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Abstract

In active learning, the user sequentially
chooses values for feature X and an oracle
returns the corresponding label Y . In this
paper, we consider the effect of feature noise
in active learning, which could arise either
because X itself is being measured, or it is
corrupted in transmission to the oracle, or
the oracle returns the label of a noisy ver-
sion of the query point. In statistics, feature
noise is known as “errors in variables” and
has been studied extensively in non-active
settings. However, the effect of feature noise
in active learning has not been studied be-
fore. We consider the well-known Berkson
errors-in-variables model with additive uni-
form noise of width σ.

Our simple but revealing setting is that
of one-dimensional binary classification set-
ting where the goal is to learn a threshold
(point where the probability of a + label
crosses half). We deal with regression func-
tions that are antisymmetric in a region of
size σ around the threshold and also sat-
isfy Tsybakov’s margin condition around the
threshold. We prove minimax lower and up-
per bounds which demonstrate that when σ
is smaller than the minimiax active/passive
noiseless error derived in Castro & Nowak
(2007), then noise has no effect on the rates
and one achieves the same noiseless rates.
For larger σ, the unflattening of the re-
gression function on convolution with uni-
form noise, along with its local antisymme-
try around the threshold, together yield a be-
haviour where noise appears to be beneficial.
Our key result is that active learning can buy
significant improvement over a passive strat-
egy even in the presence of feature noise.

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
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1 Introduction

Active learning is a machine learning paradigm where
the algorithm interacts with a label-providing oracle
in a feedback driven loop where past training data
(features queried and corresponding labels) are used
to guide the design of subsequent queries. Typically,
the oracle is queried with an exact feature value and
the oracle returns the label corresponding precisely to
that feature value. However, in many scenarios, the
feature value being queried can be noisy and it helps
to analyze what would happen in such a setting. Such
situations include noisy sensor measurements of fea-
tures, corrupted transmission of data from source to
storage, or just access to a limited noisy oracle.

The errors-in-variables model has been well studied in
the statistical literature and their effect can be pro-
found. In density estimation, Gaussian error causes
the minimax rate to become logarithmic in sample size
instead of polynomial, see Fan (1991). For results in
passive regression, refer to Fan et al. (1993); Fuller
(2009); Carroll et al. (2010), and for passive classifica-
tion, see Loustau & Marteau (2012). However, clas-
sification has not been studied in the Berkson model
introduced below. Also, deconvolution estimators re-
quire the noise fourier transform to be bounded away
from zero, ruling out uniform noise. Finally, to the
best of our knowledge, feature noise has not been stud-
ied for active learning in any setting.

The classical errors in variables model has the graph-
ical form W ← X → Y , representing

W = X + δ ,

Y = m(X) + ε .

Here, the label Y depends on the feature X but we do
not observe X; rather we observe the noisy feature W .
The Berkson errors in variables model is

X = W + δ ,

Y = m(X) + ε .

The difference is that we start with an observed feature
W and then noise is added to determine X. Graphi-
cally, this model is W → X → Y .
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In this paper, we focus on the Berkson error model
since it intuitively makes more sense for active learning
- it captures the idea that we request a label for feature
W , but the oracle returns the label for X which is a
corrupted version generated from W , i.e. the noise
occurs between the label request and the oracle output.
We use uniform noise since it yields insightful behavior
and also has not been addressed in the literature. We
conjecture that qualitatively similar results hold for
other symmetric error models.

1.1 The Setup

Threshold Classification. Let X = [−1, 1], Y =
{+,−}, and f : X → Y denote a classification rule.
Assuming 0/1 loss, the risk of the classification rule f
is R(f) = E[1{f(X) 6=Y }] = P(f(X) 6= Y ). It is known
that the Bayes optimal classifier, the best measurable
classifier that minimizes the risk f∗ = arg minf R(f),
has the following form

f∗(x) =

{
+ if m(x) ≥ 1/2 ,

− if m(x) < 1/2 ,

where m(x) = P(Y = +|X = x) is the unknown re-
gression function. In what follows, we will consider the
case where the f∗ is a threshold classifier, i.e. there
exists a unique t ∈ [−1, 1] with m(t) = 1/2 such that
m(x) < 1/2 if x < t, and m(x) > 1/2 if x > t.

Berkson Error Model. The model is:

1. User chooses W and requests label.

2. Oracle receives a noisy W namely X = W + U .

3. Oracle returns Y where P(Y = +|X = x) = m(x).

We take the noise to be uniform: U ∼ Unif[−σ, σ],
where the noise width σ is known for simplicity.

Sampling Strategies. In passive sampling, assume
that we are given a batch of wi ∼ Unif[−1, 1] and cor-
responding labels yi sampled independently of {wj}j 6=i
and {yj}j 6=i. In this case, a strategy S is just an esti-
mator Sn : (W × Y )n → [−1, 1] that returns a guess t̂
of the threshold t on seeing {wi, yi}ni=1.

In active sampling we are allowed to sequentially
choose wi = Si(w1, . . . , wi−1, y1, . . . , yi−1), where Si
is a possibly random function of past queries and la-
bels, where the randomness is independent of queries
and labels. In this case, a strategy A is a sequence of
functions Si : (W × Y )i−1 → [−1, 1] returning query
points and an estimator Sn : (W ×Y )n → [−1, 1] that
returns a guess t̂ at the end.

Let SPn ,SAn be the set of all passive or active strategies
(and estimators) with a total budget of n labels.

To avoid the issue of noise resulting in a point outside
the domain, we make a (Q)uerying assumption:

(Q). Querying within σ of the boundary is disallowed.

Loss Measure. Let t̂ = t̂(Wn
1 , Y

n
1 ) denote an esti-

mator of t using n samples from a passive or active
strategy. Our task will be to estimate the location of
t, where we measure accuracy of an estimator t̂ by a
loss function which is the point error |t̂− t|.

