclear substances,
water contaminants, or activity in video surveillance. By exploiting the sensor network structure



(based on proximity), one can detect activity in networks when the activity is very faint. Recent
theoretical contributions in the statistical literature[lL, 2] have detailed the inherent difficulty of such
a testing problem but have positive results only under restrictive conditions on the graph topology.
By combining knowledge from high-dimensional statistics, graph theory and mathematical pro-
gramming, the characterization of detection algorithms over any graph topology by their statistical
properties is possible.

Aside from the statistical challenges, the computational complexity of any proposed algorithms
must be addressed. Due to the combinatorial nature of graph based methods, problems can easily
shift from having polynomial-time algorithms to having running times exponential in the size of
the graph. The applications of graph structured inference require that any method be scalable to
large graphs. As we will see, the ideal statistical procedure will be intractable, suggesting that
approximation algorithms and relaxations are necessary.

1.1 Problem Setup

Consider a connected, possibly weighted, directed graph G defined by a set of vertices V' (|V| = p)
and directed edges F (| E| = m) which are ordered pairs of vertices. Furthermore, the edges may be
assigned weights, {W.}.c g, that determine the relative strength of the interactions of the adjacent
vertices. For each vertex, ¢ € V, we assume that there is an observation y; that has a Normal
distribution with mean x; and variance 1. This is called the graph-structured normal means problem,
and we observe one realization of the random vector

y=x+¢, (1)

where x € RP, £ ~ N(0,I,%,). The signal x will reflect the assumption that there is an active
cluster (C' C V) in the graph, by making z; > 0if ¢ € C and z; = 0 otherwise. Furthermore,
the allowable clusters, C', must have a small boundary in the graph. Specifically, we assume that
there are parameters p, 1+ (possibly dependent on p such that the class of graph-structured activation
patterns x is given as follows.

X:{x:x:ulc,CEC}, C={CCV:ou(C)<p}

VICl

Here out(C) = >>(, yyep Wupl{u € Civ € C'} is the total weight of edges leaving the cluster C.
In other words, the set of activated vertices C have a small cut size in the graph G. While we assume
that the noise variance is 1 in (), this is equivalent to the more general model in which E¢? = o2
with o known. If we wanted to consider known o2 then we would apply all our algorithms to y /o
and replace p with 11/0 in all of our statements. For this reason, we call u the signal-to-noise ratio
(SNR), and proceed with o0 = 1.

In graph-structured activation detection we are concerned with statistically testing the null against
the alternative hypotheses,
Hy:y ~ N(0,I)

Hy:y~N(x1I),xeX @

Hj represents business as usual (such as sensors returning only noise) while H; encompasses all of
the foreseeable anomalous activity (an elevated group of noisy sensor observations). Let a test be a
mapping T(y) € {0, 1}, where 1 indicates that we reject the null. It is imperative that we control
both the probability of false alarm, and the false acceptance of the null. To this end, we define our
measure of risk to be
R(T) = Eo[T] + sup Ex[1 — T]
xeX

where Ey denote the expectation with respect to y ~ N(x,I). These terms are also known as the
probability of type 1 and type 2 error respectively. This setting should not be confused with the
Bayesian testing setup (e.g. as considered in [2} [3]) where the patterns, x, are drawn at random.
We will say that Hy and H; are asymptotically distinguished by a test, T, if in the setting of large
graphs, lim,,_,., R(T") = 0. If such a test exists then Hy and H; are asymprotically distinguishable,
otherwise they are asymptotically indistinguishable (which occurs whenever the risk does not tend
to 0). We will be characterizing regimes for p in which our test asymptotically distinguishes Hy
from H;.



Throughout the study, let the edge-incidence matrix of G be V € R™*P such that for e = (v, w) €
E, Ve, =—We, Ve = W, and is 0 elsewhere. For directed graphs, vertex degrees refer to d,, =
out({v}). Let ||.|| denote the ¢5 norm, ||.||; be the ¢; norm, and (x)4 be the positive components
of the vector x. Let [p] = {1,...,p}, and we will be using the o notation, namely if non-negative
sequences satisfy a,, /b, — 0 then a,, = o(b,,) and b,, = w(ay,).

