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Abstract

Column subset selection of massive data ma-
trices has found numerous applications in
real-world data systems. In this paper, we
propose and analyze two sampling based al-
gorithms for column subset selection without
access to the complete input matrix. To our
knowledge, these are the first algorithms for
column subset selection with missing data
that are provably correct. The proposed
methods work for row/column coherent ma-
trices by employing the idea of adaptive sam-
pling. Furthermore, when the input matrix
has a noisy low-rank structure, one algorithm
enjoys a relative error bound.

1 INTRODUCTION

Given a matrix M ∈ Rn1×n2 , the column subset selec-
tion problem aims to find s exact columns in M that
capture as much of M as possible. More specifically,
we want to select s columns of M to form a “com-
pressed” matrix C ∈ Rn1×s to minimize the norm of
the following residue

min
X∈Rs×n2

‖M−CX‖ξ = ‖M− PC(M)‖ξ, (1)

where PC(M) = CC†M 1 is the projection of M onto
the selected column subspace and ξ = 2 or F denotes
the spectral or Frobenious norm. To evaluate the per-
formance of column subset selection, one compares the
residue norm (reconstruction error) defined in Eq. (1)
with ‖M −Mk‖ξ, where Mk is the best rank-k ap-
proximation of M. 2 Two forms of error guarantee

1C† is the Moore-Penrose pseudoinverse of C.
2In general, the number of selected columns s is larger

than or equal to the target rank k.
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are common: additive error guarantee in Eq. (2) and
relative error guarantee in Eq. (3), with 0 < ε < 1 and
c > 1 (ideally c = 1 + ε).

‖M−CC†M‖ξ ≤ ‖M−Mk‖ξ + ε‖M‖ξ; (2)

‖M−CC†M‖ξ ≤ c‖M−Mk‖ξ. (3)

In general, relative error bound is much more appre-
ciated because ‖M‖ξ is usually large in practice. In
addition, when M is an exact low-rank matrix Eq. (3)
implies perfect reconstruction, while the error in Eq.
(2) remains non-zero.

The column subset selection problem can be consid-
ered as a form of unsupervised feature selection, which
arises frequently in the analysis of large datasets. For
example, column subset selection has been applied to
various tasks such as summarizing population genetics,
testing electronic circuits, recommendation systems,
etc. Interested readers can refer to [5, 2] for further
motivations.

Many methods have been proposed for the column sub-
set selection problem [7, 16, 15, 9, 14]. Most of these
methods can be roughly categorized into two classes.
One class of algorithms are based on rank-revealing QR
(RRQR) decomposition [7, 16] and it has been shown
that RRQR is nearly optimal for solving the column
subset selection problem (see e.g., Table 1 in [5]). On
the other hand, sampling based methods [15, 9, 14]
try to select columns by sampling from certain distri-
butions over all columns of an input matrix. These
algorithms are much faster than RRQR and achieves
comparable performance if the sampling distribution
is carefully selected [9, 14].

Although the column subset selection problem with ac-
cess to the full input matrix has been extensively stud-
ied, often in practice it is hard or even impossible to
obtain the complete data. For example, for the genetic
variation detection problem it could be expensive and
time-consuming to obtain full DNA sequences of an
entire population. The presence of missing data poses
new challenges for column subset selection, as many
well-established algorithms seem incapable of handling
missing data in an elegant way. Several heuristic al-
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gorithms have been proposed recently, including the
Block OMP algorithm [2] and the group Lasso for-
mulation proposed in [4]. Nevertheless, no theoretical
guarantee or error bounds have been derived for these
methods.

One key challenge posed by the absence of data is
the difficulty of computing certain column sampling
distributions when the input matrix has coherent
rows/columns. For instance, it is very difficult to com-
pute statistical leverage scores (which is essential to
the subspace sampling algorithm [14]) using partially
obesrved data because closeness of two subspaces (e.g.,

‖U− Ũ‖ξ ≤ ε, ξ = 2 or F ) does not imply closeness of

their incoherence levels (i.e., µ(U) 6≈ µ(Ũ)). Though
Chen et al. [8] proposed an algorithm estimating sta-
tistical leverage scores without access to the complete
input matrix, their method only works for exact low-
rank matrices, and it is not clear the method will work
in the approximately low-rank setting (at least any
tiny amount of deterministic noise will break the al-
gorithm). On the other hand, when both the row and
the column space of an input matrix are incoherent,
column subset selection becomes trivial because uni-
form sampling of columns is sufficient to achieve good
performance.

In this paper, we propose two column subset selec-
tion algorithms based on the idea of active sampling
of the input matrix. In our algorithms, observed ma-
trix entries are chosen sequentially and in a feedback-
driven manner. Note that the algorithms make very
few measurements of the input matrix, which differs
from previous feedback-driven resampling methods in
the theoretical computer science literature (e.g., [24]).
The active sampling scheme has been shown to outper-
form all passive schemes in several settings [17, 20, 1],
and furthermore it works for matrices with coherent
rows/columns under which passive learning provably
fails [20].

The contribution of this paper is two-fold. To the best
of our knowledge, the proposed methods are the first
column subset selection algorithms that enjoy theo-
retical guarantee of reconstruction error with missing
data. Furthermore, when the input matrix is a noisy
version of an underlying column-incoherent low-rank
matrix, our proposed algorithm achieves a relative er-
ror bound.

Finally, we note that the reconstruction error ‖M −
CC†M‖ξ and the approximation error ‖M − CX‖ξ
are not necessarily the same with missing data, be-
cause there is no simple procedure to compute CC†M
without access to the complete input matrix M. In
this paper we primarily focus on the reconstruction
error, but we prove upper bounds for both errors. We

also focus on the Frobenious norm ‖ · ‖F for the error
term just like previous work on sampling based matrix
approximation methods.

2 PRELIMINARIES

2.1 Notations

For any matrix M we use M(i) to denote the i-th col-
umn of M. Similarly, M(i) denotes the i-th row of
M. All norms ‖ · ‖ are two norms unless otherwise
specified.

We assume the input matrix is of size n1 × n2, n =
max(n1, n2). We further assume that n1 ≤ n2. We
use xi = M(i) ∈ Rn1 to denote the i-th column of
M. Furthermore, for any column vector xi ∈ Rn1 and
index subset Ω ⊆ [n1], define the subsampled vector
xi,Ω and the scaled subsampled vector RΩ(xi) as

xi,Ω = 1Ω ◦ xi, RΩ(xi) =
n1

|Ω|1Ω ◦ xi, (4)

where 1Ω ∈ {0, 1}n1 is the indicator vector of Ω and
◦ is the Hadarmard product (entrywise product). We
also generalize the definition in Eq. (4) to matrices by
applying the same operator on each column.

