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Abstract

We focus on the problem of minimizing a con-
vex function f over a convex set S given T
queries to a stochastic first order oracle. We
argue that the complexity of convex mini-
mization is only determined by the rate of
growth of the function around its minimizer
T} g, as quantified by a Tsybakov-like noise
condition. Specifically, we prove that if f
grows at least as fast as ||z — a7 ¢[|" around
its minimum, for some k > 1, then the op-
timal rate of learning f(z7} ) is O(T~z-2),
The classic rate ©(1/v/T) for convex func-
tions and ©(1/T) for strongly convex func-
tions are special cases of our result for kK — oo
and k = 2, and even faster rates are at-
tained for k < 2. We also derive tight bounds
for the complexity of learning z7% g, where

the optimal rate is @(T‘ﬁ). Interest-
ingly, these precise rates for convex optimiza-
tion also characterize the complexity of active
learning and our results further strengthen
the connections between the two fields, both
of which rely on feedback-driven queries.

1. Introduction and problem setup

Stochastic convex optimization in the first order oracle
model is the task of approximately minimizing a con-
vex function over a convex set, given oracle access to
unbiased estimates of the function and gradient at any
point, by using as few queries as possible (Nemirovski
& Yudin, 1983).
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A function f is convex on S if, for allz,y € S, ¢t € [0, 1],

fltr+ (1 =t)y) <tf(z)+ (1 —-1t)f(y)
f is Lipschitz with constant L if for all z,y € S,

[f(z) = fy) < Lz -y
Equivalently, for subgradients g, € df(x), ||gz|l« < L.

Without loss of generality, everywhere in this paper
we shall always assume ||.|| = |||« = ||-]|2, and we
shall always deal with convex functions with L = 1.
Furthermore, we will consider the set S C R? to
be closed bounded convex sets with diameter D =
maxg yes ||z — y|| < 1. Let the collection of all such
sets be S. Given S € S, let the set of all such convex
functions on S be F¢ (with S implicit).

A stochastic first order oracle is a function that ac-
cepts # € S as input, and returns (f(z), §(x)) where
E[f(z)] = f(x), E[g(x)] = g(z) (and furthermore, they
have unit variance) where g(x) € 9f(z) and the expec-
tation is over any internal randomness of the oracle.
Let the set of all such oracles be O. As we refer to
it later in the paper, we note that a stochastic zeroth
order oracle is defined analogously but only returns
unbiased function values and no gradient information.

An optimization algorithm is a method M that repeat-
edly queries the oracle at points in S and returns Z as
an estimate of the optimum of f after T' queries. Let
the set of all such procedures be M. A central question
of the field is “How close can we get to the optimum
of a convex function given a budget of T queries?”.

Let 2} ¢ = argminges f(z). Distance of an estimate
Zr to the optimum z% ¢ can be measured in two ways.
We define the function-error and point-error of M as:

6T(]\47 f7 S, O) = f(-iT) - f(l"?,s)

pT(Mafa S,O) = ||‘%T _x?»SH
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There has been a lot of past work on worst-case bounds
for e7 for common function classes. Formally, let

ern(F) = sup sup inf sup Epler(M, f,S,0)]
0e0 SeS MeM ¢cr

pr(F) = sup sup inf sup Eolpr(M, f,S,0)]
0€0 SeS MeEM jecF

It is well known (Nemirovski & Yudin, 1983) that for
the set of all convex functions, €5(F¢) = O(1/VT).
However, better rates are possible for smaller classes,
like that of strongly convex functions, FS€.

A function f is strongly convex on S with parameter
A > 0if for all z,y € S and for all t € [0, 1],

Fltz+(1=1)y) < @)+ 1))~ SN (1) lz ]

Intuitively, this condition means that [ is lower
bounded by a quadratic everywhere (in contrast, con-
vex functions are lower bounded by a hyperplane ev-
erywhere). Again, it is well known (Nemirovski &
Yudin, 1983; Agarwal et al., 2012; Hazan & Kale, 2011)
that that for the set of all strongly convex functions,
ex(F9Y) = ©(1/T). An immediate geometric ques-
tion arises - what property of strongly convex functions
allows them to be minimized quicker?

In this work, we answer the above question by char-
acterizing precisely what determines the optimal rate
and we derive what exactly that rate is for more gen-
eral classes. We intuitively describe why such a char-
acterization holds true and what it means by connect-
ing it to a central concept in active learning. These
bounds are shown to be tight for both function-error
f(x) — f(z} ) and the less used, but possibly equally
important, point-error ||z — 27} gl|.

We claim that the sole determining factor for mini-
max rates is a condition about the growth of the func-
tion only around its optimum, and not a global con-
dition about the strength of its convexity everywhere
in space. For strongly convex functions, we get the
well-known result that for optimal rates it is sufficient
for the function to be lower bounded by a quadratic
only around its optimum (not everywhere).

As we shall see later, any f € F°¢ satisfies

[@) - [ = Sl —asl? ()

On the same note, given a set S € S, let F* represent
the set of all convex functions such that for all x € S

f@) - f5e) = Sle—arsls @)

for some x > 1. This forms a nested hierarchy of
classes of ]—'C, with F®1 C F"2 whenever k1 < Kao.
Also notice that F2 D F5¢ and UK F& C FC. For any
finite kK < oo, this condition automatically ensures that
the function is strictly convex and hence the minimizer
is well-defined and unique.