1.2 Contributions

Section 3 highlights what is known about the hypothesis testing problem 2] particularly we provide
a regime for p in which Hy and H; are asymptotically indistinguishable. In section 4.1, we derive
the graph scan statistic from the generalized likelihood ratio principle which we show to be a com-
putationally intractable procedure. In section 4.2, we provide a relaxation of the graph scan statistic
(GSS), the Lovasz extended scan statistic (LESS), and we show that it can be computed with suc-
cessive minimum s — ¢ cut programs (a graph cut that separates a source vertex from a sink vertex).
In section 5, we give our main result, Theorem [3] that provides a type 1 error control for both test
statistics, relating their performance to electrical network theory. In section 6, we show that GSS
and LESS can asymptotically distinguish Hy and H; in signal-to-noise ratios close to the lowest
possible for some important graph models. All proofs are in the Appendix.

2 Related Work

Graph structured signal processing. There have been several approaches to signal processing over
graphs. Markov random fields (MRF) provide a succinct framework in which the underlying signal
is modeled as a draw from an Ising or Potts model [4, 5]. We will return to MRFs in a later section,
as it will relate to our scan statistic. A similar line of research is the use of kernels over graphs. The
study of kernels over graphs began with the development of diffusion kernels [6], and was extended
through Green’s functions on graphs [[7]. While these methods are used to estimate binary signals
(where z; € {0,1}) over graphs, little is known about their statistical properties and their use in
signal detection. To the best of our knowledge, this paper is the first connection made between
anomaly detection and MRFs.

Normal means testing. Normal means testing in high-dimensions is a well established and funda-
mental problem in statistics. Much is known when H; derives from a smooth function space such as
Besov spaces or Sobolev spaces[8, [9]. Only recently have combinatorial structures such as graphs
been proposed as the underlying structure of H;. A significant portion of the recent work in this area
[10} 3L 11} 2] has focused on incorporating structural assumptions on the signal, as a way to mitigate
the effect of high-dimensionality and also because many real-life problems can be represented as
instances of the normal means problem with graph-structured signals (see, for an example, [L1]]).

Graph scan statistics. In spatial statistics, it is common, when searching for anomalous activity
to scan over regions in the spatial domain, testing for elevated activity[12, [13]. There have been
scan statistics proposed for graphs, most notably the work of [[14] in which the authors scan over
neighborhoods of the graphs defined by the graph distance. Other work has been done on the theory
and algorithms for scan statistics over specific graph models, but are not easily generalizable to
arbitrary graphs [15] [1]. More recently, it has been found that scanning over all well connected
regions of a graph can be computationally intractable, and so approximations to the intractable
likelihood-based procedure have been studied [16} [17]. We follow in this line of work, with a
relaxation to the intractable generalized likelihood ratio test.

3 A Lower Bound and Known Results

In this section we highlight the previously known results about the hypothesis testing problem ().
This problem was studied in [17], in which the authors demonstrated the following lower bound,
which derives from techniques developed in [3].

Theorem 1. [[[7] Hypotheses Hy and H, defined in Eq. () are asymptotically indistinguishable if

)

where dp . is the maximum degree of graph G.




Now that a regime of asymptotic indistinguishability has been established, it is instructive to consider
test statistics that do not take the graph into account (viz. the statistics are unaffected by a change
in the graph structure). Certainly, if we are in a situation where a naive procedure perform near-
optimally, then our study is not warranted. As it turns out, there is a gap between the performance
of the natural unstructured tests and the lower bound in Theorem [l

Proposition 2. [I7] (1) The thresholding test statistic, max,cp) ||, asymptotically distinguishes

Hy from Hy if = w(|C|log(p/[C1))-
(2) The sum test statistic, Yy, asymptotically distinguishes Ho from Hy if u = w(p/|CY).

vE(p]

As opposed to these naive tests one can scan over all clusters in C performing individual likelihood
ratio tests. This is called the scan statistic, and it is known to be a computationally intractable
combinatorial optimization. Previously, two alternatives to the scan statistic have been developed:
the spectral scan statistic [[16]], and one based on the uniform spanning tree wavelet basis [17]. The
former is indeed a relaxation of the ideal, computationally intractable, scan statistic, but in many
important graph topologies, such as the lattice, provides sub-optimal statistical performance. The
uniform spanning tree wavelets in effect allows one to scan over a subclass of the class, C, but tends
to provide worse performance (as we will see in section 6) than that presented in this work. The
theoretical results in [[17] are similar to ours, but they suffer additional log-factors.