2.2 Subspace and vector incoherence

Matrix incoherence plays a vital role in various matrix
completion and approximation tasks [22, 20, 6, 18].
For any matrix M ∈ Rn1×n2 of rank k, singular value
decomposition yields M = UΣV>, where U ∈ Rn1×k

and V ∈ Rn2×k have orthonormal columns. Let U =
span(U) and V = span(V) be the column and row
space of M. The column space incoherence is defined
as

µ(U) :=
n1

k

n1
max
i=1
‖U>ei‖22 =

n1

k

n1
max
i=1
‖U(i)‖22. (5)

Note that µ(U) is always between 1 and n1/k. Simi-
larly, the row space incoherence is defined as

µ(V) :=
n2

k

n2
max
i=1
‖V>ei‖22 =

n2

k

n2
max
i=1
‖V(i)‖22. (6)

In this paper we also make use of incoherence level of
vectors, which previously appears in [3, 19, 20]. For a
column vector x ∈ Rn1 , its incoherence is defined as

µ(x) :=
n1‖x‖2∞
‖x‖22

. (7)

It is an easy observation that if x lies in the subspace
U then µ(x) ≤ kµ(U). In this paper we adopt in-
coherence assumptions on the column space U , which
subsequently yields incoherent column vectors xi. No
incoherence assumption on the row space V or row
vectors M(i) is made.
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2.3 Norm and volume sampling

Norm sampling for column subset selection was pro-
posed in [15] and has found applications in a number
of matrix computation tasks, e.g., approximate matrix
multiplication [11] and low-rank or compressed matrix
approximation [12, 13]. The idea is to sample each
column with probability proportional to its squared `2
norm, i.e., Pr[i ∈ C] ∝ ‖M(i)‖22 for i ∈ {1, 2, · · · , n2}.
These types of algorithms usually come with an addi-
tive error bound on their approximation performance.

For volume sampling [9], a subset of columns C is
picked with probability proportional to the volume
of the simplex spanned by columns in C. That is,
Pr[C] ∝ vol(∆(C)) where ∆(C) is the simplex spanned
by {M(C(1)), · · · ,M(C(k))}. Unlike norm sampling,
volume sampling achieves a relative error bound for
column subset selection. Although exact volume sam-
pling could be hard, it was shown that an iterative
norm sampling procedure serves as a nice approxima-
tion [10].

3 COLUMN SUBSET SELECTION
VIA ACTIVE SAMPLING

In this section we propose two column subset selec-
tion algorithms that only observe a small portion of
an input matrix. Both algorithms employ the idea of
active sampling to handle matrices with coherent rows.
While Algorithm 1 achieves an additive approximation
error guarantee for any matrix, Algorithm 2 achieves a
relative-error approximation guarantee when the input
matrix has certain structure.

3.1 Active norm sampling

We first present an active norm sampling algorithm
(Algorithm 1) for column subset selection under the
missing data setting. The algorithm is inspired by the
norm sampling work for column subset selection by
Frieze et al. [15] and the low-rank matrix approxima-
tion work by Krishnamurthy and Singh [20].

The first step of Algorithm 1 is to estimate the `2 norm
for each column by uniform subsampling. Afterwards,
s columns of M are selected independently with prob-
ability proportional to their `2 norms. Finally, the
algorithm constructs a sparse approximation of the in-
put matrix by sampling each matrix entry with proba-
bility proportional to the square of the corresponding
column’s norm and then a CX approximation is ob-
tained.

When the input matrix M has incoherent columns,
the reconstruction error as well as CX approximation
error can be bounded as in Theorem 1.

Theorem 1. Suppose maxn2
i=1 µ(xi) ≤ µ1 for some

positive constant µ1. Let C and X be the output of Al-
gorithm 1. Denote Mk the best rank-k approximation
of M. Fix δ = δ1 + δ2 + δ3 > 0. With probability at
least 1− δ, we have

‖M−CC†M‖F ≤ ‖M−Mk‖F + ε‖M‖F (8)

provided that s = Ω(kε−2/δ2), m1 = Ω(µ1 log(n/δ1)).
Furthermore, if m2 = Ω(µ1s log2(n/δ3)/(δ2ε

2)) then
with probability ≥ 1 − δ we have the following bound
on approximation error:

‖M−CX‖F ≤ ‖M−Mk‖F + 2ε‖M‖F . (9)

As a remark, Theorem 1 shows that one can achieve ε
additive approximation error using Algorithm 1 with
expected sample complexity (omitting dependency on
δ)

Ω

(
µ1n2 log(n) +

kn1

ε2
+
kµ1n2 log2(n)

ε4

)

= Ω(kµ1ε
−4n log2 n).

Note that if we only care about ε reconstruction er-
ror then the sample complexity only depends on ε−2

instead of ε−4.

3.2 Active approximate volume sampling

In this section we present Algorithm 2, another ac-
tive sampling algorithm based on approximate volume
sampling [10]. Although Algorithm 2 is more compli-
cated than Algorithm 1, it achieves a relative error
bound on inputs that are noisy perturbation of some
underlying low-rank matrix.

Algorithm 2 employs the idea of iterative norm sam-
pling. That is, after selecting l columns from M, the
next column is sampled according to column norms
of a projected matrix PC⊥(M), where C is the sub-
space spanned by currently selected columns. It can
be shown that iterative norm sampling serves as an
approximation of volume sampling, which leads to rel-
ative error bounds [9, 10].

Theorem 2 provides a relative-error analysis of Algo-
rithm 2 when the input matrix M is the sum of a
low rank matrix A and a noise matrix R. Such as-
sumptions bound the incoherence level of projected
columns, which is required for estimating prjected col-
umn norms [19, 20]. Note that a statistical noise model
is necessary for our analysis because the projection of
a deterministic incoherent noise vector may no longer
be incoherent.

Theorem 2. Fix δ > 0. Suppose M = A + R, where
A is a rank-k deterministic matrix with incoherent col-
umn space (i.e., µ(U(A)) ≤ µ0) and R is a random
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Algorithm 1 Active norm sampling for column subset selection with missing data

1: Input: size of column subset s, expected number of samples per column m1 and m2.
2: Norm estimation: For each column i, sample each index in Ω1,i ⊆ [n1] i.i.d. from Bernoulli(m1/n1).

observe xi,Ω1,i and compute ĉi = n1

m1
‖xi,Ω1,i‖22. Define f̂ =

∑
i ĉi.

3: Column subset selection: Set C = 0 ∈ Rn1×s.

• For t ∈ [s]: sample it ∈ [n2] such that Pr[it = j] = ĉj/f̂ . Observe M(it) in full and set C(t) = M(it).

4: Matrix approximation: Set M̂ = 0 ∈ Rn1×n2 .