Function Class. In the analysis of rates for classi-
fication (among others), it is common to use the Tsy-
bakov Noise/Margin Condition (see Tsybakov (2004)),
to characterize the behavior of m(x) around the
threshold t. Given constants c, C with C ≥ c, k ≥ 1,
and noise level σ, let P(c, C, k, σ) be the set of regres-
sion functions m(x) that satisfy the following condi-
tions (T,M,B) for some threshold t:

(T). |x− t|k−1 ≥ |m(x)− 1/2| ≥ c|x− t|k−1 whenever
|m(x)− 1/2| ≤ ε0 for some constant ε0

(M). m(t+ δ)− 1/2 = 1/2−m(t− δ) for all δ ≤ σ.

(B). t is at least σ away from the boundary.

On adding noise U , the point where m ? U (? means
convolution) crosses half may differ from t, the point
where m crosses half. However, the antisymmetry as-
sumption (M) and boundary assumption (B) together
imply that the two thresholds are the same. Getting
rid of (M,B) seems substantially difficult.

When σ = 0, (Q), (M) and (B) are vacuously satisfied,
and this is exactly the class of functions and strate-
gies considered in Castro & Nowak (2007). Smaller k
means that the regression function is steeper, which
makes it easier to estimate the threshold and classify
future labels (cf. Steinwart & Scovel (2004)). k = 1
captures a discontinuous m(x) jumping at t.

Minimax Risk. We are interested in the minimax
risk under the point error loss :

Rn(P(c, C, k, σ)) = inf
S∈Sn

sup
P∈P(c,C,k,σ)

E|t̂− t| (1)

where Sn is the set of strategies accessing n sam-
ples. For brevity,RPn (k, σ) orRAn (k, σ) denotes risk for
(P)assive/(A)ctive sampling stratgies SPn ,SAn .

Notation ≺,�,�,�,�. We analyse minimax point
error rates in different regimes of σ as a function of n
(or equivalently, for a given point error, we can analyse
how the sample size n depends on σ) and we write σn
for emphasis. In this paper, fn ≺ gn means fn/gn → 0,
fn � gn means c1gn ≤ fn ≤ c2gn where c1, c2 are
constants, fn � gn means fn ≺ gn or fn � gn, fn � gn
means gn � fn and fn � gn means gn ≺ fn.
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2 Main Result and Comparisions

The main result of this paper is as follows.
Theorem 1. Under the Berkson error model, when
given n labels sampled actively or passively with as-
sumption (Q), and when the true underlying regres-
sion function lies in P(c, C, k, σn) for known k, σn, the
minimax risk under the point error loss is:

1. RPn (P(k, σ)) �

{
n−

1
2k−1 if σn ≺ n−

1
2k−1

σ
−(k− 3

2 )
n

√
1
n otherwise

2. RAn (P(k, σ)) �

{
n−

1
2k−2 if σn ≺ n−

1
2k−2

σ
−(k−2)
n

√
1
n otherwise

When k = 1, m(x) jumps at the threshold, and we

interpret the quantity n−
1

2k−2 as being exponentially
small, i.e. being smaller than n−p for any p. We also
suppress logarithmic factors in n, σn. If the domain
was [−R,R], the corresponding passive rates are ob-
tained by substituting n by n/R, but active rates re-
main the same upto logarithmic factors in R.

Remark. In this paper, we focus on learning the
threshold t. This is relevant because the threshold
maybe of intrinsic interest, and also of interest for pre-
diction if, for example, future queries could be made
with a different noise model or can be obtained (with
some cost) noise-free. Similar results can be derived
for 0/1-risk.

Zero Noise. When σ = 0, the assumptions (Q,B,M)
are vacuously true, and our class P(c, C, k, 0) matches
the class P(c, C, k) considered in Castro & Nowak

(2007), and our rates for σ = 0 i.e. n−
1

2k−1 and n−
1

2k−2

are precisely the passive and active minimax point er-
ror rates in Castro & Nowak (2007).

Small Noise. When the noise is small, we get what
we expect - the risk does not change with noise as long
as the noise itself is smaller than the noiseless error.
In other words, as long as the noise is smaller than the

noiseless error rate of n−
1

2k−1 for passive learning, pas-
sive learners will not really be able to notice this tiny

noise, and the minimax rate remains n−
1

2k−1 . Simi-
larly, as long as the noise is smaller than the noiseless

error rate of n−
1

2k−2 for active learning, active learn-
ers will not really be able to notice this tiny noise, and

the minimax rate remains n−
1

2k−1 . Also, the passive

rates vary smoothly - at the point when σn � n−
1

2k−1 ,
the rates for small and large noise coincide. Similarly,

at the point when σn � n−
1

2k−2 , the aforementioned
active rates for small and large noise coincide.

Large Noise and Assumption (M). When the
noise is large, we see a curious behaviour of the rates.
When k > 2, the error rates seem to get smaller/better
with larger noise for both active and passive learning,
and furthermore the noisy rates can also be better than
the noiseless rate! This might seem to violate both the
information processing inequality, and our intuition
that more noise shouldn’t help estimation. Moreover,
a noiseless active learner may be able to simulate a
noisy situation by adding noise and querying at the
resulting point, and get better rates, violating lower
bounds in Castro & Nowak (2007).

However, we make the following crucial but subtle ob-
servation. Our claimed rates are not about a fixed
function class - due to assumption (M), the func-
tion class changes with σ, and in fact (M) requires
the antisymmetry of the regression function to hold
over a larger region for larger σ. This set of func-
tions is actually getting smaller with larger σ. Even
though the functions can behave quite arbitrarily out-
side (t−σ, t+σ), this assumption (M) on a small region
of size 2σ actually helps us significantly.

Given that there is no contradiction to the results of
Castro & Nowak (2007) or more fundamental informa-
tion theoretic ideas, there is also an intuitive explana-
tion of why assumption (M) helps when we have large
noise. As we will see in a later figure, convolution
with noise seems to “stretch/unflatten” the function
around the threshold. Specifically, for larger k > 2,
the regression function can be quite flat around the
threshold - convolution with noise makes it less flat
and more linear - in fact it behaves linearly over a
large region of width nearly 2σ. This is true regard-
less of whether assumption (M) holds - however if (M)
does not hold, then the convolved threshold, which is
the point where the convolved function crosses half,
need not be the original threshold t. While dropping
assumption (M) will not hurt if we only want to find
the convolved threshold, but given that our aim is to
estimate t, the problem of figuring out how much the
threshold shifted can be quite non-trivial.

