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Abstract—First order stochastic convex optimization is an
extremely well-studied area with a rich history of over a century
of optimization research. Active learning is a relatively newer
discipline that grew independently of the former, gaining popu-
larity in the learning community over the last few decades due
to its promising improvements over passive learning. Over the
last year, we have uncovered concrete theoretical and algorithmic
connections between these two fields, due to their inherently se-
quential nature and decision-making based on feedback of earlier
choices, that have yielded new methods and proofs techniques in
both fields. In this note, we lay down the foundations of these
connections and summarize our recent advances.
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I. FIRST-ORDER STOCHASTIC CONVEX OPTIMIZATION

Consider an unknown function f on a bounded set S ⊂ Rd,
with minimizer x∗ = arg minx∈S f(x) that is k-uniformly
convex (k-UC) and L-Lipschitz, i.e. for constants L, λ >
0, k ≥ 2, we have for all x, y ∈ S,

f(y) ≥ f(x) +∇f(x)>(y − x) + λ‖x− y‖k2 (1)

|f(x)− f(y)| ≤ L‖x− y‖2

(k = 2 for strong convexity). A stochastic first order oracle
accepts x ∈ S, and returns

(
f̂(x), ĝ(x)

)
which are unbiased

i.e. E
[
f̂(x)

]
= f(x), E

[
ĝ(x)

]
∈ ∂f(x), and have bounded

variance. An optimization algorithm sequentially queries an
oracle at points in S and returns x̂T as an estimate of the
optimum of f after T queries (or alternatively tries to achieve a
target error of ε). Its performance can be measured by function
error ρ∗T := f(x̂T )− f(x∗) or point error ε∗T := ‖x̂T − x∗‖2.

II. ACTIVE ONE-DIMENSIONAL THRESHOLD LEARNING

We deal with a bounded interval S ⊂ R, where every point
x ∈ S has a label y ∈ {+,−} that is drawn from a continuous
unknown conditional distribution η(x) := Pr

(
Y = +|X = x

)
that has a unique point t with η(x) = 1/2. It is common to
characterize the slope of the regression function η(x) around
threshold t, as given by Tsybakov’s Noise Condition (TNC)

M |x− t|k−1 ≥ |η(x)− 1
2 | ≥ µ|x− t|

k−1 if |η(x)− 1
2 | ≤ ε0

for some constants M > µ > 0, ε0 > 0, k ≥ 1.

The learner sequentially queries T (possibly dependent)
points, observing labels drawn from η after each query, with
the goal of returning a guess x̂T as close to t as possible. One
can measure accuracy by excess classification risk (expected
0/1 loss under uniform distribution) of the threshold classifier
at x̂T , compared to the Bayes optimal classifier at t, i.e.

R∗T := Risk(x̂T )− Risk(t) =

max(x̂T ,t)∫
min(x̂T ,t)

|2η(x)− 1|dx

or alternatively by point error E∗T := |x̂T − t| .

III. CONNECTIONS AND RESULTS

For d = 1, 0 ∈ ∂f(x∗) and Eq. (1) imply f(x)− f(x∗) ≥
λ|x − x∗|k and |g(x)| ≥ λ|x − x∗|k−1. Since the oracle is
unbiased, x∗ is the unique point with η̂(x) := P (sign(ĝ(x)) =
+) = 1

2 and we can show |η̂(x)− 1
2 | ≥ |x− x

∗|k−1, i.e. UC
implies that the sign of the noisy gradient satisfies TNC. Such
intuition carries through for higher dimensional functions and
we leverage this to demonstrate the following results.
Minimax rates: Using ideas from active learning, we prove in
[1] that the minimax information complexity (ignoring poly-
d, poly-log T factors) decays similarly with T queries in both
fields, specifically ρ∗T = R∗T = Θ̃

(
T−

k
2k−2

)
and ε∗T = E∗T =

Θ̃
(
T−

k
2k−2

)
. Our techniques also yield a Ω(T−1/2) lower

bound for all k, for derivative-free (zeroth-order) stochastic
optimization which matches known upper bounds.
Adaptivity: In [2], we show that the same strategy can be
adopted in both fields to yield algorithms that are adaptive to
unknown UC and TNC exponents and constants, achieving the
same rates as procedures knowing these parameters.
Sign oracles: Assuming more smoothness (beyond Lipschitz),
in [2] we also show that randomized coordinate descent, with
efficient line searches using active threshold learning, achieves
the same optimal rate for a weak stochastic sign oracle that
only provides noisy gradient signs in a chosen direction. If the
signs are noiseless, it yields exponential convergence rates.
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