• For each column xi, sample each index in Ω2,i ⊆ [n1] i.i.d. from Bernoulli(m2,i/n1), where m2,i =

m2n2ĉi/f̂ ; observe xi,Ω2,i
.

• Update: M̂ = M̂ + (RΩ2,i
(xi))e

>
i .

5: Output: selected columns C and coefficient matrix X = C†M̂.

Algorithm 2 Active approximate volume sampling for column subset selection with missing data

1: Input: target rank k � n1, expected number of samples per column m.
2: Entrywise sampling: For each column i, sample each index i in an index set Ωi ⊆ [n1] i.i.d. from

Bernoulli(m/n1). Observe xi,Ωi .
3: Column subset selection: Set C = ∅, U = ∅. Suppose U is an orthonormal basis of U .
4: for t ∈ {1, 2, · · · , k} do

5: For i ∈ {1, · · · , n2}, compute ĉ
(t)
i = n1

m ‖xi,Ωi
−UΩi

(U>Ωi
UΩi

)−1U>Ωi
xi,Ωi

‖22. Set f̂ (t) =
∑n2

i=1 ĉ
(t)
i .

6: Select a column it at random, with probability Pr[it = j] = p̂
(t)
j = ĉ

(t)
j /f̂ (t).

7: Observe M(it) in full and update: C ← C ∪ {it}, U ← span(U , {M(it)}).
8: end for
9: Matrix approximation: Compute M̂ =

∑n2

i=1 U(U>Ωi
UΩi

)−1U>Ωi
xi,Ωi

e>i .

10: Output: Selected columns C = (M(C(1)), · · · ,M(C(k))) and X = C†M̂.

matrix with i.i.d. zero-mean Gaussian distributed en-
tries. Suppose k = O(n1/ log(n2/δ)). Let C and X be
the output of Algorithm 2 run with parameter

m = Ω(k2µ0 log2(n/δ)).

Then with probability ≥ 1− δ the following holds:

‖M−CC†M‖2F ≤
2.5k(k + 1)!

δ
‖R‖2F ; (10)

furthermore,

‖M−CX‖2F ≤
2.5k+1(k + 1)!

δ
‖R‖2F . (11)

Compared to Theorem 1, the error bound in Theorem
2 is relative to the noise level ‖R‖2F . As a consequence,
when the noise goes to zero the reconstruction error of
Algorithm 2 will go to zero too, while the bound on
Algorithm 1 still has certain amount of reconstruction
error even under the exact low rank case. In fact, when
the noise is eliminated Algorithm 2 is similar in spirit
to adaptive matrix/tensor completion algorithms pre-
sented in [19, 20].

4 PROOFS

4.1 Proof sketch of Theorem 1

The proof of Theorem 1 can be divided into two steps.
First, in Lemma 1 we show that (approximate) col-

umn sampling yields an additive error bound for col-
umn subset selection. Its proof is very similar to the
one presented in [15] and we defer it to Appendix A.
Second, we cite a lemma from [20] to show that with
high probability the first pass in Algorithm 1 gives ac-
curate estimates of column norms of the input matrix
M.

Lemma 1. Provided that (1 − α)‖xi‖22 ≤ ĉi ≤ (1 +
α)‖xi‖22 for i = 1, 2, · · · , n2, with probability ≥ 1 − δ
we have

‖M−PC(M)‖F ≤ ‖M−Mk‖F +

√
(1 + α)k

(1− α)δs
‖M‖F ,

(12)where Mk is the best rank-k approximation of M.

Lemma 2 ([20], Lemma 10). Fix δ ∈ (0, 1). Assume
µ(xi) ≤ µ1 holds for i = 1, 2, · · · , n2. For some fixed
i ∈ {1, · · · , n2} with probability ≥ 1− 2δ we have

(1− α)‖xi‖22 ≤ ĉi ≤ (1 + α)‖xi‖22 (13)

with α =
√

2µ1

m1
log(1/δ) + 2µ1

3m1
log(1/δ). Furthermore,

if m1 = Ω(µ1 log(n2/δ)) with carefully chosen con-
stants then Eq. (13) holds uniformly for all columns
with α = 0.5.

Combining Lemma 1 and Lemma 2 and setting s =
Ω(kε−2/δ) for some target accuracy threshold ε we
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have that with probability 1 − 3δ the reconstruction
error bound Eq. (8) holds.

In order to bound the approximation error ‖M −
CX‖2F , we cite another lemma from [20] that analyzes
the performance of the second pass of Algorithm 1.

Lemma 3 ([20], Lemma 9). Provided that (1 −
α)‖xi‖22 ≤ ĉi ≤ (1 + α)‖xi‖22 for i = 1, 2, · · · , n2, with
probability ≥ 1− δ we have

‖M−M̂‖2 ≤ ‖M‖F
√

1 + α

1− α

(
4

3

√
n1µ1

m2n2
log

(
n1 + n2

δ

)

+

√
4

m2
max

(
n1

n2
, µ1

)
log

(
n1 + n2

δ

))
. (14)

The complete proof of Theorem 1 is deferred to Ap-
pendix A.

4.2 Proof sketch of Theorem 2

We take four steps to prove Theorem 2. At the first
step, we show that when the input matrix has a low
rank plus noise structure then with high probability
for all small subsets of columns the spanned subspace
has incoherent column space (assuming the low-rank
matrix has incoherent column space) and furthermore,
the projection of the other columns onto the orthogo-
nal complement of the spanned subspace are incoher-
ent, too. Given the incoherence condition we can eas-
ily prove a norm estimation result similar to Lemma 2,
which is the second step. For the third step, we note
that the approximate iterative norm sampling proce-
dure is an approximation of volume sampling, a col-
umn sampling scheme that is known to have a rela-
tive error bound. Finally, the coefficient matrix X is
reconstructed using a method similar to the matrix
completion algorithm in [20].

STEP 1: We first prove that when the input matrix
M is a noisy low-rank matrix with incoherent column
space, with high probability a fixed column subset also
has incoherent column space. This is intuitive because
the Gaussian perturbation matrix is highly incoher-
ent with overwhelming probability. A more rigorous
statement is shown in Lemma 4.

Lemma 4. Suppose A has incoherent column space,
i.e., µ(U(A)) ≤ µ0. Fix C ⊆ [n2] to be any sub-
set of column indices that has s elements and δ > 0.
Let C = [M(C(1)), · · · ,M(C(s))] ∈ Rn1×s be the com-
pressed matrix and U(C) = span(C) denote the sub-
space spanned by the selected columns. Suppose s ≤ k,
k ≤ n1/4 − k and log(4n2/δ) ≤ n1/64. Then with
probability ≥ 1 − δ over the random drawn of R we
have

µ(U(C)) =
n1

s
max

1≤i≤n1

‖PU(C)ei‖22

= O

(
kµ0 + s+

√
s log(n1/δ) + log(n1/δ)

s

)
; (15)

furthermore, with probability ≥ 1 − δ the following
holds:

µ(PU(C)⊥(M(i))) = O(kµ0+log(n1n2/δ)), ∀i /∈ C.
(16)

The proof of Lemma 4 is based on the fact that Gaus-
sian noise is highly incoherent, and that the random-
ness imposed on each column of the input matrix is
independent. The complete proof can be found in Ap-
pendx B.