Hence, large noise ensures a behaviour that is less flat
and more linear around the threshold, and assump-
tion (M) ensures that the threshold doesn’t shift from
t. Intuitively this is why (M) and large noise help, and
technically there is no contradiction becasue the func-
tion class is getting progressively simpler because of
more controlled growth around the threshold.

The main takeaway is that in all settings, active learn-
ing yields a gain over passive sampling. We now de-
scribe the upper and lower bounds that lead to The-
orem 1. The case k = 1 is handled in detail for intu-
itionb but proofs for k > 1 are in the Appendix.
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2.1 Simulation of Noise Convolution

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

Query Domain

η
(x

) i
n 

re
d,

 F
(w

) i
n 

bl
ue

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

Query Domain

η
(x

) i
n 

re
d,

 F
(w

) i
n 

bl
ue

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

Query Domain

η
(x

) i
n 

re
d,

 F
(w

) i
n 

bl
ue

Figure 1: Regression function η(x) (red) before and
F (w) (blue) after convolution with noise. In all 3
figures, Tsybakov’s margin condition holds for x ∈
[0.4, 0.6]. The top plot has a linear regression func-
tion (k = 2), and its two blue curves are for σn =
0.05 (narrow), 0.2 (wide), and they show that a lin-
ear growth around t = 0.5 remains linear. The middle
and bottom figure are for a flatter regression function
with k = 4, and σn = 0.05, 0.2 respectively, plotted
separately for clarity. k = 4 is harder than for k = 2
because the red curve is flatter around t, making it
harder to pinpoint the threshold. However, as one can
see in both plots, noise actually helps by smoothing
it out and making it more linear. However, note that
the effect of assumption (M) cannot be understated,
due to which in all plots the threshold before and after
noise cross half at the same point. The effect of noise
when k = 1 can be seen in the following section.

2.2 Paper Roadmap

We devote the next two sections to proving the lower
and upper bounds, in that order, that lead to Theorem
1. While the proofs will be self-contained, we leave
some detailed calculations to the appendix.

For easier readibility, we present lower bounds for
k = 1 first to absorb the technique and then the lower
bounds for k > 1. In Section 2 we will prove

Theorem 2 (Lower Bounds). Under the Berkson er-
ror model and assumption (Q),

1. For k = 1, the passive/active lower bounds are

inf
S∈SP

n

sup
P∈P(1,σn)

E|t̂− t| �

{
1
n if σn ≺ 1

n√
σn

n otherwise

inf
S∈SA

n

sup
P∈P(1,σn)

E|t̂− t| �

{
e−n if σn ≺ e−n
σn√
n

otherwise

2. For k > 1, the passive/active lower bounds are

inf
S∈SP

n

sup
P∈P(k,σn)

E|t̂−t| �

{
n−

1
2k−1 if σn ≺ n−

1
2k−1

σ
−(k− 3

2 )
n

√
1
n otherwise

inf
S∈SA

n

sup
P∈P(k,σn)

E|t̂−t| �

{
n−

1
2k−2 if σn ≺ n−

1
2k−2

σ
−(k−2)
n

√
1
n otherwise

Following that, we again present active and passive
algorithms for k = 1 first to gather intuition and then
generalize them for k > 1. In Section 3 we will prove

Theorem 3 (Upper Bounds). Under the Berkson er-
ror model and assumption (Q),

1. For k = 1, a passive algorithm (WIDEHIST) and
an active algorithm (ACTPASS) return t̂ s.t.

sup
P∈P(1,σn)

E|t̂− t| �

{
1
n if σn ≺ 1

n√
σn

n otherwise

sup
P∈P(1,σn)

E|t̂− t| �

{
e−n if σn ≺ e−n
σn√
n

otherwise

2. For k > 1, a passive algorithm (WIDEHIST) and
an active algorithm (ACTPASS) return t̂ s.t.

sup
P∈P(k,σn)

E|t̂− t| �

{
n−

1
2k−1 if σn ≺ n−

1
2k−1

σ
−(k− 3

2 )
n

√
1
n otherwise

sup
P∈P(k,σn)

E|t̂− t| �

{
n−

1
2k−2 if σn ≺ n−

1
2k−2

σ
−(k−2)
n

√
1
n otherwise
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3 Lower Bounds

To derive lower bounds, we will follow the approach
of Ibargimov & Hasminskii (1981); Tsybakov (2009)
which were exemplified in lower bounds for active
learning problems without feature noise in Castro &
Nowak (2007, 2008). The standard methodology is
to reduce the problem of classification in the class
P (c, C, k, σ) to one of hypothesis testing. Similar
to Castro & Nowak (2007, 2008), it will suffice to
consider two hypotheses and use the following version
of Fano’s lemma from Tsybakov (2009) (Theorem 2.2).

Theorem 4 (Tsybakov (2009)). Let F be a class of
models. Associated with each f ∈ F we have a prob-
ability measure Pf defined on a common probability
space. Let d(., .) : F ,F → R be a semi-distance. Let
f0, f1 ∈ F be such that d(f0, f1) ≥ 2a, with a > 0.
Also assume that KL(Pf0 , Pf1) ≤ γ, where KL denotes
the Kullback-Leibler divergence. Then, the following
bound holds:

inf
f̂

sup
f∈F

Pf (d(f̂ , f) ≥ a) ≥ inf
t̂

max
j∈{0,1}

Pfj (d(f̂ , fj) ≥ a)

≥ max

(
e−γ

4
,

1−
√

γ
2

2

)
=: ρ

where the inf is taken with respect to the collection of
all possible estimators of f based on a sample from Pf .

Corollary 5. If γ is a constant, then ρ is a constant,
and by Markov’s inequality, we would get

inf
f̂

sup
f∈F

Ed(f̂ , f) ≥ ρa

and the minimax risk under loss d would be � a.

