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Abstract—In this paper, we review our recent work on
detecting weak patterns that are sparse and localized on a
graph. This problem is relevant to many applications including
detecting anomalies in sensor and computer networks, brain
activity, co-expressions in gene networks, disease outbreaks etc.
We characterize such a class of weak and sparse graph-structured
patterns by small subsets of weakly activated nodes with a low
cut in an underlying known graph. On one hand, the combina-
torial nature of this class renders traditional detectors such as
GLRT (aka scan statistic) computationally intractable for general
graphs. On the other hand, attempts to develop feasible detectors
such as fast subset scanning or averaging/thresholding sacrifice
statistical efficiency. We describe and compare three detectors for
weak graph-structured patterns that are developed using tools
from graph theory, optimization and machine learning. These
detectors are computationally efficient, applicable to graphs and
patterns with general structures and come with precise theoretical
guarantees, often achieving near-optimal statistical performance.

Index Terms—graph patterns, structured sparsity, detection

I. INTRODUCTION

The problem of detecting anomalous patterns of activity in
graphs is ubiquitous in modern applications ranging from de-
tecting contamination or seismic activity by sensor networks,
virus attacks in computer networks, stimulated activity in brain
networks, gene expression in biological networks and disease
outbreaks, to name a few. Moreover, the data avaialble to us
today is extremely noisy and the scale of graphs of interest
continues to explode. As a result, we are faced with the task of
detecting weak and sparse graph-structured patterns of activity
in a statistically and computationally efficient manner. In this
paper, we review our recent work in this direction.

Formally, we consider the following hypothesis testing
problem. Given a single noisy observation yi = xi + εi where
εi

iid∼ N (0, σ2) at each vertex i ∈ {1, . . . , V } of a known
graph G = (V,E), distinguish between the two hypothesis:

H0 : x = 0 vs. H1 : x = µ1C

Here x = {xi}i∈V and C ∈ Cc,ρ := {C ⊆ V : |C| =
c, |∂C| ≤ ρ} denotes the set of (possibly disconnected)
activated vertices with size |C| = c 1 and cut-size |∂C| :=
|(i, j) ∈ E : i ∈ C, j 6∈ C| less than or equal to a constant

1For ease of presentation, in this paper we assume c ≤ |V |/2. For
modifications without this restriction, see [1], [2], [3], [4].

ρ > 0. Notice that for a given size of cluster (sparsity level)
c, smaller values of ρ imply that the set of activated nodes are
localized on the graph. The goal is to define computationally
efficient detectors that can distinguish between H0 and H1 at
very low signal-to-noise ratios (SNRs) µ/σ.

This formalization is a variant of the classical normal means
model. In our setting, the means are restricted to conform
to a graphs structure. While detection under normal means
has been well-studied in literature (e.g. see [5]), there has
been a renewed interest in the high-dimensional setup where
a sparse set of coordinates of the mean are non-zero under
the alternative. In the extreme case of a one sparse vector, it
is easy to see that the signal-to-noise ratio needs to scale as√

2 log(|V |) for asymptotic distinguishability of the null and
alternative hypotheses as |V | → ∞. For the general sparse
vector case when c = |V |β , this problem was studied in [6]
and a thresholding procedure known as Higher Criticism was
shown to adaptively (without knowledge of the sparsity level
β) achieve optimal SNR scaling of

√
2r(β) log(|V |), where

r(β) is a function that only depends on β. However, in the
unstructured setting, the weakest SNR that can be detected
needs to grow with the number of vertices (size of the high-
dimensional vector) as long as 0 ≤ β < 1.

As mentioned earlier, in many applications, the observation
vector is structured to conform to an underlying graph. If the
cluster of activated vertices under the alternate hypothesis is
known a priori, we have a simple alternate hypothesis and
Neyman-Pearson lemma states that the Likelihood Ratio Test
(LRT) or matched filtering (comparing 1Ty to an appropriate
threshold) is optimal. This test is equivalent to averaging
the observations of the activated vertices which reduces the
noise variance by a factor of c, yielding an optimal SNR
of
√

2 log(|V |)/c =
√

2 log(|V |)/|V |β for asymptotic distin-
guishability of the hypotheses. Thus, given oracle knowledge
of the activated cluster, it is possible to detect sparse graph-
structured patterns at much weaker SNR. In the absence
of this knowledge, a popular approach to handle composite
hypothesis tests is to scan over all permissible clusters under
the alternative hypothesis. This approach is known as the
scan statistic or Generalized Likelihood Ratio Test (GLRT)
and involves comparing the statistic maxC∈Cc,ρ 1TCy/