Given Lemma 4, Corollary 1 holds by taking a uni-
form bound over all

∑k
s=1

(
n2

s

)
= O(k(n2)k) column

subsets that contain no more than k elements. The
2k log(4n2/δ) ≤ n1/64 condition is only used to en-
sure that the desired failure probability δ is not ex-
ponentially small. Typically, in practice the intrinsic
dimension k is much smaller than the ambient dimen-
sion n1.

Corollary 1. Fix δ > 0. Suppose k ≤ n1/8 and
2k log(4n2/δ) ≤ n1/64. With probability ≥ 1 − δ the
following holds: for any subset C ⊆ [n2] with at most
k elements, the spanned subspace U(C) satisfies

µ(U(C)) ≤ O(k|C|−1µ0 log(n/δ)); (17)

furthermore,

µ(PU(C)⊥(M(i))) = O(kµ0 log(n/δ)), ∀i /∈ C. (18)

STEP 2: In this step, we prove that the norm esti-
mation scheme in Algorithm 2 works when the inco-
herence conditions in Eq. (17) and (18) are satisfied.
More specifically, we have the following lemma bound-
ing the norm estimation error:

Lemma 5. Fix i ∈ {1, · · · , n2}, t ∈ {1, · · · , k} and
δ, δ′ > 0. Suppose Eq. (17) and (18) hold with prob-
ability ≥ 1 − δ. Let St be the subspace spanned by

selected columns at the t-th round and let ĉ
(t)
i denote

the estimated squared norm of the ith column. If m
satisfies

m = Ω(kµ0 log(n/δ) log(k/δ′)), (19)

then with probability ≥ 1− δ − 4δ′ we have

1

2
‖[Et](i)‖22 ≤ ĉ(t)i ≤

5

4
‖[Et](i)‖22. (20)

Here Et = PS⊥t (M) denotes the projected matrix at
the t-th round.
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Lemma 5 is similar with previous results on subspace
detection [3] and matrix approximation [20]. Namely,
one can accurately estimate the `2 norm of a vector
provided that the vector is incoherent. The proof of
Lemma 5 is deferred to Appendix B.

Similar to the first step, by taking a union bound
over all possible subsets of picked columns and n2 − k
unpicked columns we can prove a stronger version of
Lemma 5, as shown in Corollary 2.

Corollary 2. Fix δ, δ′ > 0. Suppose Eq. (17) and
(18) hold with probability ≥ 1− δ. If

m = Ω(k2µ0 log(n/δ) log(n/δ′)) (21)

then with probability ≥ 1−δ−4δ′ the following property
holds for any selected column subset by Algorithm 2:

2

5

‖[Et](i)‖22
‖Et‖2F

≤ p̂(t)
i ≤

5

2

‖[Et](i)‖22
‖Et‖2F

,∀i ∈ [n2], t ∈ [k],

(22)
where p̂

(t)
i = ĉ

(t)
i /f̂ (t) is the sampling probability of the

ith column at round t.

STEP 3: To begin with, we define volume sampling
distributions:

Definition 1 (volume sampling, [9]). A distribution
p over column subsets of size k is a volume sampling
distribution if

p(C) =
vol(∆(C))2

∑
T :|T |=k vol(∆(T ))2

, ∀|C| = k. (23)

Volume sampling has been shown to achieve a relative
error bound for column subset selection, which is made
precise by Theorem 3 cited from [10, 9].

Theorem 3 ([10], Theorem 4). Fix a matrix M and
let Mk denote the best rank-k approximation of M.
If the sampling distribution p is a volume sampling
distribution defined in Eq. (23) then

EC
[
‖M− PV(C)(M)‖2F

]
≤ (k+ 1)‖M−Mk‖2F ; (24)

furthermore, applying Markov’s inequality one can
show that with probability ≥ 1− δ

‖M− PV(C)(M)‖2F ≤
k + 1

δ
‖M−Mk‖2F . (25)

In general, volume sampling is intractable. How-
ever, in [10] it was shown that iterative norm sam-
pling serves as an approximate of volume sampling and
achieves a relative error bound as well. In Lemma 6
we present an extension of this result. Namely, ap-
proximate iterative column norm sampling is an ap-
proximate of volume sampling, too. Its proof is very
similar to the one presented in [10] and we defer it to
Appendix B.

Lemma 6. Let p be the volume sampling distribution
defined in Eq. (23). Suppose the sampling distribution
of a k-round sampling strategy p̂ satisfies Eq. (22).
Then we have

p̂C ≤ 2.5kk!pC , ∀|C| = k. (26)

STEP 4: We can now prove the error bound for re-
construction error ‖M−CC†M‖F of Algorithm 2 by
combining Corollary 1, 2, Lemma 6 and Theorem 3.
In particular, Corollary 1 and 2 guarantees that Algo-
rithm 2 estimates column norms accurately with high
probability; then one can apply Lemma 6 to show that
the sampling distribution employed in the algorithm
is actually an approximate volume sampling distribu-
tion, which is known to achieve relative error bounds
(by Theorem 3).

To reconstruct the coefficient matrix X and to further
bound the approximation error ‖M − CX‖F , we ap-
ply the U(U>ΩUΩ)−1UΩ operator on every column to

build a low-rank approximation M̂. It was shown in
[19, 3] that this operator recovers all components in
the underlying subspace U with high probability, and
hence achieves a relative error bound for low-rank ma-
trix approximation. More specifically, we have Lemma
7, which is proved in Appendix B.

Lemma 7. Let C ⊆ [n2], |C| = k be the indices of
columns selected in the column subset selection phase
of Algorithm 2. Suppose Eq. (17) and (18) are satis-
fied with probability ≥ 1− δ. If m satisfies

m = Ω(kµ0 log(n/δ) log(n/δ′′)), (27)
then with probability ≥ 1− δ − δ′′ we have

‖M− M̂‖2F ≤ 2.5‖M−CC†M‖2F . (28)

Note that all columns of M̂ are in the subspace U(C).

Therefore, CX = CC†M̂ = M̂. The proof of Eq. (11)
is then straightforward.