Proof of Theorem 2, k = 1. Choose F = P(1, σn).
Let Pt ∈ P(1, σn) denote a regression function with
threshold at t. We choose the semi-metric to be the
distance between thresholds, i.e. d(Pr, Ps) = |r − s|.
We now choose two such distributions with thresholds
at least 2an apart (we use an to explicitly remind the
reader that a will later be set to depend on n) - let
them be denoted Pt0 and Pt1 with t0 = −an, t1 = an
and

Pt(Y = +|X = x) =

{
0.5− c x < t ,

0.5 + c x ≥ t .

Due to addition of noise, we get convolved distribu-
tions P 0 = Pt0(Y |W ) and P 1 := Pt1(Y |W ).

As hinted by the above corollary, we will choose an so
that KL(P 0, P 1) is bounded by a constant, to get a
lower bound on risk � an. This follows by the follow-
ing argument from Castro & Nowak (2008).

The KL(P 0, P 1) can be bounded as

E1
W,Y

[
log

P 1(Wn
1 , Y

n
1 )

P 0(Wn
1 , Y

n
1 )

]
(2)

= E1
W,Y

[
log

∏
i P

1(Yi|Wi)P (Wi|W i−1
1 , Y i−11 )∏

i P
0(Yi|Wi)P (Wi|W i−1

1 , Y i−11 )

]
= E1

W,Y

[
log

∏
i P

1(Yi|Wi)∏
i P

0(Yi|Wi)

]
(3)

=
∑
i

E1
W

[
E1
Y

[
log

P 1(Yi|Wi)

P 0(Yi|Wi)

∣∣∣ W1, ...,Wn

]]
(4)

≤ n max
w∈[−1,1]

E1
Y

[
log

P 1(Y |W )

P 0(Y |W )

∣∣∣ W = w

]
(5)

� n max
w∈[−1,1]

(P 1(Y |w)− P 0(Y |w))2 (6)

where (3) holds for active learning because the algo-
rithm determines Wi when given {W i−1

1 , Y i−11 } and
is independent of the model, and follows by the inde-
pendence of future from past for passive learning. (4)
holds by law of iterated expectation. (5) is used for
active learning but is not needed for passive learning.
(6) follows by an approximation

KL(Ber(1/2 + p), Ber(1/2 + q)) � (p− q)2

for sufficiently small constants p, q.

t0 

1/2 

0 

λ	



λ	



P(Y=+|X=x) 

x  

1/2-λ	



1/2+λ	



t1 

m1

m0

t0 

1/2 

0 

P(Y=+|W=w) 

x  

1/2-λ	



1/2+λ	



t1 

m̃1

m̃0

2�n

2�n

Figure 2: Regression functions before (top) and after
(bottom) convolution with noise.
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Ft(w) := Pt(Y |W = w) =
∫
Pt(Y |X)P (X|W = w)dX

and a straightforward calculation reveals that

Ft(w) =


0.5− c w ≤ t− σn ,

0.5 + c
σn

(w − t) w ∈ [t− σn, t+ σn] ,

0.5 + c w ≥ t+ σn .

(7)

As depicted in Fig.2, note the behavior before and
after convolution with noise: (i) m(t) = F (t) = 1/2,
hence F1(an) = 1/2 = F0(−an) (ii) Both convolved
regression functions grow linearly for a region of width
2σn, and differ only on a width of 2(σn + an); (iii) For
a large region [an−σn,−an+σn] of size 2(σn−an), we
have

∣∣F1(w) − F0(w)
∣∣ = 2anc/σn, a constant. Their

gap varies when σn � an as
∣∣F0(w)− F1(w)

∣∣ =

(
w + an + σn

)
c
σn

w ∈ [−an − σn, an − σn]

2an
c
σn

w ∈ [an − σn,−an + σn](
(an + σn)− w

)
c
σn

w ∈ [−an + σn, an + σn]

0 otherwise.

When σn ≺ an,
∣∣F1(w)− F0(w)

∣∣ =

(
w + an + σn

)
c
σn

w ∈ [−an − σn,−an + σn]

2c w ∈ [−an + σn, an − σn](
(an + σn)− w

)
c
σn

w ∈ [an − σn, an + σn]

0 otherwise.

For active learning, when σn � an we note

max
w∈[−1,1]

|P 1(Y |w)− P 0(Y |w)| = 2anc

σn

and get KL(P 0, P 1) � n
a2n
σ2
n

by Eq.(6). We choose

an � σn√
n

, which becomes our active minimax error rate

by Corollary 5 when σn � an i.e. σn � e−n.

Similarly, if σn ≺ exp{−n}, setting an � exp{−n} eas-
ily gives us an exponentially small lower bound.

In the passive setting, Eq.(5) does not apply. Since the
two convolved distributions differ only on an interval
of size 2(σn+an), the effective number of points falling
in this interval would be � n(σn + an).

When σn � an, a simple calculation shows

KL(P 0, P 1) � n(σn + an)
a2n
σ2
n

� n
a2n
σn
,

giving rise to a choice of an �
√

σn

n , which is the pas-

sive minimax rate when σn � an i.e. σn � 1
n .

When σn ≺ 1
n , a similar calculation shows

KL(P 0, P 1) � n(σn + an)4c2 � nan

giving rise to a choice of an � 1
n , which is the passive

minimax rate when σn � an i.e. σn ≺ 1
n . �

Proof of Theorem 2, k > 1 We follow a very sim-
ilar setup to the case k = 1. The difference will lie
in picking functions that are in P(c, C, k, σn) for gen-
eral k 6= 1, and calculating the bounds on KL diver-
gence appropriately. However, for notational conve-
nience, we will assume that the domain is shifted to
[−σn, 2 − σn] instead of [−1, 1] and that the distance
between thresholds is an instead of 2an. Define

P0(Y |x) =

{
1/2− c|x|k−1 if x ∈ [−σn, 0]

1/2 + c|x|k−1 if x > 0

P1(Y |x) =


1/2− c|x− an|k−1 if x ∈ [−σn, an]

1/2 + c|x− an|k−1 if x ∈ [an, βan + σn]

1/2 + c|x|k−1 if x > βan + σn

where β = 1
1−(c/C)1/(k−1) ≥ 1 is a constant chosen such

that P1 ∈ P(c, C, k, σn) (this fact is verified explicitly
in the Appendix). For ease of notation, P0, P1 are
understood to actually saturate at 0, 1 if need be (i.e.
we are implicitly working with min{P0/1, 1}, etc). The
two thresholds are clearly at 0, an respectively, and
after the point βan + σn, the two functions are the
same. Continuing the same notation as for k = 1, we
let P i = Pi(Y |W ) = Fi(w) for i = 0, 1.