Then we can state our main result as:

Theorem 1. Let F* (k > 1) be the set of all 1-
Lipschitz convex functions on S € S satisfying f(x) —
fl@}s) = 3z - z}gll™ for all x € S for some
A > 0. Then, for first order oracles, we have €5 (F"*) =
O(T~7=7) and pin(F*) = (T~ 72). Also, for ze-
roth order oracles, we have €x(F*) = Q(1/VT) and
pr(Fr) = QT 2).

Note that for €} we get faster rates than 1/7 for k < 2.

For example, if we choose k£ = 3/2, then we surpris-
ingly get ex.(F%/2) = ©(T3/2).

The proof idea in the lower bound arises from recogniz-
ing that the growth condition in equation (2) closely
resembles the Tsybakov noise condition (TNC) ! from
statistical learning literature, which is known to deter-
mine minimax rates for passive and active classifica-
tion (Tsybakov, 2009; Castro & Nowak, 2007) and level
set estimation (Tsybakov, 1997; Singh et al., 2009).

Specifically, we modify a proof from (Castro & Nowak,
2007) that was originally used to find the minimax
lower bound for active classification where the TNC
was satisfied at the decision boundary. We translate
this to our setting to get a lower bound on the opti-
mization rate, where the function satisfies a convexity
strength condition at its optimum. One can think of
the rate of growth of the function around its minimum
as determining how much the oracle’s noise will drown
out the true gradient information, thus measuring the
signal to noise ratio near the optimum.

(Raginsky & Rakhlin, 2009) notice that stochastic con-
vex optimization and active learning have similar fla-
vors because of the role of feedback and sequential de-
pendence of queries. Our results make this connec-
tion more precise by demonstrating that the complex-
ity of convex optimization in d-dimensions is precisely
the same as the complexity of active learning in 1 di-
mension. Specifically, the rates we derive for function
error and point error in first-order stochastic convex
optimization of a d-dimensional function are precisely
the same as the rates for classification error and error
in localizing the decision boundary, respectively, in 1-
dimensional active learning (Castro & Nowak, 2007).

!Sometimes goes by Tsybakov margin/regularity condi-
tion (Korostelev & Tsybakov, 1993; Tsybakov, 2009)
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This result agrees with intuition since in 1 dimension,
finding the decision boundary and the minimizer are
equivalent to finding the zero-crossing of the regres-
sion function, P(Y|X = x) — 1/2, or the zero-point
of the gradient, respectively (see Section 2.1 for de-
tails). Thus in 1D, it requires the same number of sam-
ples or time steps to find the decision boundary or the
minimizer, respectively, using feedback-driven queries.
In higher dimensions, the decision boundary becomes
a multi-dimensional set whereas, for a convex func-
tion, the minimizer continues to be the point of zero-
crossing of the gradient. Thus, rates for active learning
degrade exponentially in dimension, whereas rates for
first-order stochastic convex optimization don’t.

For upper bounds, we slightly alter a recent variant
of gradient descent from (Hazan & Kale, 2011) and
prove that it achieves the lower bound. While there
exist algorithms in passive (non-active) learning that
achieve the minimax rate without knowing the true
behaviour at the decision boundary, unfortunately our
upper bounds depend on knowing the optimal k.

1.1. Summary of contributions

e We provide an interesting connection between
strong convexity (more generally, uniform convex-
ity) and the Tsybakov Noise Condition which is
popular in statistical learning theory (Tsybakov,
2009). Both can be interpreted as the amount
by which the signal to noise ratio decays on ap-
proaching the minimum in optimization or the de-
cision boundary in classification.

e We use the above connection to strengthen the
relationship between the fields of active learning
and convex optimization, the seeds of which were
sown in (Raginsky & Rakhlin, 2009) by showing
that the rates for first-order stochastic convex op-
timization of a d-dimensional function are pre-
cisely the rates for 1-dimensional active learning.

e Using proof techniques from active learning (Cas-
tro & Nowak, 2007), we get lower bounds for a hi-
erarchy of function classes F”, generalising known
results for convex, strongly convex (Nemirovski
& Yudin, 1983), (Agarwal et al., 2012) and uni-
formly convex classes (Sridharan & Tewari, 2010).

e We show that the above rates are tight (all £ > 1)
by generalising an algorithm from (Hazan & Kale,
2011) that was known to be optimal for strongly
convex functions, and also reproduce the optimal
rates for k-uniformly convex functions (only de-
fined for k > 2) (Touditski & Nesterov, 2010).

e Our lower bounding proof technique also gets
us, for free, lower bounds for the derivative free
stochastic zeroth-order oracle setting, a general-
ization of those derived in (Jamieson et al., 2012).

2. From Uniform Convexity to TNC

A function f is said to be x-uniformly convex (k > 2)
on S e€Sif, for all z,y € S and all ¢ € [0, 1],

1
fltz+(1-t)y) < tf(2)+(1-1)f(y)—5At (A1) a—y|"
for some A > 0 (Iouditski & Nesterov, 2010).

An equivalent first-order condition, is that for any sub-
gradient g, € 9f(z), we have for all z,y € S,

)2 f@) + ol a4 aly—alt )

When x = 2, this is well known as strong convexity.
It is well known that since 0 € 9f(z7} 5), we have for
allz € S,

A
@) 2 fays) + Sl —apslt @

This local condition is strictly weaker than (3) and it
only states that the function grows at least as fast as
|z — 2% g||" around its optimum. This bears a strik-
ing resemblance to the T'sybakov Noise Condition (also
called the regularity or margin condition) from the sta-
tistical learning literature.