5 SIMULATIONS

In this section we use simulations to demonstrate the
effectiveness of our proposed algorithms. All input ma-
trices are 50×50. To obtain exact low rank inputs, we
first generate a random Gaussian matrix and use its
top k SVD as the input. For noisy perturbed low rank
inputs M = A + R, the noise-to-signal ratio (NSR).
is measured by ‖R‖F /‖A‖F , where A is an exact low
rank matrix and R is a Gaussian white noise matrix.

We first compare the reconstruction error of Algorithm
1 and 2 for noisy low-rank inputsunder different set-
tings of column norms, missing rates and NSR. Un-
der incoherent column settings column norms are dis-
tributed fairly uniformly while under coherent column
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Figure 1: Reconstruction error of Algorithm 1 and 2 for noisy low-rank matrices with incoherent (left two) and
coherent columns (right two) under various settings of missing rate (1− α) and NSR ratio (the black line).
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Figure 3: Reconstruction error of sampling and heuristic based algorithms. The black dash line indicates
‖R‖F /‖A‖F in the noisy low-rank matrix case and ‖M−Mk‖F in the full-rank matrix case.
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Figure 2: Reconstruction error for noisy low-rank ma-
trices (left) and matrix completion success probabil-
ity for exact low-rank matrices (right) when multiple
columns are identical.

settings the column norms are distributed in a log-
normal way. α indicates the entrywise sampling prob-
ability (that is, αn1n2 is the expected number of ob-
served entries and 1 − α is the missing rate). After
obtaining a subset of columns C, we evaluate its per-
formance by the Frobenius-norm reconstruction error
‖M−CC†M‖F .

From Figure 1 it can be seen that when the missing
rate is not too high (1 − α ≤ 0.7) the active approxi-
mate volume sampling algorithm always outperforms
the norm sampling one. This phenomenon is more
evident when the noise-to-signal ratio ‖R‖F /‖A‖F
is small, because as an algorithm with relative error
bounds, the reconstruction error of Algorithm 2 goes
down with ‖R‖F /‖A‖F . This is not the case for Algo-
rithm 1, which only has additive error guarantees. On
the other hand, when the magnitude of the noise R is

comparable to A both algorithms are equally effective.

The disadvantage of Algorithm 1 is more apparent in
Figure 2, where the input matrix contains multiple
identical columns with large norm. Under such set-
tings, it is highly likely that Algorithm 1 will select
identical columns many times, which leads to perfor-
mance deterioration. Figure 2 shows that as the num-
ber of identical columns increases, the reconstruction
error of Algorithm 1 gets larger and the success prob-
ability of matrix completion (with exact low-rank in-
puts) decreases rapidly. In contrast, the performance
of Algorithm 2 remains the same regardless of repeated
columns.

In Figure 3 we compare our active sampling based al-
gorithms with several heuristic based methods, for ex-
ample, Block OMP [2] and Group Lasso [4]. The ob-
servation is that the active approximate volume sam-
pling algorithm (Algorithm 2) outperforms both Block
OMP and group Lasso for noisy low-rank inputs, and
its performance is comparable with group Lasso for
full-rank deterministic matrices when the missing rate
is not too high. On the other hand, both of the pro-
posed sampling based algorithms are quite efficient,
only scanning through the input and computing SVD
on small matrices of size O(k). In contrast, for the
group Lasso method one needs to compute a solution
path of a Lasso problem with n1n2 variables. Though
computationally expensive, under high missing rates
block OMP and group Lasso outperform our proposed
methods and it would be interesting to study their
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Figure 4: Reconstruction error ‖M − CC†M‖F for the active approximate volume sampling algorithm as a
function of α (left), α/k (middle) and α/k2 (right). Error curves plotted under 4 different rank (k) settings.

theoretical properties.

We also try to verify the sample complexity depen-
dence on the intrinsic matrix rank k for Algorithm 2.
To do this, we run the algorithm under various settings
of intrinsic dimension k and the sampling probabil-
ity α (which is basically proportional to the expected
number of per-column samples m). We then plot the
reconstruction error ‖M − CC†M‖F against α, α/k
and α/k2 in Figure 4.

Theorem 2 states that the dependence of m on k
should be m = Õ(k2), ignoring logarithmic factors.
However, in Figure 4 one can observe that when the
reconstruction error is plotted against α/k the differ-
ent curves coincide. This suggests that the actual de-
pendence of m on k should be close to linear instead of
quadratic. It is an interesting question whether we can
get rid of the use of union bounds over all n2-choose-k
column subsets in the proof of Theorem 2 in order to
get a near linear dependence over k.

6 DISCUSSION

6.1 Sample complexity, column subset size
and reconstruction error

We first remark on the connection of sample com-
plexity (i.e., number of observed matrix entries),
size of column subsets and reconstruction error for
column subset selection. In many matrix comple-
tion/approximation tasks increasing the sample com-
plexity usually leads to increased approximation accu-
racy (e.g., [20]). However, for column subset selection
when the target column subset size is fixed the sample
complexity acts more like a threshold: if not enough
number of matrix entries are observed then the algo-
rithm fails, but otherwise the reconstruction error does
not differ much. In fact, the guarantee in Eq. (8), for
example, is exactly the same as in [15] under the fully
observed setting, i.e., m1 = n1.

Figure 1 is an excellent illustration of this phe-
nomenon. When α = 0.1 the reconstruction error of
Algorithm 2 is very high, which means the algorithm

does not have enough samples. However, for α = 0.3
and α = 0.9 the performance of Algorithm 2 is very
similar. Such phase transition is also present in low-
rank matrix completion; e.g., see Figure 2 in [20].

6.2 Error analysis of Algorithm 2

In Theorem 2 we derive a relative error bound with
a sample complexity analysis for the adaptive approx-
iamte volume sampling algorithm. However, the re-
sults are not completely satisfactory. First, the sample
complexity dependency on the target matrix rank k is
quadratic, which we conjecture is too loose based on
simulations shown in Figure 4. We believe it is possible
to improve over the quadratic dependency by avoiding
the n-choose-k union bound argument in our proof.
In addition, the relative error in Eq. (11) is expo-
nential with respect to the target rank k, which makes
the analysis inapplicable for high-rank cases. However,
in simulations we observe no significant error increase
when the rank of the input matrix is high (e.g., see
Figure 3 and 4). It is an interesting question whether
this exponential dependency can be improved.

6.3 Relative error bound for general inputs

Theorem 2 shows that Algorithm 2 has relative error
guarantee when the input matrix is a low-rank ma-
trix perturbed by Gaussian noise. In fact, we believe
that Algorithm 2 works for low-rank inputs with sub-
Gaussian noise, too. However, getting a relative error
algorithm for more general inputs (e.g., low-rank ma-
trices with deterministic noise or even full-rank matri-
ces) remains an open problem with missing data.