The following claims hold true (Appendix).

1. When σn � an, maxw |F1(w)− F2(w)| � ak−1n .

2. When σn � an, maxw |F1(w)− F2(w)| � σk−2n an.

3. As a subpart of the above cases, when σn � an,
maxw |F1(w)− F2(w)| � σk−2n an � ak−1n

If the above propositions are true, we can verify:

1. In the first case, KL(P 0, P 1) � na2k−2n , hence

an � n−
1

2k−2 is a lower bound when σn � n−
1

2k−2 .

2. Otherwise, KL(P 0, P 1) � nσ2k−4
n a2n, hence an �

σ−(k−2)
n√

n
is a lower bound when σn � n−

1
2k−2 .

The passive bounds follow by not just considering the
maximum difference between |F1(w)−F2(w)| but also
the length of that difference, since it is directly propor-
tional to the number of points that may randomly fall
in that region. Following the same calculations,

1. When σn ≺ an, |F1(w) − F2(w)| � ak−1n for
all w ∈ [0, βan + 2σn]. Hence KL(P 0, P 1) �
n(βan + 2σn)a2k−2n � na2k−1n and an � n−

1
2k−1

is the minimax passive rate when σn ≺ n−
1

2k−1 .

2. When σn � an, |F1(w) − F2(w)| � σk−2n an for
all w ∈ [0, βan + 2σn]. Hence KL(P 0, P 1) �
n(βan + 2σn)σ2k−4

n a2n and an � σ
−(k− 3

2 )
n

√
1
n is

the minimax passive rate when σn � n−
1

2k−1 .

as verified from the Appendix calculation. �
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4 Upper Bounds

For passive sampling, we present a modified histogram
estimator, WIDEHIST, when the noise level σn is
larger than the noiseless minimax rate of 1/n. Assume
for simplicity that the n sampled points on [−1, 1] are
equally spaced to mimic a uniform distribution, lying

at (2j−1)
2n , j = 1, ..., n.

Algorithm WIDEHIST.

1. Divide [−1, 1] into m bins of width h > 2
n so m =

2
h < n. The ith bin covers [−1+(i−1)h,−1+ ih],

i ∈ {1, ...,m} and hence each bin has nh
2 points.

Let bi be the average number of positive labels in
bin i of these nh

2 points.

2. Let p̂i be the average of the bi’s over a all bins
within ±σn/2 of bin i. We “classify” regions with
p̂i < 1/2 as being − and p̂i > 1/2 as being +, and
return t̂ as the center of the first bin from left to
right where p̂i crosses half.

Observe that we need not operate on [−1, 1] with n
queries - WIDEHIST(D,B) could take as inputs any
domain D and any query budget B. The argument
below hinges on the fact that the convolved regression
function behaves linearly around t.

Proof of Theorem 3, k = 1, (Passive). Let
i∗ ∈ {1, ...,m} denote the true bin [(i∗ − 1)h, i∗h] that

contains t. Let t̂ be from bin î, i.e. p̂̂i < 1/2 and p̂̂i+1 >

1/2. We will argue that î is very close to i∗, in which

case the point error we suffer is |̂i− i∗|h. Specifically,
we prove that all bins except I∗ = {i∗ − 1, i∗, i∗ + 1}
will be “classified” correctly with high probability. In
other words, we claim w.h.p. p̂i < 1/2 if i < i∗ − 1
and p̂i > 1/2 if i > i∗ + 1.

Indeed, we can show (Appendix)

For i > i∗ + 2, E[p̂i] ≥ E[p̂i∗+2] ≥ 1/2 + c
σn
h (8)

For i < i∗ − 2, E[p̂i] ≤ E[p̂i∗−2] ≤ 1/2− c
σn
h (9)

Using Hoeffding’s inequality, we get that for bin i,
Pr(|p̂i − pi| > ε) ≤ 2 exp

{
−2nσn

2 ε2
}

Taking union
bound over all bins other than those in i∗−1, i∗, i∗+1
and setting ε = c

σn
h, we get

Pr(∀i\I∗, |p̂i−pi| > c
σn
h) ≤ 2m exp

{
−2nσn

2

(
ch
σn

)2}
So we get bins i\I∗ correct and î ∈ {i∗ − 1, i∗, i∗ + 1}

with probability ≥ 1 − 2n exp

{
−nσn

(
ch
σn

)2}
since

m < n. Setting h = 1
c

√
σn

n log( 2n
δ ) makes this hold

with probability ≥ 1−δ so the point error |̂i−i∗|h < 2h
behaves like h �

√
σn

n . �

For active sampling when the noise level σn is larger
than the minimax noiseless rate e−n, we present a al-
gorithm ACTPASS which makes its n queries on the
domain [−1, 1] in E different epochs/rounds. As a sub-
routine, it uses any optimal passive learning algorithm,
like WIDEHIST(D,B). In each round, ACTPASS runs
WIDEHIST on progressively smaller domains D with
a restricted budget B. Hence it “activizes” the WIDE-
HIST and achieves the optimal active rate in the pro-
cess. This algorithm was inspired by a similar idea
from Ramdas & Singh (2013).

Algorithm ACTPASS.

Let E = dlog(1/σn)e be the number of epochs and
D1 = [−1, 1] denote the domain of “radius” R1 = 1
around t0 = 0. The budget of every epoch is a constant
B = n/E. For epochs 1 ≤ e ≤ E, do:

1. Query for B labels uniformly on De.

2. Let te = WIDEHIST(De, B) be the returned es-
timator using the most recent samples and labels.

3. Define De+1 = [te− 2−e, te + 2−e]∩ [−1, 1] with a
radius of at most Re+1 = 2−e around te. Repeat.

Observe that ACTPASS runs while Re > σn, since by
design E ≥ log(1/σn) so σn ≤ 2−E = RE+1.