4 Method

As we have noted the fundamental difficulty of the hypothesis testing problem is the composite
nature of the alternative hypothesis. Because the alternative is indexed by sets, C' € C(p), with a
low cut size, it is reasonable that the test statistic that we will derive results from a combinatorial
optimization program. In fact, we will show we can express the generalized likelihood ratio (GLR)
statistic in terms of a modular program with submodular constraints. This will turn out to be a
possibly NP-hard program, as a special case of such programs is the well known knapsack problem
[L8]. With this in mind, we provide a convex relaxation, using the Lovasz extension, to the ideal
GLR statistic. This relaxation conveniently has a dual objective that can be evaluated with a binary
Markov random field energy minimization, which is a well understood program. We will reserve
the theoretical statistical analysis for the following section.

Submodularity. Before we proceed, we will introduce the reader to submodularity and the Lovasz
extension. (A very nice introduction to submodularity can be found in [19].) For any set, which we
may as well take to be the vertex set [p], we say that a function F' : {0,1}? — R is submodular
if for any A, B C [p], F(A) + F(B) > F(AN B) + F(AU B). (We will interchangeably use
the bijection between 2[P! and {0, 1}? defined by C' — 1.) In this way, a submodular function
experiences diminishing returns, as additions to large sets tend to be less dramatic than additions to
small sets. But while this diminishing returns phenomenon is akin to concave functions, for opti-
mization purposes submodularity acts like convexity, as it admits efficient minimization procedures.
Moreover, for every submodular function there is a Lovész extension f : [0,1]” — R defined in the
following way: for x € [0, 1] let z;, denote the ith largest element of x, then

P

f(X) = x]lF({jl}) + Z(F({]la s a]l}) - F({]la s 7ji*1}))x]—i

i=2
Submodular functions as a class is similar to convex functions in that it is closed under addition and
non-negative scalar multiplication. The following facts about Lovasz extensions will be important.

Proposition 3. [[[9] Let F be submodular and f be its Lovdsz extension. Then f is convex, f(x) =
F(x)ifx € {0,1}7, and

min{F(x) : x € {0,1}’} = min{f(x) : x € [0,1]"}
We are now sufficiently prepared to develop the test statistics that will be the focus of this paper.

4.1 Graph Scan Statistic

It is instructive, when faced with a class of probability distributions, indexed by subsets C C 2[pl,
to think about what techniques we would use if we knew the correct set C' € C (which is often
called oracle information). One would in this case be only testing the null hypothesis Hy : x = 0



against the simple alternative H; : x « 1¢. In this situation, we would employ the likelihood
ratio test because by the Neyman-Pearson lemma it is the uniformly most powerful test statistic.

The maximum likelihood estimator for x is 1c1/,y/|C| (the MLE of x is 1%y/+/|C]) and the

likelihood ratio turns out to be
2
T, 1o 1]|1c1ly _ (1ly)?
e { 2y||}/exp{ | 7o -] f=ew {5

Hence, the log-likelihood ratio is proportional to (1y)?/|C| and thresholding this at 22 /2 gives
us a size « test.

This reasoning has been subject to the assumption that we had oracle knowledge of C. A
natural statistic, when C' is unknown, is the generalized log-likelihood ratio (GLR) defined by
max(1y)?/|C| s.t. C € C. We will work with the graph scan statistic (GSS),

T

§ = max \1/% s.t. C € C(p) ={C:out(C) < p} 3)
which is nearly equivalent to the GLR. (We can in fact evaluate s for y and —y, taking a maximum
and obtain the GLR, but statistically this is nearly the same.) Notice that there is no guarantee that
the program above is computationally feasible. In fact, it belongs to a class of programs, specifically
modular programs with submodular constraints that is known to contain NP-hard instantiations,
such as the ratio cut program and the knapsack program [18]]. Hence, we are compelled to form a
relaxation of the above program, that will with luck provide a feasible algorithm.