Acknowledgements

We would like to thank Akshay Krishnamurthy for
helpful discussions on the proof of Theorem 2. This
research is supported in part by grants NSF-1252412
and AFOSR-FA9550-14-1-0285.



Yining Wang, Aarti Singh

References

[1] M. F. Balcan and P. M. Long. Active and pas-
sive learning of linear separator under log-concave
distributions. In COLT, 2013.

[2] L. Balzano, R. Nowak, and W. Bajwa. Col-
umn subset selection with missing data. In NIPS
Workshop on Low-Rank Methods for Large-Scale
Machine Learning, 2010.

[3] L. Balzano, B. Recht, and R. Nowak. High-
dimensional matched subspace detection when
data are missing. In ISIT, 2010.

[4] J. Bien, Y. Xu, and M. Mahoney. CUR from a
sparse optimization viewpoint. In NIPS, 2010.

[5] C. Boutsidis, M. Mahoney, and P. Drineas. An im-
proved approximation algorithm for the column
subset selection problem. In SODA, 2009.

[6] E. J. Candes and Y. Plan. Matrix completion
with noise. Proceedings of the IEEE, 98(6):925–
936, 2010.

[7] T. F. Chan. Rank revealing QR factorizations.
Linear Algebra and Its Applications, 88:67–82,
1987.

[8] Y. Chen, S. Bhojanapalli, S. Sanghavi, and
R. Ward. Completing any low-rank matrix, prov-
ably. arXiv:1306.2979, 2013.

[9] A. Deshpande, L. Rademacher, S. Vempala, and
G. Wang. Matrix approximation and projective
clustering via volume sampling. Theory of Com-
puting, 2:225–247, 2006.

[10] A. Deshpande and S. Vempala. Adaptive sam-
pling and fast low-rank matrix approximation.
In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques,
pages 292–303. 2006.

[11] P. Drineas, R. Kannan, and M. Mahoney. Fast
monte carlo algorithms for matrices I: Approxi-
mating matrix multiplication. SIAM Journal on
Computing, 36(1):132–157, 2006.

[12] P. Drineas, R. Kannan, and M. W. Mahoney. Fast
monte carlo algorithms for matrices II: Comput-
ing a low-rank approximation to a matrix. SIAM
Journal on Computing, 36(1):158–183, 2006.

[13] P. Drineas, R. Kannan, and M. W. Mahoney. Fast
monte carlo algorithms for matrices III: Comput-
ing a compressed approximate matrix decompo-
sition. SIAM Journal on Computing, 36(1):184–
206, 2006.

[14] P. Drineas, M. W. Mahoney, and S. Muthukrish-
nan. Relative-error CUR matrix decompositions.
SIAM Journal on Matrix Analysis and Applica-
tions, 30(2):844–881, 2008.

[15] A. Frieze, R. Kannan, and S. Vempala. Fast
monte-carlo algorithms for finding low-rank ap-
proximations. Journal of the ACM, 51(6):1025–
1041, 2004.

[16] M. Gu and S. C. Eisenstat. Efficient algorithms
for computing a strong rank-revealing QR factor-
ization. SIAM Journal on Scientific Computing,
17(4):848–869, 1996.

[17] J. Haupt, R. M. Castro, and R. Nowak. Distilled
sensing: Adaptive sampling for sparse detection
and estimation. IEEE Transactions on Informa-
tion Theory, 57(9):6222–6235, 2011.

[18] R. H. Keshavan, A. Montanari, and S. Oh. Matrix
completion from a few entries. IEEE Transactions
on Information Theory, 56(6):2980–2998, 2010.

[19] A. Krishnamurthy and A. Singh. Low-rank ma-
trix and tensor completion via adaptive sampling.
In NIPS, 2013.

[20] A. Krishnamurthy and A. Singh. On the power
of adaptivity in matrix completion and approxi-
mation. arXiv:1407.3619, 2014.

[21] B. Laurent and P. Massart. Adaptive estimation
of a quadratic functional by model selection. The
Annals of Statistics, 28(5):1302–1338, 2000.

[22] B. Recht. A simpler approach to matrix comple-
tion. The Journal of Machine Learning Research,
12:3413–3430, 2011.

[23] R. Vershynin. Introduction to the non-asymptotic
analysis of random matrices. arXiv:1011.3027,
2010.

[24] S. Wang and Z. Zhang. Improving CUR ma-
trix decomposition and the nyström approxima-
tion via adaptive sampling. The Journal of Ma-
chine Learning Research, 14(1):2729–2769, 2013.



Column Subset Selection with Missing Data via Active Sampling

Appendix A. Analysis of the active norm sampling algorithm

Proof of Lemma 1. This lemma is a direct corollary of Theorem 2 from [15]. First, let Pi = ĉi/f̂ be the probability
of selecting the i-th column of M. By assumption, we have Pi ≥ 1−α

1+α‖xi‖22/‖M‖2F . Applying Theorem 2 3 from

[15] we have that with probability at least 1− δ, there exists an orthonormal set of vectors y(1), · · · ,y(k) ∈ Rn1

in span(C) such that

∥∥∥∥∥∥
M−




k∑

j=1

y(j)y(j)>


M

∥∥∥∥∥∥

2

F

≤ ‖M−Mk‖2F +
(1 + α)k

(1− α)δs
‖M‖2F . (29)

Finally, to complete the proof, note that every column of
(∑k

j=1 y
(j)y(j)>

)
M can be represented as a linear

combination of columns in C; furthermore,

‖M− PC(M)‖F = min
X∈Rk×n2

‖M−CX‖F ≤

∥∥∥∥∥∥
M−




k∑

j=1

y(j)y(j)>


M

∥∥∥∥∥∥
F

. (30)

Proof of Theorem 1. First, set m1 = Ω(µ1 log(n2/δ1)) we have that with probability ≥ 1− δ1 the inequality

(1− α)‖xi‖22 ≤ ĉi ≤ (1 + α)‖xi‖22
holds with α = 0.5 for every column i, using Lemma 2. Next, putting s ≥ 6k/δ2ε

2 and applying Lemma 1 we
get

‖M− PC(M)‖F ≤ ‖M−Mk‖F + ε‖M‖F (31)

with probability at least 1−δ2. Finally, note that when α ≤ 1/2 and n1 ≤ n2 the bound in Lemma 3 is dominated
by

‖M− M̂‖2 ≤ ‖M‖F ·O
(√

µ1

m2
log

(
n1 + n2

δ

))
. (32)

Consequently, for any ε′ > 0 if m2 = Ω((ε′)−2µ1 log2((n1 + n2)/δ3) we have with probability ≥ 1− δ3

‖M− M̂‖2 ≤ ε′‖M‖F . (33)

The proof is then completed by taking ε′ = ε/
√
s:

‖M−CX‖F = ‖M− PC(M̂)‖F
≤ ‖M− PC(M)‖F + ‖PC(M− M̂)‖F
≤ ‖M−Mk‖F + ε‖M‖F +

√
s‖PC(M− M̂)‖2

≤ ‖M−Mk‖F + ε‖M‖F +
√
s · ε′‖M‖F

≤ ‖M−Mk‖F + 2ε‖M‖F .