Tysbakov’s Noise Condition We reproduce a rel-
evant version of the condition from (Castro & Nowak,
2007). Define n(z) := P(¢(z) = 1|z), where ¢(x) is the
label of point x. Let z* be the closest point to x such
that n(z*) = 1/2, ie on the decision boundary. 7 is
said to satisfy the TNC with exponent x > 1 if

n(z) —n(z™)| = Allz — 2| (5)
for all z in such that |n(z) — 1/2] < § with § > 0.

It is natural to conjecture that the strength of con-
vexity and the TNC play similar roles in determining
minimax rates, and that rates of optimizing functions
should really only depend on a TNC-like condition
around their minima, motivating the definition of F*
in equation 2. We emphasize that though uniform con-
vexity is not defined for k < 2, F* is well-defined for
k > 1 (see Appendix, Lemma 1).

The connection of the strength of convexity around the
optimum to TNC is very direct in one-dimension, and
we shall now see that it enables us to use an active
classification algorithm to do stochastic convex opti-
mization.
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2.1. Making it transparent in 1-D

We show how to reduce the task of stochastically op-
timizing a one-dimensional convex function to that of
active classification of signs of a monotone gradient.
For simplicity of exposition, we assume that the set .S
of interest is [0, 1], and f achieves a unique minimizer
x* inside the set (0,1).

Since f is convex, its true gradient g is an increas-
ing function of = that is negative before z* and pos-
itive after x*. Assume that the oracle returns gradi-
ent values corrupted by unit variance gaussian noise
2. Hence, one can think of sign(g(z)) as being the
true label of point x, sign(g(z) + z) as being the ob-
served label, and finding z* as learning the decision
boundary (the point where labels switch signs). If we
think of n(x) = P(sign(g(z) + z) = 1|z), then mini-
mizing f corresponds to identifying the Bayes classifier
[z*, 1] because the point at which n(x) = 0.5 is where
g(x) = 0, which is z*.

It f(z) = f(z*) = Allz — 27||", then |g.| > Az —
x*||""(see Appendix, Lemma 2). Let us consider a
point = which is a distance ¢ > 0 to the right of * and
hence has label 1 (similar argument for = < z*).

So, for all g, € 9f(x), g, > A" . In the presence
of gaussian noise z, the probability of seeing label 1 is
the probability that we draw z in (—g,, 00) so that the
sign of g, + z is still positive. This yields:

P(gp+2>0) = 05+ P(—g, <2z<0)

n(x) =
Note that the probability mass of a gaussian grows
linearly around its mean (Appendix, Lemma 3); ie,
for all ¢t < o there exist constants aj,as such that
ait < P(0 <z <t) <ast. So, we get

n(x) > 0.5+ a "
— @12 aMe— (©)

Hence, n(z) satisfies TNC with exponent x — 1.

(Castro & Nowak, 2007) provide an analysis of the
Burnashev-Zigangirov (BZ) algorithm, which is a
noise-tolerant variant of binary bisection, when the
regression function n(z) obeys a TNC like in equa-
tion 6. The BZ algorithm solves the one-dimensional
active classification problem such that after making T’
queries for a noisy label, it returns a confidence inter-
val I which contains z* with high probability, and
Zr is chosen to be the midpoint of Ir. They bound
the excess risk [, ;ap,. 1 [20(2) — 1|dz where A is
the symmetric difference operator over sets but small

2The gaussian assumption is only for this subsection

modifications to their proofs (see Appendix, Lemma
4) yield a bound on E|&p — z*|.

The setting of Kk = 1 is easy because the regression
function is bounded away from half (the true gradi-
ent doesn’t approach zero, so the noisy gradient is still
probably the correct sign) and we can show an expo-
nential convergence of E(|&r—z*|) = O(e~T>*/2). The
unbounded noise setting of k > 1 is harder and using a
variant of BZ analysed in (Castro & Nowak, 2007), we
can show (see Appendix, Lemma 5) that E(|2p—z*|) =

O (3)7 and B(lir - *[) =0 (4) 7. ¢

Interestingly, in the next section on lower bounds, we

1
show that for any dimension, {2 (%) 2%=2 is the mini-

max convergence rate for E(||Zr — z*])).

3. Lower bounds using TNC

We prove lower bounds for €.(F"), ph(F") using a
technique that was originally for proving lower bounds
for active classification under the TNC (Castro &
Nowak, 2007), providing a nice connection between ac-
tive learning and stochastic convex optimization.

Theorem 2. Let F* (k > 1) be the set of all 1-

Lipschitz convex functions on S € S satisfying f(x) —

flz}e) = Sz — z} gl for all x € S for some

A > 0. Then, we have en(F*) = QT 2-2) and
Za

P(FR) = Q(T™2-2).

The proof technique is summarised below. We demon-
strate an oracle O* and set S* over which we prove a
lower bound for infareas sup ez« Eoler(M, £, S, O)].
Specifically, let S* be [0,1]¢ N {||z|| < 1} and O* just
adds standard normal noise to the true function and
gradient values. We then pick two similar functions in
the class F* and show that they are hard to differen-
tiate with only T queries to O*.