√
c to

an appropriate threshold. However, the graph scan statistic [7]
or GLRT are computationally tractable only in specific graph



topologies and specific pattern classes. Efforts in this direction
include detecting an interval in a line graph or geometric
shapes such as rectangles, disks or ellipses in a lattice graph
[8], path of activation in a tree or lattice [9], or nonparametric
shapes in a lattice graph [10]. In these settings, scanning over
the entire pattern class or over an epsilon-net for the pattern
class is often feasible and has been shown to have near-optimal
statistical performance. However, for the general setting of
arbitrary graphs, the combinatorial nature of the pattern class
Cc,ρ renders these detectors infeasible, either because the scan
involves too many patterns or due to lack of constructive
ways to obtain an epsilon-net. While there has been some
work on developing fast graph subset scanning methods [11],
these greedy methods sacrifice statistical power. The detectors
we will describe are computationally efficient and statistically
optimal for general graphs. In [12], the authors consider the
complete graph and study detection under some combinatorial
classes of patterns such as cliques, bi-cliques, spanning trees
and perfect matchings. They establish lower bounds on the
performance of any detector, and provide upper bounds for
some simple but sub-optimal detectors such as averaging all
node observations and thresholding. We demonstrate that our
methods outperform global averaging and thresholding that do
not take advantage of the graph structure.

II. COMPUTATIONALLY EFFICIENT DETECTORS FOR
GRAPH-STRUCTURED PATTERNS

The combinatorial scan statistic or GLR for the hypothesis
testing problem introduced in previous section is given as
maxC∈Cc,ρ

1TCy√
c
. An epsilon-scan statistic is defined similarly

where the max is taken over an epsilon netNε of the class Cc,ρ,
where Nε satisfies the property that for every C ∈ Cc,ρ there
exists a C ′ ∈ Nε such that C ′ provides an ε-approximation to
C under an appropriate notion of distance between them [10].
As mentioned earlier, both these statistics while optimal are
computationally intractable.

In this section, we describe three computationally efficient
detectors for the graph-structured normal means test. The first
two detectors are obtained by considering convex relaxations
of the combinatorial scan statistic. The third detector can be
thought of as a feasible construction of an appropriate epsilon-
scan statistic via the notion of graph wavelets.

A. Spectral scan statistic

The spectral scan statistic was introduced in [1] with a slight
modification proposed in [2]. The spectral scan statistic is
a relaxation of the generalized likelihood ratio (GLR). This
serves as the simplest relaxation of the GLR as it relaxes the
domain 1C ∈ {0, 1}|V | such that |C| = c to z ∈ R|V |. In
order to relax the cut size constraint we will introduce the
graph Laplacian. The graph Laplacian matrix ∆ = D − A
where A denotes the adjacency matrix of the graph and D
is a diagonal matrix with vertex degrees on the diagonal i.e.
Dii =

∑
j Aij . Furthermore, we can rewrite the graph cut

constraint |∂C| = 1>C∆1C , indicating that we can relax the
domain of the GLR to z>∆z where z ∈ R|V | relaxes the

vector 1C . For details, refer to [1]. The resulting spectral scan
statistic is defined as follows where ỹ = y − 1Ty/|V |

ŝ = sup
z∈R|V |

(z>ỹ)2 s.t. z>∆z ≤ ρ, ‖z‖ ≤ 1, z>1 = 0.

As shown in [1], the convex spectral scan statistic can be
solved efficiently in the dual domain by first-order interior
point methods.

B. Lovász extended scan statistic

The Lovász extended scan statistic (LESS) is another relax-
ation of the computationally infeasible generalized likelihood
ratio. Notice that the GLR can be written in terms of the binary
vector z = 1C ∈ {0, 1}|V |,

max
z∈{0,1}|V |

z>y√
c

s.t.
∑

(i,j)∈E

I{zi 6= zj} ≤ ρ,1>z = c

Submodularity is the combinatorial analogue of convexity,
and it turns out that the cut size (|∂C|) is submodular. For
every submodular function there exists a convex relaxation,
called the Lovász extension. The Lovász extension of |∂C| =∑

(i,j)∈E I{zi 6= zj} is the total variation
∑

(i,j)∈E |zi − zj |.
Thus, it is natural to relax the GLR program as follows

l̂ = max
z∈[0,1]|V |

z>y√
c

s.t.
∑

(i,j)∈E

|zi − zj | ≤ ρ,1>z = c (1)

which we call LESS. In [3], convex analysis was used to derive
the dual program to the LESS, and it was shown that LESS
can be solved efficiently using graph cuts.