4.2 Lovasz Extended Scan Statistic

It is common, when faced with combinatorial optimization programs that are computationally in-
feasible, to relax the domain from the discrete {0,1}” to a continuous domain, such as [0, 1]?.
Generally, the hope is that optimizing the relaxation will approximate the combinatorial program
well. First we require that we can relax the constraint out(C') < p to the hypercube [0, 1]?. This
will be accomplished by replacing it with its Lovész extension [|(Vx) |1 < p. We then form the
relaxed program, which we will call the Lovdsz extended scan statistic (LESS),

T

[ = maxmax =Y st. x € X(p,t)={xe€[0,1)7: |(VX) |1 < p,1Tx <t} ())

telpl x /i

We will find that not only can this be solved with a convex program, but the dual objective is a

minimum binary Markov random field energy program. To this end, we will briefly go over binary
Markov random fields, which we will find can be used to solve our relaxation.

Binary Markov Random Fields. Much of the previous work on graph structured statistical proce-
dures assumes a Markov random field (MRF) model, in which there are discrete labels assigned to
each vertex in [p], and the observed variables {y, },c[p] are conditionally independent given these
labels. Furthermore, the prior distribution on the labels is drawn according to an Ising model (if
the labels are binary) or a Potts model otherwise. The task is to then compute a Bayes rule from
the posterior of the MRF. The majority of the previous work assumes that we are interested in the
maximum a-posteriori (MAP) estimator, which is the Bayes rule for the 0/1-loss. This can generally
be written in the form,
o Z Ly (@ |yw) + Z Wy wI{xy # x4}
veE(p] v#u€(p]

where [, is a data dependent log-likelihood. Such programs are called graph-representable in [20],
and are known to be solvable in the binary case with s-¢ graph cuts. Thus, by the min-cut max-flow
theorem the value of the MAP objective can be obtained by computing a maximum flow. More
recently, a dual-decomposition algorithm has been developed in order to parallelize the computation
of the MAP estimator for binary MRFs [21} 22].

We are now ready to state our result regarding the dual form of the LESS program, ().
Proposition 4. Let 1,11 > 0, and define the dual function of the LESS,

g(mo,m) = max y'x—mnol x—n|Vx|o
xe€{0,1}»



The LESS estimator is equal to the following minimum of convex optimizations

7 1
| = max — min m) + ot +
telp) x/ino,mzog(no m) + ot +mp

g(no,m1) is the objective of a MRF MAP problem, which is poly-time solvable with s-t graph cuts.

5 Theoretical Analysis

So far we have developed a lower bound to the hypothesis testing problem, shown that some com-
mon detectors do not meet this guarantee, and developed the Lovdsz extended scan statistic from
first principles. We will now provide a thorough statistical analysis of the performance of LESS.
Previously, electrical network theory, specifically the effective resistances of edges in the graph,
has been useful in describing the theoretical performance of a detector derived from uniform span-
ning tree wavelets [17]. As it turns out the performance of LESS is also dictated by the effective
resistances of edges in the graph.

Effective Resistance. Effective resistances have been extensively studied in electrical network the-
ory [23]. We define the combinatorial Laplacian of G to be A = D — W (D, ,, = out({v}) is the
diagonal degree matrix). A potential difference is any z € RIZ! such that it satisfies Kirchoff’s poten-
tial law: the total potential difference around any cycle is 0. Algebraically, this means that 3x € RP
such that Vx = z. The Dirichlet principle states that any solution to the following program gives
an absolute potential x that satisfies Kirchoff’s law:

mingx ' AX s.t. Xg = Vg

for source/sinks S C [p] and some voltage constraints vg € RISI. By Lagrangian calculus, the
solution to the above program is given by x = Afv where v is 0 over S¢ and vg over S, and t
indicates the Moore-Penrose pseudoinverse. The effective resistance between a source v € V and
a sink w € V is the potential difference required to create a unit flow between them. Hence, the
effective resistance between v and w is 7, o = (8, — dy) T AT(8, — ), Where J,, is the Dirac delta
function. There is a close connection between effective resistances and random spanning trees. The
uniform spanning tree (UST) is a random spanning tree, chosen uniformly at random from the set of
all distinct spanning trees. The foundational Matrix-Tree theorem [24} 23] states that the probability
of an edge, e, being included in the UST is equal to the edge weight times the effective resistance
Wer.. The UST is an essential component of the proof of our main theorem, in that it provides a
mechanism for unravelling the graph while still preserving the connectivity of the graph.

We are now in a position to state the main theorem, which will allow us to control the type 1 error
(the probability of false alarm) of both the GSS and its relaxation the LESS.