Proof of Theorem 3, k = 2, (Active). The anal-
ysis of ACTPASS proceeds in two stages depending
on the value of σn. Initially, when Re is large, it is
possible that σn � Re/n and in this phase, the pas-
sive algorithm WIDEHIST will behave as if it is in
the noiseless setting since the noise is smaller than its
noiseless rate. However, after some point, when Re
becomes quite small, σn � Re/n is possible and then
WIDEHIST will behave as if it is in the noisy setting
since noise is larger than its noiseless rate. Observe
that it cannot stay in the first phase till the end of the
algorithm, since the first phase runs while σn � Re/n
but we know that σn > RE+1 by construction, so there
must be an epoch where it switches phases, and ends
the algorithm in its second phase.

We prove (by a separate induction in each epoch) that
with high probability, the true threshold t will always
lie inside the domain at the start of every epoch (this
is clearly true before the first epoch). We claim:

1. Before all e in phase one, t ∈ De w.h.p.

2. Before all e in phase two, t ∈ De w.h.p.

We prove these in the Appendix. If these are true,
then in the second phase, WIDEHIST is in the large

noise setting and it gets an error of
√

Reσn

B . Hence the

final error of the algorithm is
√

REσn

n/E �
σn√
n

. �
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Proof of Theorem 3, k > 1. The proofs for k > 1
are simply generalizations of those for k = 1. Again,
we present concise arguments here for the settings
where the algorithm can actually detect noise, i.e.
when the noise level is larger than the noiseless min-
imax rate (otherwise, one can argue that algorithms
which worked for the noiseless case will suffice). In
both cases, the algorithm remains unchanged.

1. We outline the proof for WIDEHIST when σn �
n−

1
2k−1 . Using similar notation as before, we will again

show that if t is in bin i∗ of width h < σn, then ex-
cept for bins i∗ − 1, i∗, i∗ + 1, we will ”classify” all
other bins correct with high probability, by averaging
over the nσn/2 points to the left and right of that bin.
Specifically, we claim

For i > i∗ + 2, E[p̂i] ≥ E[p̂i∗+2] ≥ 1/2 + λσk−2n h (10)

For i < i∗ − 2, E[p̂i] ≤ E[p̂i∗−2] ≤ 1/2− λσk−2n h (11)

A similar use of Hoeffding’s inequality gives

Pr(∀i\I∗, |p̂i − pi| > λσk−2n h) ≤
2m exp

{
−2(nσn

2R )h2λ2σ2k−4
n

}
.

Arguing as before, w.h.p. we get a point error of

h �
√

R

σ2k−3
n n

< σn when σn � n−
1

2k−1 .

2. We outline the proof for ACTPASS when σn �
n−

1
2k−2 . As before, the algorithm runs in two phases,

and we will prove required properties within each
phase by induction.

The first phase is when Re is large and so σn may pos-

sibly be smaller than (Re/n)
1

2k−1 and WIDEHIST will
achieve noiseless rates within each epoch. In the sec-
ond phase, after Re has shrunk enough, σn will become

larger than (Re/n)
1

2k−1 and WIDEHIST will achieve
noisy rates in these epochs.

One can verify, as before, that the second phase must
occur, by design. Intuitively, the second phase must
occur because we make a fixed number of queries
n/E � n/ log n in a halving domain size (equivalently
we make geometrically increasing queries on a rescaled
domain), and so relatively in successive epochs this
noiseless error shrinks, and at some point σn becomes
larger than this shrinking noiseless error rate.

As before we make the following claims:

1. Before all e in phase one t ∈ De w.h.p.

2. Before all e in phase two t ∈ De w.h.p.

These are proved in the Appendix by induction.

The final point error is given by WIDEHIST in the

last epoch as
√

RE

σ2k−3
n n/E

� 1

σk−2
n

√
1
n since RE � σn

and E � log n.

5 Conclusion

In this paper, we propose a simple Berkson error model
for one-dimensional threshold classification, inspired
by the setup and model analysed in Castro & Nowak
(2007, 2008), in which we can analyse active learning
with additive uniform feature noise. To the best of our
knowledge, this is the first attempt at jointly tackling
feature noise and label noise in active learning.

This simple setting already yields interesting be-
haviour depending on the additive feature noise level
and the label noise of the underlying regression func-
tion. For both passive and active learning, whenever
the noise level is smaller than the minimax noiseless
rate, the learner cannot notice that there is noise, and
will continue to achieve the noiseless rate. As the noise
gets larger, the rates do depend on the noise level. Im-
portantly, one can achieve better rates than passive
learning in most scenarios, and we propose unique al-
gorithms/estimators to achieve tight rates. The idea of
“activizing” passive algorithms, like algorithm ACT-
PASS did, seems especially powerful and could carry
forward to other settings beyond our paper and Ram-
das & Singh (2013).

The immediate future work and most direct extension
to this paper concerns the main weakness of the pa-
per - the possibility of getting rid of Assumption (M),
which is the only hurdle to a fair comparision with
the noiseless setting. We would like to re-emphasize
that at first glance, the rates may be misleading and
counterintuitive because it “appears” as if larger noise
could possibly help estimation due to the presence of
σn in the denominator for larger k.

However, we point out once more that the class of func-
tions is not constant over all σn - it depends on σn,
and in fact it gets “smaller” in some sense with larger
σn because the assumption (M) becomes more strin-
gent. This observation about the non-constant func-
tion class, along with the fact that convolution with
uniform noise seems to unflatten the regression func-
tion as shown in the figures, together cause the rates
to seemingly improve with larger noise levels.

Analysing the case without (M) seems to be quite
a challenging task since the noiseless and convolved
thresholds can be different - we did attempt to for-
mulate a few kernel-based estimators with additional
assumptions, but do not presently have tight bounds,
and leave those for a future work.
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Active Learning With Uniform Feature Noise : Appendix

1 Justifying Claims in the Lower Bounds

Approximations:

1. (x+ y)k = xk(1 + y/x)k ≈ xk + kxk−1y when y ≺ x. Even when y � x, both terms are the same order.