We go about this by defining a semi-distance between
any two elements of F* as the distance between their
minima. We then choose two very similar functions
fo, f1 whose minima are 2a apart (we shall fix a later).
The oracle chooses one of these two functions and the
learner gets to query at points = in domain S*, receiv-
ing noisy gradient and function values y € R%, 2z € R.
We then define distributions corresponding to the two
functions P2, P} and choose a so that these distribu-
tions are at most a constant KL-distance v apart. We
then use Fano’s inequality which, using a and ~, lower
bounds the probability of identifying the wrong func-
tion by any estimator (and hence optimizing the wrong
function) given a finite time horizon of length 7'

3We use O to hide polylogarithmic factors.
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The use of Fano’s inequality is not new to convex op-
timization, but proofs that lower-bound the probabil-
ity of error under a sequential, feedback-driven query-
ing strategy are prominent in active learning, and we
show such proofs also apply to convex optimization
thanks to the relation of uniform convexity around the
minimum to the Tysbakov Noise Condition. We state
Fano’s inequality for completeness:

Theorem 3. (Tsybakov, 2009) Let F be a model class
with an associated semi-distance 6(-,-) : F x F = R
and each f € F having an associated measure P on a
common probability space. Let fqo, f1 € F be such that
5(fo, f1) > 2a > 0 and KL(P°||P') <~. Then,

exp(—7) 1—+1/2

4 2

inf sup pf (5(f, f) > a) > max <

f fer

3.1. Proof of Theorem 2

For technical reasons, we choose a subclass U* C F*
which is chosen such that every point in S* is the
unique minimizer of exactly one function in U*. By
construction of U*, returning an estimate Zp € S* is
equivalent to identifying the function fT € U" whose
minimizer is at 7. So we now proceed to bound

inf; sup ey Ellar — 2% g |-

Recall that we chose S* = [0,1]¢ N {||z|| < 1}. Define
the semi-distance §(f,, fp) = ||z} — ;| and let *

d
z)=c1 |l = ellzll}
=1

go(z) = kar (x’ffl Ty 1)
so that xf 5. = 0. Now define ai = (a,0, ...,0) and let
hiz) = ar(lz —2ai |5 +e2) 1 <4a
' fo(x) o.w.
|z1—2al” k-1 k—1
91(33) _ { KC1 ( (z1=2a) y Ty ey T ) 1 < 4da
go(z) 0.W.

so that =] 5. = 2d and hence d(fo, f1) = 2a. Notice
that these two functions and their gradients differ only
on a set of size 4a. Here, co = (4a)" — (2a)" is a
constant ensuring that fs is continuous at x; = 4a,
and c¢; is a constant depending on k,d ensuring that
the functions are 1-Lipschitz on S*. Both parts of
f1 are convex and the gradient of f; increases from
21 = 4a~ to x1 = 4a™, maintaining convexity. Hence
we conclude that both functions are indeed convex and

“For k = 2, note that fo, fi € F5¢ (strongly convex)

—5° flog 11

both are in F* for appropriate ¢; (Appendix, Lemma
6). Our interest here is the dependence on 7', so we
ignore these constants to enhance readability.

On querying at point X = =z, the oracle returns
Z ~ N(f(x),0?) and Y ~ N(g(z),0%1;). In other
words, for i = 0,1, we have P (Z;,V;|X = x;) =
N((fi(xt)7gi(xt))a021d+1)' Let ST = (XlTaleaZ,IT)
be the set of random variables corresponding to the
whole sequence of T' query points and responses. De-
fine a probability distribution corresponding to every
f € U" as the joint distribution of ST if the true func-
tion was f, and so

PYO“ = PO(X1T7YVIT7 Z,lr)v Pil“ = Pl(X,lrvle7 ZIT)
We show that the KL-divergence of these distributions
is KL(PY, PL) = O(Ta*~2) and choose a = T~ 73
so that KL(P2, P}) < v for some constant v > 0.
Lemma 1. KL(P?, P}) = O(Ta*"?)

Proof.

PYXT yT zZT
KL(P/JQ‘,P%):]EO |:10g ( 1571 » 1):|

PYXT, Y, ZT)
0y, Z| X ) P(Xo | X1 Y1 207
Ht PY(Yy, Z| Xo)P(X | XY 2

= E° lgHt 1 PPV, Zi] o)
Ht 1 PL(Y:, Ze| X:)
_ ZEO E° |1 Fm 1""’XTH
< 1 o G =
g s R - o
< T <xg[lg}f]dE° logm i :xD
o (%E o - D

T 2
= 3 (xg[l%dllgo(x) —g1(2)]l )

- fi@)?) (9)

2
2 K 2
_oal (. lor 20" s
N 2 <H rlrél[%,)fla] ( (1‘1 — 2(1) a1

+az ( max (|21 — 2a|" — x’f)z) (10)

x1€[0,4a]

2
= O(Ta*2) + O(Ta*") = O(Ta*"?)
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(7) follows because the distribution of X; conditional
on Xffl,Yffl,Zf*l depends only on the algorithm
M and does not change with the underlying distribu-
tion. (8) follows because Y; L Z; when conditioned
on X;. We also used (Y;,Z;|X;) L (Y;,Z;|X;) for
i # j. (9) follows because the KL-divergence be-
tween two identity-covariance gaussians is just half the
squared euclidean distance between their means. (10)
follows by simply substituting the gradient/function
values which differ only on z; € [0,4a]. O

Using Theorem 3 with a = T_Tl—Z, for some C' > 0
we get inf ; supyeyn Pr(0(fr, f) 2 a) = C. Hence,

inf sup E[|#r — 2}|| > a-inf sup Pf(5(fT,f) > a)
fr feur fr feur

> ¢.C = CT %>

where we used Markov’s inequality, Fano’s inequality
and finally the aforementioned choice of a.