Theorem 5. Let re = max{}_, ,)ep.uec WuoT(u,v) : C € C} be the maximum effective re-

sistance of the boundary of a cluster C. The following statements hold under the null hypothesis
Hy:x=0:

1. The graph scan statistic, with probability at least 1 — «, is smaller than

§< (ﬁ—&- \/élogp> V2log(p — 1) + v/2log 2 + /21og(1/a) %)

2. The Lovdsz extended scan statistic, with probability at least 1 — « is smaller than

2
[ < log(2p) + 1 = + 2 (ﬁJr \/ilng) log p
\/(\/ﬁ+\/;logp> log p (©)

+v/2logp + \/2log(1/a)

The implication of Theorem [ is that the size of the test may be controlled at level « by selecting
thresholds given by () and (6) for GSS and LESS respectively. Notice that the control provided
for the LESS is not significantly different from that of the GSS. This is highlighted by the following
Corollary, which combines Theorem[3] with a type 2 error bound to produce an information theoretic
guarantee for the asymptotic performance of the GSS and LESS.



Corollary 6. Both the GSS and the LESS asymptotically distinguish Hy from Hy if

E_ (max{\/rc log ,logp})
o
To summarize we have established that the performance of the GSS and the LESS are dictated by

the effective resistances of cuts in the graph. While the condition in Cor. [fl may seem mysterious,
the guarantee in fact nearly matches the lower bound for many graph models as we now show.

6 Specific Graph Models

Theorem [5] shows that the effective resistance of the boundary plays a critical role in characterizing
the distinguishability region of both the the GSS and LESS. On specific graph families, we can
compute the effective resistances precisely, leading to concrete detection guarantees that we will see
nearly matches the lower bound in many cases. Throughout this section, we will only be working
with undirected, unweighted graphs.

Recall that Corollary [6] shows that an SNR of w (\/ rc log p) is sufficient while Theorem [1| shows

that ( 0/ dmax log p> is necessary for detection. Thus if we can show that re¢ = p/dpayx, We

would establish the near-optimality of both the GSS and LESS. Foster’s theorem lends evidence to
the fact that the effective resistances should be much smaller than the cut size:

Theorem 7. (Foster’s Theorem [125) 126l])

Zre:p—l

ecE

Roughly speaking, the effective resistance of an edge selected uniformly at randomis ~ (p—1)/m =
dL so the effective resistance of a cut is & p/dq.. This intuition can be formalized for specific

models and this improvement by the average degree bring us much closer to the lower bound.
6.1 Edge Transitive Graphs

An edge transitive graph, G, is one for which there is a graph automorphism mapping e to e; for any
pair of edges e, e;. Examples include the [-dimensional torus, the cycle, and the complete graph
K,,. The existence of these automorphisms implies that every edge has the same effective resistance,
and by Foster’s theorem, we know that these resistances are exactly (p — 1)/m. Moreover, since
edge transitive graphs must be d-regular, we know that m = ©(pd) so that . = O(1/d). Thus as
a corollary to Theorem [5| we have that both the GSS and LESS are near-optimal (optimal modulo
logarithmic factors whenever p/d < ,/p) on edge transitive graphs:

Corollary 8. Let G be an edge-transitive graph with common degree d. Then both the GSS and
LESS distinguish Hy from Hy provided that:

h=w (max{\/P/dTg, logp})

6.2 Random Geometric Graphs

Another popular family of graphs are those constructed from a set of points in R” drawn according
to some density. These graphs have inherent randomness stemming from sampling of the density,
and thus earn the name random geometric graphs. The two most popular such graphs are symmetric
k-nearest neighbor graphs and e-graphs. We characterize the distinguishability region for both.

In both cases, a set of points z1, . . . , z, are drawn i.i.d. from a density f support over R”, or a subset
of RP. Our results require mild regularity conditions on f, which, roughly speaking, require that
supp(f) is topologically equivalent to the cube and has density bounded away from zero (See [27]]
for a precise definition). To form a k-nearest neighbor graph G, we associate each vertex ¢ with a
point z; and we connect vertices %, j if z; is amongst the k-nearest neighbors, in £, of z; or vice
versa. In the the e-graph, G we connect vertices 4, j if ||z;,z;|| < ¢ for some metric 7.