Appendix B. Analysis of the active volume sampling algorithm

Proof of Lemma 4. We first prove Eq. (15). Observe that dim(U(C)) ≤ s. Let RC = (R(C(1)), · · · ,R(C(s))) ∈
Rn1×s denote the selected s columns in the noise matrix R and let R(C) = span(RC) denote the span of selected
columns in R. By definition, U(C) ⊆ U ∪R(C), where U = span(A) denotes the subspace spanned by columns
in the deterministic matrix A. Consequently, we have the following bound on ‖PU(C)ei‖ (assuming each entry
in R follows a zero-mean Gaussian distribution with σ2 variance):

‖PU(C)ei‖22 ≤ ‖PUei‖22 + ‖PU⊥∩R(C)ei‖22
3The original theorem concerns random samples of rows; it is essentially the same for random samples of columns.
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≤ ‖PUei‖22 + ‖PR(C)ei‖22
≤ kµ0

n1
+ ‖RC‖22‖(R>CRC)−1‖22‖R>Cei‖22

≤ kµ0

n1
+

(
√
n1 +

√
s+ ε)2σ2

(
√
n1 −

√
s− ε)4σ4

· σ2(s+ 2
√
s log(2/δ) + 2 log(2/δ)).

For the last inequality we apply Lemma 13 to bound the largest and smallest singular values of RC and Lemma
11 to bound ‖R>Cei‖22, because R>Cei follow i.i.d. Gaussian distributions with covariance σ2Is×s. If ε is set as

ε =
√

2 log(4/δ) then the last inequality holds with probability at least 1− δ. Furthermore, when s ≤ n1/2 and

δ is not exponentially small (e.g.,
√

2 log(4/δ) ≤
√
n1

4 ), the fraction
(
√
n1+
√
s+ε)2

(
√
n1−
√
s−ε)4 is approximately O(1/n1). As

a result, with probability 1− n1δ the following holds:

µ(U(C)) =
n1

s
max

1≤i≤n1

‖PU(C)ei‖22

≤ n1

s

(
kµ0

n1
+O

(
s+

√
s log(1/δ) + log(1/δ)

n1

))
= O

(
kµ0 + s+

√
s log(1/δ) + log(1/δ)

s

)
. (34)

Finally, putting δ′ = n1/δ we prove Eq. (15).

Next we try to prove Eq. (16). Let x be the i-th column of M and write x = a + r, where a = PU (x) and
r = PU⊥(x). Since the deterministic component of x lives in U and the random component of x is a vector
with each entry sampled from i.i.d. zero-mean Gaussian distributions, we know that r is also a zero-mean
random Gaussian vector with i.i.d. sampled entries. Note that U(C) does not depend on the randomness over

{M(i) : i /∈ C}. Therefore, in the following analysis we will assume U(C) to be a fixed subspace Ũ with dimension
at most s.

The projected vector x′ = PŨ⊥x can be written as x̃ = ã + r̃, where ã = PŨ⊥a and r̃ = PŨ⊥r. By definition,

ã lives in the subspace U ∩ Ũ⊥. So it satisfies the incoherence assumption

µ(ã) =
n1‖ã‖2∞
‖ã‖22

≤ kµ(U) ≤ kµ0. (35)

On the other hand, because r̃ is an orthogonal projection of some random Gaussian variable, r̃ is still a Gaussian
random vector, which lives in U⊥ ∩ Ũ⊥ with rank at least n1 − k − s. Subsequently, we have

µ(x̃) = n1
‖x̃‖2∞
‖x̃‖22

≤ 3n1
‖ã‖2∞ + ‖r̃‖2∞
‖ã‖22 + ‖r̃‖22

≤ 3n1
‖ã‖2∞
‖ã‖22

+ 3n1
‖r̃‖2∞
‖r̃‖22

≤ 3kµ0 +
6σ2n1 log(2n1n2/δ)

σ2(n1 − k − s)− 2σ2
√

(n1 − k − s) log(n2/δ)
.

For the second inequality we use the fact that
∑

i ai∑
i bi
≤∑i

ai
bi

whenever ai, bi ≥ 0. For the last inequality we use

Lemma 12 on the enumerator and Lemma 11 on the denominator. Finally, note that when max(s, k) ≤ n1/4
and log(n2/δ) ≤ n1/64 the denominator can be lower bounded by σ2n1/4; subsequently, we can bound µ(x̃) as

µ(x̃) ≤ 3kµ0 +
24σ2n1 log(2n1n2/δ)

σ2n1
≤ 3kµ0 + 24 log(2n1n2/δ). (36)

Taking a union bound over all n2 − s columns yields the result.

To prove the norm estimation consistency result in Lemma 5 we first cite a seminal theorem from [20] which
provides a tight error bound on a subsampled projected vector in terms of the norm of the true projected vector.
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Theorem 4. Let U be a k-dimensional subspace of Rn and y = x + v, where x ∈ U and v ∈ U⊥. Fix
δ′ > 0, m ≥ max{ 8

3kµ(U) log
(

2k
δ′
)
, 4µ(v) log(1/δ′)} and let Ω be an index set with entries sampled uniformly

with replacement with probability m/n. Then with probability at least 1− 4δ′:

m(1− α)− kµ(U) β
1−γ

n
‖v‖22 ≤ ‖yΩ − PUΩ

yΩ‖22 ≤ (1 + α)
m

n
‖v‖22, (37)

where α =
√

2µ(v)
m log(1/δ′) + 2µ(v)

3m log(1/δ′), β = (1 + 2
√

log(1/δ′))2 and γ =
√

8kµ(U)
3m log(2k/δ′).

We are now ready to prove Lemma 5.

Proof of Lemma 5. By Algorithm 2, we know that dim(St) = t with probability 1. Let y = M(i) denote the i-th
column of M and let v = PSty be the projected vector. We can apply Theorem 4 to bound the estimation error
between ‖v‖ and ‖yΩ − PSt(Ω)yΩ‖.
First, when m is set as in Eq. (19) it is clear that the conditions m ≥ 8

3 tµ(U) log
(

2t
δ′
)

= Ω(kµ0 log(n/δ) log(k/δ′))
and m ≥ 4µ(v) log(1/δ′) = Ω(kµ0 log(n/δ) log(1/δ′)) are satisfied. We next turn to the analysis of α, β and γ.

More specifically, we want α = O(1), γ = O(1) and tµ(U)
m β = O(1).