This gives us our required bound on p4.(U*), and cor-
respondingly also for €%.(U") because

1]rv1[f fs;b;l)ﬁ E[f(2r) — f(z})] > 1]réjf fSEHLII)” AME|lzr — 27 "]
> inf sup AE||zp — z*||]"
fr feur
where the first inequality follows because f € F*, and
the second follows by applying Jensen’s for x > 1.
Finally, we get the bounds on pk(F") and eh.(F")

because we are now taking sup over the larger class
F% D U". This concludes the proof of Theorem 2.

This is a generalisation of known lower bounds, be-
cause we can recover existing lower bounds for the con-
vex and strongly convex settings by choosing x — oo
and kK = 2 respectively. Furthermore, we will show
that these bounds are tight for all kK > 1. These bounds
also immediately yield lower bounds for uniformly con-
vex functions, since ||z||¥ is k-uniformly convex (Ap-
pendix, Lemma 8) which can also be arrived from the
results of (Sridharan & Tewari, 2010) using an online-
to-batch conversion.

3.2. Derivative-Free Lower Bounds

The above proof immediately gives us a generalization
of recent tight lower bounds for derivative free opti-
mization (Jamieson et al., 2012), in which the authors
consider zeroth-order oracles (no gradient information)
and find that €5(F¢) = O(1/VT) = e(F5C) ° con-
cluding that strong convexity does not help in this
setting. Here, we show

®The & in (Jamieson et al., 2012) should not be confused
with our TNC exponent x = 2 for F5¢

Algorithm 1 EpochGD (domain S, exponent x > 0,
convexity parameter A > 0, confidence § > 0, oracle
budget T, subgradient bound G)

Initialize z} € S arbitrarily, e = 1

Kk C. 1/k
Initialize Ty = 2Co, m = C1 27 %2, Ry = (sz)

1: while >°¢_ | 7; <T do

2 fort=1to T, do

3: Query the oracle at x§ to obtain g;
4.

e
Ty = H

SNB(z§,R.)

(xte - negt)

5:  end for
1 T.
6:  Seta{t! = T% Doy .
T Set Te+1 = 2T, Netr1 = Ne * 2 2r—2
C 1/k
8 Set Rewy = (25) e et 1
9: end while
Output: zf

Theorem 4. Let F* (k > 1) be the set of all 1-
Lipschitz convex functions on S € S satisfying f(x) —
f(@}s) > 3 — z} l|" for all x € S for some A > 0.
Then, in the derivative-free zeroth-order oracle setting,
we have €-(F%) = Q(1/V/T) and pi(Fr) = Q(T~2x).

Ignoring y, Y{', define PY := PY(X{,zZT), Pl =
PYXT,ZT) to get KL(PY, PL) = O(Ta?*). Choose
a = T~ 3% so that KL(P2, P+) < ~ for some v > 0,
and apply Fano’s to get inf; supycyw EllZr — 23| =
CT~ 2 for some C > 0.

4. Upper Bounds using Epoch-GD

We show that the bounds from Secton 3 are tight by
presenting an algorithm achieving the same rate.

Theorem 5. Algorithm EpochGD(S,k,T,0,G,\) re-
turns £ € S after T queries to any oracle O € O,
such that for any f € F¥ k> 1 onany S €S, f(&r)—
fla3) = O(T~7=2) and ||&p — 2| = O(T~%=2) hold
with probability at least 1 — & for any § > 0. 6

Recall that for f € F*, ||g,|| < 1 for any subgradient
at any = € S. Since the oracle may introduce bounded
variance noise, we have ||g. || < 1+co? with high prob-
ability. Here, to keep a parallel with (Hazan & Kale,
2011), we use ||g,|| < G for convenience. Also, in algo-
rithm 1 B(z, R) refers to the ball around z of radius

Rie. B(x,R)={y| |z -yl < R}.

%0 hides loglog T and log(1/4) factors
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We note that for uniformly convex functions (k > 2),
(Touditski & Nesterov, 2010) derive the same upper
bounds. Our rates are valid for 1 < £ < 2 and hold
more generally as we have a weaker condition on F*.

4.1. Proof of Theorem 5

We generalize the proof in (Hazan & Kale, 2011) for
strongly convex functions (k = 2) and derive values for
Cy, C1 and Cy for which Theorem 5 holds. We begin
by showing that f having a bounded subgradient cor-
responds to a bound on the diameter of S, and hence
on the maximum achievable function value.

Lemma 2. If f € F* and ||g.|| < G, then for all
r € S, we have ||z — 2% < (G/\’l)ﬁ =: D and
21

flx) = flay) < (GEATH) 7T =M

Proof. By convexity, f(z) — f(z}) < gl (z — z}) <
gzl - lz — @%[| (Holder’s inequality), implying that
Gllz — a3l = f(z) = f(a}) = Az — 2*||".