The relationship . =~ 1/d, which we used for edge-transitive graphs, was derived in Corollaries 8
and 9 in [27] The precise concentration arguments, which have been done before [17], lead to the
following corollary regarding the performance of the GSS and LESS on random geometric graphs:
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Figure 1: A comparison of detection procedures: spectral scan statistic (SSS), UST wavelet detector
(Wavelet), and LESS. The graphs used are the square 2D Torus, kNN graph (k ~ p'/%), and e-graph
(with € =~ p~1/3); with u = 4, 4, 3 respectively, p = 225, and |C| =~ p'/2.

Corollary 9. Let G}, be a k-NN graph with k/p — 0, k(k/p)*/P — oo and suppose the density
f meets the regularity conditions in [27|]. Then both the GSS and LESS distinguish Hy from H

provided that:
p=uw (maX{\/p/k log 710gp})

If G. is an e-graph with € — 0, neP®+2 — oo then both distinguish Hy from H, provided that:

n=w (max{ LD log p, logp}>
\/ pe

The corollary follows immediately form Corollary [6l and the proofs in [[17]. Since under the regu-
larity conditions, the maximum degree is ©(k) and ©(pe”) in k-NN and e-graphs respectively, the
corollary establishes the near optimality (again provided that p/d < ,/p) of both test statistics.

We performed some experiments using the MRF based algorithm outlined in Prop.dl Each exper-
iment is made with graphs with 225 vertices, and we report the true positive rate versus the false
positive rate as the threshold varies (also known as the ROC.) For each graph model, LESS provides
gains over the spectral scan statistic[16] and the UST wavelet detector[17], each of the gains are
significant except for the e-graph which is more modest.

7 Conclusions

To summarize, while Corollary 6] characterizes the performance of GSS and LESS in terms of ef-
fective resistances, in many specific graph models, this can be translated into near-optimal detection
guarantees for these test statistics. We have demonstrated that the LESS provides guarantees similar
to that of the computationally intractable generalized likelihood ratio test (GSS). Furthermore, the
LESS can be solved through successive graph cuts by relating it to MAP estimation in an MRF.
Future work includes using these concepts for localizing the activation, making the program robust
to missing data, and extending the analysis to non-Gaussian error.
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8 Appendix

Let us introduce the following notation: W (A — B) is the total weight of edges with a tail in A and
ahead in B\ A.

Proposition 10. 1. out is submodular.

2. The Lovdsz extension of out is f(w) = ||[(Vw)4||.

Proof. 1. Let us partition all of the relevant edges: w; = W(A\B - AUB),ws =W(ANB —
AUB),w3 = W(B\A - AUB),wy = W(A\B — B\A),ws = W(B\A — A\B),ws =
W(ANB — A\B),w; = W(AN B — B\ A). Let us then evaluate out,

out(A) + out(B) = (w1 + wa + wy + wr) + (w3 + wa + ws + we)

> (w1 + ws + w3) + (wa + wg + w7) = out(AU B) + out(AN B)

2. Let f be the Lovdsz extension of out. Let x € RP, and {j;}?_, be such that z;, > Tjiyq-
Furthermore, let C; = {j) : k > i}. Then, we see that f takes the form,

Fx) = 2, W({ji} = Ci) = W(C; — {ji})]
=1

Let us consider then the components attributable to the edge (j;, jx); these are W, ;, (z;,I(i <
k) —x;, I(i < k)) =W;, j.(x;, — z;,)+ because there is no contribution if j, ¢ C;. This gives us
our result. O

Proof of Propositiond] We begin with the LESS form in (@),

R T
[= max =Y st.xeX(p,t)={x€[0,17: |(Vx)s] < p, 1 x <t}

te [p] X \/i

Define Lagrangian parameters 7 € R% and the Lagrangian function, L(n,x) = x'y — nox'1 —
M| (Vx)4 |1 +not 4+ n1p and notice that it is convex in 7 and concave in x. Also, the domain [0, 1]P
is bounded and each domain of L is non-empty closed and convex.

max inf L(n,x)= inf max L(n,x
x€[0,1]7 neRr? (1) neRr2 x€[0,1]7 (1)