For α, α = O(1) implies m = Ω(µ(v) log(1/δ′)) = Ω(kµ0 log(n/δ) log(1/δ′)). Therefore, by carefullying selecting
constants in Ω(·) we can make α ≤ 1/4.

For γ, γ = O(1) implies m = Ω(tµ(U) log(t/δ′)) = Ω(kµ0 log(n/δ) log(k/δ′)). By carefully selecting constants in
Ω(·) we can make γ ≤ 0.2.

For β, tµ(U)
m β = O(1) implies m = O(tµ(U)β) = O(kµ0 log(n/δ) log(1/δ′)). By carefully selecting constants we

can have β ≤ 0.2. Finllay, combining bounds on α, β and γ we prove the desired result.

Before proving Lemma 6, we first cite a lemma from [9] that connects the volume of a simplex to the permutation
sum of singular values.

Lemma 8 ([9]). Fix A ∈ Rm×n with m ≤ n. Suppose σ1, · · · , σm are singular values of A. Then

∑

S⊆[n],|S|=k
vol(∆(S))2 =

1

(k!)2

∑

1≤i1<i2<···<ik≤m
σ2
i1σ

2
i2 · · ·σ2

ik
. (38)

Now we are ready to prove Lemma 6.

Proof of Lemma 6. Let Mk denote the best rank-k approximation of M and assume the singular values of M
are {σi}n1

i=1. Let C = {i1, · · · , ik} be the selected columns. Let τ ∈ Πk, where Πk denotes all permutations with
k elements. By Hτ,t we denote the linear subspace spanned by {M(τ(i1)), · · · ,M(τ(it))} and let d(M(i),Hτ,t)
denote the distance between column M(i) and subspace Hτ,t. We then have

p̂C ≤
∑

τ∈Πk

(
5

2

)k ‖M(τ(i1))‖22
‖M‖2F

d(M(τ(i2)),Hτ,1)2

∑n2

i=1 d(M(i),Hτ,1)2
· · · d(M(τ(ik)),Hτ,k−1)2

∑n2

i=1 d(M(i),Hτ,k−1)2

≤ 2.5k ·
∑
τ∈Πk

‖M(τ(i1))‖2d(M(τ(i2)),Hτ,1)2 · · · d(M(τ(ik)),Hτ,k−1)2

‖M‖2F ‖M−M1‖2F · · · ‖M−Mk−1‖2F

= 2.5k ·
∑
τ∈Πk

(k!)2vol(∆(C))2

‖M‖2F ‖M−M1‖2F · · · ‖M−Mk−1‖2F
= 2.5k · (k!)3vol(∆(C))2

∑n1

i=1 σ
2
i

∑n1

i=2 σ
2
i · · ·

∑n1

i=k σ
2
i

≤ 2.5k · (k!)3vol(∆(C))2

∑
1≤i1<i2<···<ik≤n1

σ2
i1
σ2
i2
· · ·σ2

ik

= 2.5k · k!vol(∆(C))2

∑
T :|T |=k vol(∆(T ))2

= 2.5kk!pC .
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For the first inequality we apply Eq. (22) and for the second to last inequality we apply Lemma 8.

To prove the approximation error bound in Lemma 7 we need the following two technical lemmas, cited from
[19, 3].

Lemma 9 ([19]). Suppose U ⊆ Rn has dimension k and U ∈ Rn×k is the orthogonal matrix associated with U .
Let Ω ⊆ [n] be a subset of indices each sampled from i.i.d. Bernoulli distributions with probability m/n1. Then
for some vector y ∈ Rn, with probability at least 1− δ:

‖U>ΩyΩ‖22 ≤ β
m

n1

kµ(U)

n1
‖y‖22, (39)

where β is defined in Theorem 4.

Lemma 10 ([3]). With the same notation in Lemma 9 and Theorem 4. With probability ≥ 1− δ one has

‖(U>ΩUΩ)−1‖ ≤ n1

(1− γ)m
, (40)

provided that γ < 1.

Now we can prove Lemma 7.

Proof of Lemma 7. Let U = U(C) and U ∈ Rn1×k be the orthogonal matrix associated with U (note that with
probability one dim(U) = k). Fix a column i and let x = M(i) = a + r, where a ∈ U and r ∈ U⊥. What we
want is to bound ‖x−U(U>ΩUΩ)−1U>ΩxΩ‖22 in terms of ‖r‖22.

Write a = Uã. By Lemma 10, if m satisfies the condition given in the Lemma then with probability over
1− δ − δ′′ we know (U>ΩUΩ) is invertible and furthermore, ‖(U>ΩUΩ)−1‖2 ≤ 2n1/m. Consequently,

U(U>ΩUΩ)−1U>ΩaΩ = U(U>ΩUΩ)−1U>ΩUΩã = Uã = a. (41)

That is, the subsampled projector preserves components of x in subspace U .

Now let’s consider the noise term r. By Corollary 1 with probability ≥ 1− δ we can bound the incoherence level
of y as µ(y) = O(kµ0 log(n/δ)). The incoherence of subspace U can also be bounded as µ(U) = O(µ0 log(n/δ)).
Subsequently, given m = Ω(kµ0 log(n/δ) log(n/δ′′)) we have (with probability ≥ 1− δ − 2δ′′)

‖x−U(U>ΩUΩ)−1U>Ω(a + r)|22
= ‖a + r −U(U>ΩUΩ)−1U>Ω(a + r)‖22
= ‖r −U(U>ΩUΩ)−1U>Ωr‖22
≤ ‖r‖22 + ‖(U>ΩUΩ)−1‖22‖U>Ωr‖22
≤ (1 +O(1))‖r‖22.

For the second to last inequality we use the fact that r ∈ U⊥. By carefully selecting constants in Eq. (21) we
can make

‖x−U(U>ΩUΩ)−1U>Ωx‖22 ≤ 2.5‖PU⊥x‖22. (42)

Summing over all n2 columns yields the desired result.

Appendix C. Some concentration inequalities

Lemma 11 ([21]). Let X ∼ χ2
d. Then with probability ≥ 1− 2δ the following holds:

−2
√
d log(1/δ) ≤ X − d ≤ 2

√
d log(1/δ) + 2 log(1/δ). (43)

Lemma 12. Let X1, · · · , Xn ∼ N (0, σ2). Then with probability ≥ 1− δ the following holds:

max
i
|Xi| ≤ σ

√
2 log(2n/δ). (44)
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Lemma 13 ([23]). Let X be an n × t random matrix with i.i.d. standard Gaussian random entries. If t < n
then for every ε ≥ 0 with probability ≥ 1− 2 exp(−ε2/2) the following holds:

√
n−
√
t− ε ≤ σmin(X) ≤ σmax(X) ≤ √n+

√
t+ ε. (45)