Hence, ||:cf:c’1'2||“’1 <G/Xorflz—a}] < Gﬁ//\ﬁ_
Finally f(z) — f(2}) < Gllz — 23| < G /A7, O

Lemma 3. Let [|z1 — a}|| < R. Apply T iterations
of the update x¢y1 = IlgnB(z,,r) (Tt — NGt), where
is an unbiased estimator for the subgradient of f at x4
satisfying ||gi|| < G. Then for = % Yo x and any
0 > 0, with probability at least 1 — §, we have

nG* N o1 — 2% ]|? N 4G R+/210g(1/9)
2 20T VT

f(@) = fla}) <

Proof. Lemma 10 in (Hazan & Kale, 2011). O

Lemma 4. For any epoch e and any § > 0, T, = Cy2°,
E = Uog(cl0 + 1), ne = C127°%=2 for appropriate
Co, C1, Cy, we have with probability at least (1 — %)6_1

A, = f(25) = f(a}) < Cone

Proof. We let 5= % and use proof by induction on e.

The first step of induction, e = 1, requires

Ay < Comy = CC127 72 [RA]

Assume that A, < Cyn, for some e > 1, with prob-
ability at least (1 — §)°~! and we now prove it corre-
spondingly for epoch e+ 1. We condition on the event
A, < Cym, which happens with the above probability.
By the TNC, A, > M|z§ — «*||", and the condition-
ing implies that |25 —2*|| < (Cane/A\)'*, which is the
radius R, of the ball for the EpochGD projection step.

Lemma 3 applies with R = R, = (%)% and so with

probability at least 1 — J, we have

neG? | la§ — | B 5
Agyr < +
+ 2 2n. 1. VT,
27]e 1
neG?  Cfnt  AGCR)Ty2los(3)
< 3
2 2T\ VT,

For the induction, we would like RHS < 1n.,G? <
C57ey1 which can be achieved by

2 2
Kok 2
C12 Te . S neG
2neTe A= 6
4G(S=) %, [21og(3) e
<
VT, 3
neG® < Conet1  [RA]

[R2]

[R3]

Then, factoring in the conditioned event which hap-

pens with probability at least (1 —§)¢~! we would get
Aer1 < Coney1 with probability at least (1 — d6)¢.

We set Cy, C, Cs such that the four conditions hold.
[R4] = C, > G?272, a lower bound for Cj.

R2) = 2 (i) (%)

1

lo ) o 5\ me
[R3] — €y > (2O0REU) ™ (Ga) =

This is the stronger condition on Cf.

Observe that if Cy = 2881log(1/4), by substitution we
get the inequality Com = C1C27 72 > M22(-1)2

[R1] is trivially true for the above choices of
Co, C1,Cy, because Ay < M < M22+-D% < Cyny

2 A
Gﬁ2 2(k—1)2

Hence, Cy = 288log(E/d), C1 = and

1
AF=T
Cy = G272 satisfy the lemma. As a sanity check,
(Hazan & Kale, 2011) choose Cy = 288log(E/¢),Cy =
2/, Cy = 2G? for strongly convex functions. O

The algorithm runs for E = Llog(clO + 1)] rounds so
that the total number of queries is at most 7. ” The
bound for Ag4; yields the bounds on function error
immediately by noting that (1 — %)E > 1—¢ and since
f € F*, we can bound the point error

&7 — a*[| < NVE[f(ar) — f(z*) V"

"We lose loglogT factors here, like (Hazan & Kale,

2011). Alternatively, using E = |log(555 + 1)], we could
run for T'loglog T steps and get error bound O(T~ 72 )
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5. Discussion and future work

The most common assumptions in the literature for
proving convergence results for optimization algo-
rithms are those of convexity and strong convexity,
and (Touditski & Nesterov, 2010) recently prove upper
bounds using dual averaging for x-uniformly convex
functions when k > 2. These classes impose a con-
dition on the behaviour of the function, the strength
of its convexity, everywhere in the domain. The TNC
condition for our smooth hierarchy of classes is natu-
ral and strictly weaker because it is implied by uniform
convexity or strong convexity in the realm of kK > 2,
and has no corresponding notion when 1 < k < 2.

The lower bound Q(T~2-2) for €* that we prove im-
mediately gives us the 2(1/7T) lower bound for strongly
convex functions and the classic Q(1/v/T) bound when
k — 00. The lower bound Q(T‘ﬁ) for p* is interest-
ing because the optimization literature does not often
focus on point-error estimates. We demonstrate how
to use an active learning proof technique that is novel
in its application to optimization, having the addi-
tional benefit that it also gives tight rates for derivative
free optimization with no additional work. It is useful
to have a unified proof generalizing rates for convex,
strongly convex, uniformly convex and more in both
the first and zeroth order stochastic oracle settings.

The rates for both ¢* and p* are strongly supported
by intuition as seen by the rate’s behaviour at the ex-
tremes of k. kK — 1 is the best case because of large sig-
nal to noise ratio, as the gradient jumps signs rapidly
without spending time around zero where it can be cor-
rupted by noise, and we should be able to identify the
optimum extremely fast (function error rates better
than 1/T), as supported by our result for the bounded
noise setting in 1-D and the tight upper bounds using
Epoch-GD. However, when x — oo, the function is
extremely flat around its minimum, and while we can
optimize function-error well (because a lot of points
have function value close to the minimum), it is hard
to get close to the minimizer with noisy samples.

Our upper bounds on € and p involve a generalization
of Epoch Gradient Descent (Hazan & Kale, 2011), and
demonstrate that the lower bounds achieved in terms
of k are correct and tight. We make the same assump-
tions as (Touditski & Nesterov, 2010) and (Hazan &
Kale, 2011) - number of time steps T, a bound on
noisy subgradients G and the convexity parameter \.
Substituting & = 2 in our algorithm yields the O(1/T)
rate for strongly convex functions and k — oo recovers
the O(1/v/T) rate for convex functions.