This follows from a saddlepoint result in [28] (p.393 Cor. 37.3.2). All that remains is to notice
that —x "y + nox "1 + 71 [|(Vx)4 |1 is the Lovdsz extension of —x Ty + nox ' 1 + nout(x) for
x € {0, 1}P. Hence, by Proposition[3] there exists a minimizer that lies within {0, 1}?, and so
inf  max L(n,x) = inf g(no,m)+nok+mp
nERi x€[0,1]P neRi
This follows from the fact that ||(Vx), ||; is equal to out(x) for x € {0,1}?. The program g takes
the form of a modular term and a cut term, which is solvable by graph cuts [29]. O

8.1 Proof of Theorem 3

We will begin by establishing some facts about uniform spanning trees (UST). In a directed graph,
a spanning tree is a tree in the graph that contains each vertex such that all the vertices but one (the
root) are tails of edges in the tree. If the directed graph is not connected (i.e. there are two vertices
such that there is no directed path between them) then we would have to generalize our results to a
spanning forest. We will therefore assume this is not the case, for ease of presentation. Notice that
in the case that we have a weighted graph, then the UST makes the probability of selecting a tree 7
proportional to the product of the constituent edge weights.

Lemma 11. [30] Let a. € [0, 1],Ve € E and let T be a draw from the UST. If Z =
T4, forany § € (0,1),

cer el{ie €

66 EZ
P(Z > (1+0EZ)} < (W>
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This implies that with probability 1 —ca, Z < (VEZ +/log(1/a))? [17]. Moreover, the probability
that an edge is included in 7 is its effective resistance times the edge weight, P{e € T} = W,r.
[23].

Proof of TheoremBl(1). In the following proof, for some class A € 2/, let g(A) =
T
Esupsea \1/% (this is known as a Gaussian complexity). Furthermore let V- be the inci-

dence matrix restricted to the edges in 7 (note that this is an unweighted directed graph). Let

C(T)={C C [p]: |[(Vr1c)+]1 < (y/re + /log1/6)?} and § > O then under the UST for any
C,Pr{C ¢ C(T)} < 4. (This follows from Lemma[Il)

Ee sup S8 _ B sup By 1S [1{C € ¢(T)} + 1{C ¢ C(T)}
up — =
SO IC] | Coee T T
< Ee sup |Er1{C € C(T)} Clo  p1(c¢cm) €71 |
< sup T sup T sup
¢ cec cree(T) V/|C'| crezi /|C7] |
Mo €71y |
< E¢sup |[Ey sup +Er1{C ¢ C(T)} sup
* Cec crec(T) x/|C’ { }c'ezm VIC' ]
€1 |
<E¢ |Ef sup —|—sup Pr{C ¢ C(T)} sup
¢ crec(T) \/IC’ toec( )}C’ezlp] egy

< E7g(C(T)) + g(2*) sup P7{C ¢ C(T)}

For any T, |C(T)| < ( )(ﬁ*\/ 10g1/9)" because 7T is unweighted. By Gaussianity and the fact
that E(15¢/4/]C))? =

T)) < +/2log|C(T)] < \/2(\/% ++/log1/5)*log(p — 1)

Furthermore, g(2[") < a/p where a = \/2log 2. Setting § = p~*/2 we have the following bound
on the Gaussian complexity,

9(C) < (V7T + 1 5 l05p)V/2Toglp 1) +a

By Cirelson’s theorem [31]], with probability at least 1 — «

¢'g
sup
cec /|C|

< 9(C) + v2log(1/a)

O

—

Proof of TheoremBl(2). Let X(T) = {x € [0,1]” : [|[(V7x)+]1 < (Vrx + /log1/§)?}. 1
remains the case that, by the previous Lemma [[T} ]P’{H(VTX)+H1 > (rx + /log1/5)*} <4,
where ry = {max} ;o p Were(2; —2;)4 1 x € X'}

T Ty
Eel = E¢ sup & X _ Ee sup ]E7—5 H{xe X(T)}+1{x ¢ X(T)}]
te[p],xeX (p,t) Vi te[p],x€X (p,t) Vit
gT / fTX/
< E¢ sup Erl{x e X(T)} sup +Er1{x¢ X(T)} sup —
te[p],x€X (p,t) x'eX(T x/ <t \[ x'€[0,1]P,1Tx' <t

CX L Bri(x ¢ X(T)) €

<E sup E+ sup +Er1{x ¢ X (T sup —

¢ te[p],xeX (p,t) x'eX(T x/<t \[ x'€[0,1]P,1Tx' <t \/E
T fTX
< E7E; sup >— + sup Pr{x¢ X(T)}E; sup —
telplxeX(T)1Tx<t VI xeX(p) telplxel01)p 1 Tx<t Vi

These follow from Jensen’s inequality and Fubini’s theorem.
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Claim 12.