C. Uniform spanning tree wavelet statistic

Yet another computationally efficient detector can be ob-
tained by constructing a wavelet basis B = [b1, . . . ,b|V |] for
the graph. The basis elements we construct are orthonormal
and have the property that every pattern in Cc,ρ has a sparse
representation in terms of the basis coefficients. The graph
wavelet construction we propose relies on a uniform spanning
tree of the graph. A uniform spanning tree is a spanning tree
drawn at random from the set of all distinct spanning trees of
the graph, and can be constructed in time nearly linear in the
number of vertices for most graphs using the Aldous-Broder
algorithm. A detailed explanation of the wavelet construction
can be found in [4].

Given a uniform spanning tree, the wavelet construction iter-
ates the following steps: finding a balancing vertex, removing
it from the uniform spanning tree and forming a basis that
spans the resulting connected components, and recursing on
the remaining subtrees. A balancing vertex is one such that the
remaining connected components, after its removal from the
tree, are at most half the size of the graph. A simple algorithm
that travels in the direction of the largest subtree at a vertex can
be used to find this in nearly O(|V |) time. We summarize the
wavelet construction algorithm in Algorithm 1, which takes as
input the connected subtrees S = {Ti}dvi=1 after the removal
of the balancing vertex v, where dv is the degree of vertex v.



Algorithm 1 FormWavelets

Require: S = {Ti}dvi=1

(1) Let T1 = ∪i≤|S|/2Ti and T2 = ∪i>|S|/2Ti.
(2) Form the following basis element and add it to B:

b =

√
|T1||T2|√
|T1|+ |T2|

[
1

|T1|
1T1 −

1

|T2|
1T2

]
(3) Recurse at (1) with S ← {Ti}i≤|S|/2 and S ←
{Ti}i>|S|/2 separately.

This algorithm returns an unbalanced Haar wavelet basis
for a general graph, and leads to the natural detector based on
thresholding the maximum wavelet coefficient. Thus the uni-
form spanning tree wavelet statistic is given as maxb∈B bTy
and is equivalent to scanning over an epsilon-net of Cc,ρ.

III. STATISTICAL EFFICIENCY

In this section, we summarize the statistical performance of
the three computationally efficient detectors for general graph
structures. We will show that our detectors have near-optimal
statistical performance in many settings.

In [1], [2], [3], [4], we provide precise bounds on the
power and size of these tests for finite graph size. For brevity,
in this paper we will summarize statistical performance by
the critical SNR µ/σ scaling needed to ensure asymptotic
distinguishability, i.e. to ensure

lim
|V |→∞

P0(T > th) + sup
C∈Cc,ρ

PC(T < th) = 0

where P0 denotes probability with respect to y ∼ N (0, σ2I)
and PC is with respect to y ∼ N (µ1C , σ

2I).
The first result characterizes the critical SNR required by

the spectral scan statistic in terms of the graph spectrum, as
characterized by eigenvalues of the graph Laplacian matrix ∆.

Theorem 1. [1] The spectral scan statistic asymptotically
distinguishes H0 from H1 if

µ

σ
= ω


√√√√1

c

|V |∑
i=2

min

(
1,

ρ

cλi

)
where λi denote the eigenvalues of the graph Laplacian matrix
∆ sorted in ascending order.

Here a = ω(b) denotes that a/b→∞. This result suggests
that the critical SNR required by the spectral scan statistic
scales with the complexity of the pattern class (cut-size to size
ratio ρ/c of patterns, or equivalently the surface to volume
ratio of the activated cluster), as well as the complexity of
the graph (decay of Laplacian eigenvalues). We evaluate the
graph spectrum and this bound for specific low-cut and sparse
patterns on specific graphs (e.g. subtrees of activation in a tree
graph or squares of activation in a 2-dimensional torus) in [1].
Furthermore, the choice of threshold is given that achieves this
rate. In [1], we also show that while the bound captures the

dependence on the cut-size to size ratio and is near-optimal
for non-sparse activations, the performance of the spectral scan
statistic is suboptimal for sparse patterns. The remaining two
detectors we discuss overcome this drawback and perform
better with a small cluster size, c.

The next two results characterize the performance of
the Lovász extended scan statistic and uniform spanning
tree wavelet statistic. In both cases, the critical SNR de-
pends on rmax the maximum effective resistance of the
graph cut induced by a pattern in Cc,ρ. Formally, rmax =
maxC∈Cc,ρ

∑
e∈∂C re where re is the effective resistance of

the edge e. The effective resistance of an edge e = (i, j) is
the potential difference required to create a unit flow between
vertices i and j. Formally, re = (δi− δj)T∆†(δi− δj), where
∆† is pseudo-inverse of the graph Laplacian and δi the Dirac
delta function.