Our lower bound proof bounds €* and p* simultane-

ously, by bounding point-error and using the class def-
inition to bound function-error (for both first and ze-
roth order oracles). The upper-bound proofs proceed
in the opposite direction by bounding function-error
and then using TNC condition to bound point-error.

In practice, one may not know the degree of convex-
ity of the function at hand, but every function has a
unique smallest x for which it is in F*, and using a
larger x will still maintain convergence (but at slower
rates). If we only know that f is convex then we can
use any gradient descent algorithm, and if we know it
is strongly convex then we can use k = 2, so our algo-
rithm is not any weaker than existing ones, but it is
certainly stronger if we know x exactly.

Designing an algorithm which is adaptive to unknown
K is an open problem. Function and gradient val-
ues should enable characterization of the function in
a region, but a function may have different smooth-
ness is different parts of the space and old gradient
information could be misleading. For example, con-
sider a function on [—0.5,0.5] which is 222 between
[—0.25,0.25], and grows linearly with gradient +1 else-
where. This function is not strongly convex, but it is
in F2, and it changes behaviour at & = +0.25.

Hints of connections to active learning have been lin-
gering in the literature, as noted by (Raginsky &
Rakhlin, 2009), but our borrowed lower bound proof
from active learning and the one-dimensional upper
bound reduction from stochastic optimization to ac-
tive learning gives hope of a much more fertile inter-
section. While many active learning methods degrade
exponentially with dimension d, the rates in optimiza-
tion degrade polynomially since active learning is try-
ing to solve harder problem like learning a (d — 1)-
dimensional decision boundary or level set, while op-
timization problems are just interested in getting to a
single good point (for any d). This still leaves open
the possibility of using a one dimensional active learn-
ing algorithm as a subroutine for a d-dimensional con-
vex optimization problem, or a generic reduction from
one setting to the other (given an algorithm for active
learning, can it solve an instance of stochastic opti-
mization). It is an open problem to prove a positive
or negative result of this type. We feel that this is the
start of stronger conceptual ties between these fields.
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Section 2

Lemma 1. No function can satisfy Uniform Convez-
ity for k < 2, but they can be in F" for k < 2.

Proof. If uniform convexity could be satisfied for (say)
k = 1.5, then we have for all z,y € S

1) - 1(@) = g1 (=) = e — yl}*

Take x,y both on the positive x-axis. The Taylor ex-
pansion would require, for some ¢ € [z,y],

)~ f@) —gly—a) = -y HEE )

_ 1HQ

- 2
Now, taking ||z—yl||2 = € — 0 by choosing x closer to y,
the Taylor condition requires the residual to grow like
€2 (going to zero fast), but the UC condition requires
the residual to grow at least as fast as !® (going to
zero slow). At some small enough value of ¢, this would
not be possible. Since the definition of UC needs to
hold for all x,y € S, this gives us a contradiction. So,
no f can be uniformly convex for any k < 2

lz =3

However, one can note that for f(z) = |=[]i:3
Zi |.’E7;‘1.5, we have 1’? = O’ and f(fE) o f(x;)
|2][}3 > ||lz — 23[|5%, hence f € FLO.

O

Lemma 2. If f € F*, then for any subgradient g, €
Of (x), we have ||gz|l2 > N — z*|57".

Proof. By convexity, we have

fa*) 2 f(2) + g (a* —x)

1

Rearranging terms and since f € F*, we get
g: (x—a*) > fla) = f(&") = Mz —2*||5
By Holder’s inequality,
lgalzllz — 2|2 = g; (z — z*)
Putting them together, we have
9z2ll2llz — 2% (l2 = Al — 2[5

giving us our result.
O

Lemma 3. For a gaussian random variable z, ¥Vt <
o, Jaj,az, at < P0<z<t)<ast

Proof. We wish to characterize how the probability
mass of a gaussian random variable grows just around
its mean. Our claim is that it grows linearly with the
distance from the mean, and the following simple ar-
gument argues this neatly.

Consider a X ~ N(0,0?%) random variable at a dis-
tance ¢ from the mean 0. We want to bound fit du(X)
for very small t. The key idea in bounding this integral
is to approximate it by a smaller and larger rectangle,
each of the rectangles having a width 2¢ (from —¢ to

).
t2 /202

. o—t2/2
The first one has a height equal to o

est value taken by the gaussian in [—t,t] achieved at

. . 1
t, and the other with a height equal to the o the

largest value of the gaussian in [—t,t] achieved at 1.

, the small-

The smaller rectangle h gpe 20 5 gpe i
e smaller rectangle has area A 2 2o

when t < o. The larger rectangle clearly has an area

1

of 2t o

Hence we have At = Qtﬁ < P(X| < t) <

2150\}ﬂ = At for ¢t < o. Similarly, for a one-sided

inequality, we have a1t = tm/ﬁ <PO<X<t)<

t— = =ast fort <o.