2. (x− y)k = xk(1− y/x)k ≈ xk − kxk−1y when y ≺ x. Even when y � x both terms are the same order.

3. When y < x but not y ≺ x, by Taylor expansion of (1+z)k around z = 0, we have (x+y)k = xk(1+y/x)k =
xk[1 + (1 + c)k−1y/x] = xk +Cxk−1y for some 0 < c < y/x < 1 and some constant C. Similarly for (x−y)k.

Let’s assume the boundary is at −σ for easier calculations. (we denote an, σn as a, σ here). Remember

m1(x) = 1/2 + cx|x|k−2 if x ≥ −σ

m2(x) =

{
1/2 + c(x− a)|x− a|k−2 if x < βa+ σ

m1(x) if x ≥ βa+ σ

where β = 1
1−(c/C)1/(k−1) ≥ 1 is such that m2 ∈ P (κ, c, C, σ). Clearly, when x < βa + σ, m2 satisfies condition

(T). So, we only need to verify that whenever x ≥ βa+ σ we have

m2(x)− 1/2 = cxk−1 ≤ C(x− a)k−1 (1)

This statement holds iff (c/C)1/(k−1) ≤ 1 − a/x ⇔ a/x ≤ 1 − (c/C)1/(k−1) ⇔ x ≥ βa, which holds for all
σ ≥ 0, and hence m2 satisfies condition (T).

Proposition 1. When σ ≺ a, maxw |F1(w)− F2(w)| � ak−1
Proposition 2. When σ � a maxw |F1(w)− F2(w)| � σk−2a

Let us now prove these two propositions, with detailed calculations in each case (note that when σ � a, then
maxw |F1(w)− F2(w)| � ak−1 � σk−2a, and can be checked using our approximations 1,2,3).

1. When σ ≺ a, we will prove proposition 1. Remember that we can’t query in −σ ≤ w ≤ 0.

(a) When 0 ≤ w ≤ σ, we have

F1(w) = (m1 ? U)(w) =

∫ 0

w−σ
(1/2− cx|x|k−2)dx/2σ +

∫ w+σ

0

(1/2 + cxk−1)dx/2σ (2)

= 1/2 +
c

2σk
[(w + σ)k − (σ − w)k] (3)

= 1/2 +
c

2σk
σk[(1 + w/σ)k − (1− w/σ)k] (4)

≈ 1/2 + cσk−2w (5)

F2(w) = (m2 ? U)(w) =

∫ w+σ

w−σ
(1/2− c(x− a)|x− a|k−2)dx/2σ (6)

= 1/2− c

2σk
[(a− w − σ)k − (a+ σ − w)k] (7)

≈ 1/2− c(a− w)k−1 (8)

(9)

[Boundaries: F1(0)− 1
2 = 0, F1(σ)− 1

2 � σ
k−1, F2(0)− 1

2 � −a
k−1, F2(σ)− 1

2 � −a
k−1].

F1(w)− F2(w) � ak−1 (10)
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(b) When σ ≤ w ≤ a− σ

F1(w) = (m1 ? U)(w) =

∫ w+σ

w−σ
(1/2 + cxk−1)dx/2σ (11)

= 1/2 +
c

2σk
[(w + σ)k − (w − σ)k] (12)

≈ 1/2 + cwk−1 (13)

F2(w) = (m2 ? U)(w) =

∫ w+σ

w−σ
(1/2− c(x− a)|x− a|k−2)dx/2σ (14)

= 1/2− c

2σk
[(a− w − σ)k − (a+ σ − w)k] (15)

≈ 1/2− c(a− w)k−1 (16)

[Boundaries: F1(σ)− 1
2 � σ

k−1, F1(a− σ)− 1
2 � a

k−1, F2(σ)− 1
2 � −a

k−1, F2(a− σ)− 1
2 � −σ

k−1].

F1(w)− F2(w) = cwk−1 + c(a− w)k−1 (17)

≤ c(a− σ)k−1 + c(a− σ)k−1 (18)

� ak−1 (19)

(c) When a− σ ≤ w ≤ a

F1(w) ≈ 1/2 + cwk−1 (20)

F2(w) =

∫ a

w−σ
(1/2− c(x− a)|x− a|k−2)dx/2σ +

∫ w+σ

a

1/2 + c(x− a)k−1dx/2σ (21)

= 1/2− c

2σk
[(a− w + σ)k − (w + σ − a)k] (22)

≈ 1/2− cσk−2(a− w) (23)

[Boundaries: F1(a− σ)− 1
2 � a

k−1, F1(a)− 1
2 � a

k−1, F2(a− σ)− 1
2 � −σ

k−1, F2(a)− 1
2 = 0]

F1(w)− F2(w) ≈ cwk−1 + cσk−2(a− w) (24)

≤ cak−1 + cσk−2σ (25)

� ak−1 (26)

(d) When a ≤ w ≤ a+ σ

F1(w) ≈ 1/2 + cwk−1 (27)

F2(w) ≈ 1/2 + cσk−2(a− w) (28)

[Boundaries: F1(a)− 1
2 � a

k−1, F1(a+ σ)− 1
2 � a

k−1, F2(a)− 1
2 = 0, F2(a+ σ)− 1

2 � σ
k−1]

F1(w)− F2(w) � ak−1

(e) When a+ σ ≤ w ≤ βa− σ

F1(w) ≈ 1/2 + cwk−1 (29)

F2(w) =

∫ w+σ

w−σ
1/2 + c(x− a)k−1dx/2σ (30)

= 1/2 +
c

2σk
[(w + σ − a)k − (w − σ − a)k] (31)

≈ 1/2 + c(w − a)k−1 (32)



[B: F1(a+ σ)− 1
2 � a

k−1, F1(βa− σ)− 1
2 � a

k−1, F2(a+ σ)− 1
2 � σ

k−1, F2(βa− σ)− 1
2 � a

k−1]

F1(w)− F2(w) ≈ cwk−1 − c(w − a)k−1 (33)