T
E¢ sup E—X < +/2plog2

telp],x€[0,1]P,1 Tx<¢t \/Z

We will proceed to prove the above claim. In words it follows from the fact that solutions to the
program are integral by the generic chaining.

E sup §'x = E¢ sup L sup £Tx
E te(p],x€[0,1]P,1Tx<t \[ E p] \/'E x€[0,1]P:1Tx<t
1
= E¢ sup sup ¢Tx = Es sup < +/2plog2
te[ p] \[ t xe{0,1}7:1Tx<t x€{0,1}» ||X||

The second equality holds because the solution to the optimization with ¢ fixed is the top ¢ coordi-
nates of ¢. The third equality holds because x € {0,1}? and so 1 x is integer. Hence, if x is a
solution for the objective with ¢ fixed and 1" x < t then it holds for the objective with ¢ — 1, and the

overall objective is increased. Thus at the optimum, ||x|| = V1Tx = v/%.

Claim 13. Denote r = (\/rx + 1/ 5 log p)>. For any spanning tree T,

€Tx  log(2p) +1
E sup < + 24/rlogp
5 te[p],x€X(T),1Tx<t \/ V ’/‘1ng

This will follow from weak duality and a clever choice of dual parameters.

1
sup sup §Tx
te(p] \/{t x€X(T),1Tx<t
=sup — sup inf &' x—nol x —ml|(V7x) ¢l + ot + mr
te[p] VT xe[o,1]» 120

t
<sup— sup € x—1Tx, [ logp — (V)4 1/~ logp +2v/rtlogp
te[p] \/xE{O,l}P t r

The above display follows by selecting 7o = /7 logp and 0 = 4/ % log p and using Prop.[3l

T

= sup sup supg—x——\/rlog logp—|—2\/rlog

ke[p] x€{0,1}P:out(x)=k t€[p] \/E

(€"x)? 1
< sup sup — > 7 L *logp—i—QW
kelp] xe{0,1}P-out(x)=k 4]|%[|2v/7Tog p r

The above display follows from the fact that for any a,b > 0, sup, g at — bt? = a?/(4b). We know
that with probability at least 1 — « for all k € [p],

£Tx
e < \/2klogp + v/2log(2p/ )
X

sup
x€{0,1}?,out(x)=k

So we can bound the above,
1 - (v2kTogp + /2log(2p/a))? /1
sup — sup &' x < sup — ky/—logp+ 2y/rlogp
te(p] Vit x€X(T),1Tx<t ke[p] 4y/rlogp r
\/klog 2p/a llogp log(2p/«)
+ 2+/rlogp
kE[p] 2\/T10g

log(2p/a) log(2p/a)
< 24/rl
— 2¢/rlogp * 24/rlogp +avriosp

_ log(2p/c)

+24/71
vrlogp rioep
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Any random variable Z that satisfies Z < a + blog(1/«) with probability 1 — « for any o > 0 for
a,b > 0 also satisfies EZ < a + b. Hence,

1 log(2p) + 1
E¢ sup — sup ¢Tx < —=——— +2/rlogp
¢ telp] VE xex(T),17x<t Vrlogp \/7

Combining all of these results and using Cirelson’s theorem [31]],

2

- log(2 1 1

[ < 08(2p) + > +2 («/TX—F\/Qlogp) logp
N/(\/rx»+»\/§logp) log p

++v/2log2 + y/2log(1/a)

All that remains to be show is that ry = r¢. This can be seen by constructing the level sets of
x € [0,1]7 and noticing that } - ; .oy Were(z; — i)+ is piecewise linear in the levels. Thus, we
can draw a contradiction from the supposition that the levels are not in {0, 1}. O

Proof of Corollaryll We will argue that with high probability, under H; the GSS and LESS are
large. For the analysis of both the GSS and the LESS, let

x* = lc, t*t = |C ‘
Then both the GSS and LESS are lower bounded by

1ly 1L¢
< =pt < NN(:U'vl)

vier Vel

Hence, under H;, with probability 1 — «, the GSS and LESS are larger than p — /2 log(1/«). The
Corollary follows by comparing this to the guarantee in Theorem O
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