We note that the gaussian tail inequality P(X > t) <
%e‘t2/ 20 really makes sense for large ¢t > o and we

are interested in ¢t < 0. There are tighter inequalities,



but for our purpose, this will suffice.
O

Lemma 4. If |n(x) — 1/2] > A, the midpoint &1 of
the high-probability igterval returned by BZ satisfies
E|zp — x*| = O(e=T2/2). [CNO7]

Proof. The BZ algorithm works by dividing [0, 1] into

a grid of m points (interval size 1/m) and makes T'
queries (only at gridpoints) to return an interval It

such that Pr(z* ¢ Ir) < me=TA* [CNO7]. We choose
Z7 to be the midpoint of this interval, and hence get

1
E|or — 2*| = / Pr(|ir — 2| > w)du
0
1/2m
= / Pr(|zr — z*| > w)du
0

1
+/ Pr(|gr — z*| > u)du
1/2m

1 1 1
< — 1-— | P rr —x* —
- 2m + ( 2m> g (|$T | > 2m>
< = +me TN =0 (e’TAQ/Q)
2m

for the choice of the number of gridpoints as m =
TN /2.

O
Lemma 5. If |n(z) — 1/2| > Ma — a*|%, the point
T obtained from a modified version of BZ satisfies
Blor — o*| = O ((%45)7=) and Bllar - 2°|"] =

0 ((55)==).

Proof. We again follow the same proof as in [CNOT].
Initially, they assume that the grid points are not
aligned with z*, ie Vk € {0,...,m}, [|z* —k/m| >
1/3m. This implies that for all gridpoints z, |n(z) —
1/2] > A(1/3m)*~L. Following the exact same proof
above,

1

E[|Zr — z*|"] = / Pr(|zp — z*|™ > u)du

0
(1/2m)~
= / Pr(|zp — z*| > u!/*)du
0
1
+/ Pr(|ir — 2| > u!/")du
(1/2m)*=

= <271n> +(1- (Qin)) P (jor - ') > o)

<1> T mexp(_TA(1L/3m)* )

IN

2m

—¢ <<1OZT) )

. . T 2r—2
on choosing m proportional to (@) .

[CNO07] elaborate in detail how to avoid the assumption
that the grid points don’t align with x*. They use a
more complicated variant of BZ with three interlocked
grids, and gets the same rate as above without that
assumption. The reader is directed to their exposition
for clarification.

O

Section 3

Lemma 6. c.||z||f = ¢, Zle |z;|® =: fo(z) € F",
for all & > 1. Also, fi(x) as defined in Section 8 is
also in F*.

Proof. Firstly, this is clearly convex for £ > 1. Also,
fo(z},) = 0at 23, = 0. So, all we need to show is that
for appropriate choice of ¢, f isindeed 1-Lipschitz and
that fo(z) — fo(z},) > Allz — 2%, [|5 for some A > 0, ie
cellzlls = Mlzlly 5 exlll=llE = wllR) < llz =yl
Let us consider two cases, k > 2 and k < 2. Note
that all norms are uniformly bounded with respect to
each other, upto constants depending on d. Precisely,

if kK < 2, then ||z|, > ||z]|2 and if & > 2, then ||z||,, >
dl/n_1/2||$“2-

When k > 2, consider ¢, = 1. Then

(Ul = NwllR) < lle = yllE < lle=yllz <z -yl

because ||z]|x < ||z|l2 and ||z — y|| < 1. Also, ||z||% >
d'=%||x||5, so A = d' =% works.

When « < 2, consider ¢, = ﬁ. Similarly

, , lz —ylle\"
en(llelE—ll) < ( < le—yll5 < lle—y:

Vd

Also ¢ ||z|| > cxllz]l5, so A = ¢, works.

Hence fo(z) is 1-Lipschitz and in F* for appropriate
Cr-

Now, look at fi(x) for 1 < 4a. It is actually just
fo(x), but translated by 2a in direction z, with a con-
stant added, and hence has the same growth around
its minimum. Now, the part with 2y > 4a is just fo(x)
itself, which have the same growth parameters as the
part with z; <4a. So fi1(z) € F"* also.

O



Lemma 7. For all i = 1...d, let f;(z) be any one-
dimensional k-uniformly convex function (k > 2) with
constant A\;. For a d—dimensional function f(x) =
Zle fi(x;) that decomposes over dimensions, f(x) is

also k-uniformly convexr with constant A\ = %

Proof.

flx+h)=

Zfz I7,+h

> EXMMHWMM+MMH
> f(@) + g h+ (min )|

min; K
> o)+ glh B

(one can use h = y — x for the usual first-order defini-
tion)

O

Lemma 8. f(z) = |z|* is k-uniformly convez i.e.

(@) +(1-1)1() > fltz+(1-1)y) + 500y

Lemma 7 implies ||x||f is also k-

for X = 4/2%.
4/2%

uniformly conver with A = 5=/

Proof. First we will show this for the special case of
t =1/2. We need to argue that:

1 :z:+y 1
sl + 3 Lyl > |2y Agle—yl*

Let A = 4/2%. We will prove a stronger claim -

1 x-+—y 1
e
Since k > 2
r+vy =Y L
RHS'* = (=, W++a;46”k
Tty
< 2+ I)l/2
< (jaf?/2+ |yl /2)1/2
1
< 9l/2=1/k(p1k 4 |y |k)L/k
< 5 (Jz[* + [yI")
1 1
< (§\x|k+§|y\k)1/k = LHS'*

Now, for the general case.

We will argue that just

proving the above for ¢t = 1/2 is actually sufficient.

IN

IN

IN

flte+(1—t)y) = f <2t (I ; y) +(1- 2t)y>
2t (Z52) + - 2010

+(1=2t)f(y)
ﬁ@%ﬂl—wﬂw—ﬂl—ﬂjx—mk

o —y|* +

(@) + 1) — 22