Theorem 2. [3] The Lovász extended scan statistic asymptot-
ically distinguishes H0 from H1 if

µ

σ
= ω

(√
max(rmax, log(|V |)) log(|V |)

c

)
Theorem 3. [4] The uniform spanning tree wavelet statistic
asymptotically distinguishes H0 from H1 if

µ

σ
= ω

√rmax log(dmax) log2(|V |)
c


where dmax is the maximum degree of the graph G.

By Foster’s theorem [13], [14], the effective resistance of a
cut is ≈ ρ/d where d is the average degree of a vertex. This
intuition can be formalized for specific graphs such as edge
transitive graphs (including the lattice and complete graphs)
and random geometric graphs (such as k-nearest neighbor and
ε-nearest neighbor graphs). For details see [3], [4]. Hence, if
the maximum effective resistance rmax ≈ ρ/d� c, the active
nodes are localized on the graph leading to structured sparsity.
In this case, akin to the performance of the oracle estimator, we
see that these detectors take advantage of structured sparsity,
and allow critical SNR to decrease with increasing graph size
|V | if the cluster size c = |V |β . On the other hand, if rmax ≈
ρ/d ≈ c the pattern is not localized and performance of these
methods degrades gracefully to that of unstructured tests (up
to log factors), requiring critical SNR to grow with graph size.

While our detectors outperform the unstructured tests in
structured sparse settings, comparing our bounds for the
Lovász extended scan statistic and uniform spanning tree
wavelet statistic with that of the oracle, we see that (modulo
log factors) the critical SNR for the oracle is better by a
factor of rmax. Prior work e.g. [10] demonstrates that for some
simple graphs such as the lattice, it is possible to achieve oracle
performance (modulo log factors). This raises the question
whether our bounds can be further improved. We answer this
in the negative by demonstrating in [3], [4] a matching lower
bound on the performance of any detector for general graphs
which is indeed worse by a factor of rmax than the oracle



Fig. 1. (a) ROC curves for spectral scan statistic (SSS), uniform spanning tree wavelet statistic (Wavelet), the maximum statistic, maxi |yi|, (Max), and
Lovász extended scan statistic (LESS). The graphs used are square 2D Torus (top), and ε-NN graph (bottom) with ε ≈ |V |−1/3; with µ = 4, 3 respectively,
|V | = 225, and c ≈ |V |1/2. (b) Comparison of wavelet detector with maximum and aggregate statistic on a torus with increasing size of activated cluster,
for a fixed cut size.

performance. This suggests that for general graph structures
and complex pattern classes such as Cc,ρ, it is not possible to
exactly achieve oracle performance and there is a price for
not knowing the location of activated vertices.

IV. COMPARISON AND SIMULATIONS

We compare the performance of our methods by simulating
graph structured patterns over a 2-dimensional torus and ε-
NN random graph in Fig. 1(a). We report the true positive
rate versus the false positive rate as the threshold varies (also
known as the receiver operating curve or ROC.) For each
graph, our methods dominate the max statistic, indicating that
one cannot ignore graph structure and hope to detect optimally.

To demonstrate that our methods degrade gracefully when
the cut size to cluster size becomes large, we compare the
wavelet detector to two unstructured detectors based on the
maximum and average of all observations. The aggregate
statistic is expected to work well when the cluster size is very
large. Fig. 1(b) shows that, for a fixed cut size, the wavelet
detector degrades to the aggregate and maximum tests for very
large and very small cluster sizes respectively, but outperforms
them when the pattern is localized on the graph (not globally
spread or too sparse such that structure cannot be leveraged).

V. CONCLUSION

In this paper, we present three computationally efficient
detectors for weak graph-structured patterns. Two of the detec-
tors (spectral scan statistic and Lovász extended scan statistic)
are obtained by convex relaxations of the combinatorial scan
statistic or GLRT. The third detector uses a graph wavelet con-
struction and is akin to a constructive epsilon-net scan statistic.
All detectors leverage the graph-structured sparsity to operate
at very weak signal-to-noise ratios. Our experiments support
these results. Furthermore, our results indicate that the spectral
scan statistic is nearly optimal for non-sparse patterns under
certain graph models, while the Lovász extended scan statistic

and uniform spanning tree wavelet statistic are nearly optimal
for any pattern sparsity given only a cut-size constraint.
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