≤ c(βa− σ)k−1 + cσk−1 (34)

≤ c(βk−1 + 1)ak−1 (35)

� ak−1 (36)

(f) When βa− σ ≤ w ≤ βa+ σ

F1(w) ≈ 1/2 + cwk−1 (37)

F2(w) =

∫ βa

w−σ
1/2 + c(x− a)k−1dx/2σ +

∫ w+σ

βa

1/2 + xk−1dx/2σ (38)

= 1/2 +
c

2σk
[(βa− a)k − (w − σ − a)k + (w + σ)k − (βa)k] (39)

[F1(βa− σ)− 1
2 � a

k−1, F1(βa+ σ)− 1
2 � a

k−1, F2(βa− σ)− 1
2 � a

k−1, F2(βa+ σ)− 1
2 � a

k−1]

F1(w)− F2(w) = cwk−1 +
c

2σk
[(βk − (β − 1)k)ak + (w − σ − a)k − (w − σ)k]

≤ c(β + 1)k−1ak−1 +
c

2σk
[(βa)k − (βa− 2σ)k]− c

2σk
[(β − 1)kak − ((β − 1)a− σ)k]

≈ c(β + 1)k−1ak−1 +
c

2σk
[k(βa)k−12σ]− c

2σk
[k(β − 1)k−1ak−1σ]

= cak−1[(β + 1)k−1 + βk−1 − 1
2 (β − 1)k−1]

� ak−1

(g) When βa+ σ ≤ w ≤ βa+ 2σ

F1(w) = 1/2 +
c

2σk
[(w + σ)k − (w − σ)k] (40)

F2(w) =

∫ βa+σ

w−σ
1/2 + c(x− a)k−1dx/2σ +

∫ w+σ

βa+σ

1/2 + cxk−1dx/2σ

= 1/2 +
c

2σk
[(βa+ σ − a)k − (w − σ − a)k + (w + σ)k − (βa+ σ)k]

[F1(βa+ σ)− 1
2 � a

k−1, F1(βa+ 2σ)− 1
2 � a

k−1, F2(βa+ σ)− 1
2 � a

k−1, F2(βa+ 2σ)− 1
2 � a

k−1]

F1(w)− F2(w) =
c

2σk
[(βa+ σ)k − (βa+ σ − a)k + (w − σ − a)k − (w − σ)k] (41)

≈ c

2σk
[(βa+ σ)k−1ka− (w − σ)k−1ka] (42)

≤ ca

2σ
[(βa+ σ)k−1 − (βa)k−1] (43)

≈ ca

2σ
[(βa)k−1(1 +

(k − 1)σ

βa
)− (βa)k−1] (44)

= ak−1[cβk−2(k − 1)/2] (45)

� ak−1 (46)

(h) When w ≥ βa+ 2σ
F1(w) = F2(w)

That completes the proof of the first claim.
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2. When σ � a, we will prove the second proposition.

(a) When −σ ≤ w ≤ 0, we are not allowed to query here.

(b) When 0 < w ≤ βa

F1(w) = (m1 ? U)(w) =

∫ 0

w−σ
(1/2− cx|x|k−2)dx/2σ +

∫ w+σ

0

(1/2 + cxk−1)dx/2σ (47)

= 1/2 +
c

2σk
[(w + σ)k − (σ − w)k] (48)

= 1/2 +
c

2σk
σk[(1 + w/σ)k − (1− w/σ)k] (49)

≈ 1/2 + cσk−2w (50)

Similarly F2(w) ≈ 1/2 + cσk−2(w − a)

[Boundaries: F1(0)− 1
2 = 0, F1(βa)− 1

2 � σ
k−2a, F2(0)− 1

2 � −σ
k−2a, F2(βa) � σk−2a]

F1(w)− F2(w) � σk−2n a.

(c) When βa ≤ w ≤ σ

F1(w) = =

∫ 0

w−σ
(1/2− cx|x|k−2)dx/2σ +

∫ w+σ

0

(1/2 + cxk−1)dx/2σ (51)

= 1/2 +
c

2σk
[(w + σ)k − (σ − w)k] (52)

= 1/2 +
c

2σk
σk[(1 + w/σ)k − (1− w/σ)k] (53)

≈ 1/2 + cσk−2w (54)

F2(w) =

∫ a

w−σ
(1/2− c(x− a)|x− a|k−2)

dx

2σ
+

∫ βa+σ

a

(1/2 + c(x− a)k−1)
dx

2σ
+

∫ w+σ

βa+σ

1/2 + cxk−1
dx

2σ

= 1/2 +
c

2σk
[−(σ + a− w)k + (βa+ σ − a)k + (w + σ)k − (βa+ σ)k]

≈ 1/2 +
c

2σk
[−σk(1− k(w − a)

σ
) + σk(1 +

k(β − 1)a

σ
) + σk(1 +

kw

σ
)− σk(1 +

kβa

σ
)]

= 1/2 +
c

2
σk−2[w − a+ (β − 1)a+ w − βa]

= 1/2 + cσk−2(w − a)

[Boundaries: F1(βa)− 1
2 � σ

k−2a, F1(σ)− 1
2 � σ

k−1, F2(βa) � σk−2a, F2(σ)− 1
2 � −σ

k−2a]

F1(w)− F2(w) � σk−2a

Specifically, verify the boundary at σ

F1(σ)− F2(σ) =
c

2σk
[ak − (βa+ σ − a)k + (βa+ σ)k] (55)

=
c

2σk
[ak − σk(1 + k

βa− a
σ

) + σk(1 + k
βa

σ
)] (56)

=
c

2σk
[ak + kσk−1a] (57)

≤ cσk−2a (58)



(d) When σ ≤ w ≤ a+ σ

F1(w) =

∫ w+σ

w−σ
(1/2 + cxk−1)dx/2σ (59)

= 1/2 +
c

2σk
[(w + σ)k − (w − σ)k] (60)

(61)

F2(w) =

∫ a

w−σ
(1/2− c(x− a)|x− a|k−2)

dx

2σ
+

∫ βa+σ

a

(1/2 + c(x− a)k−1)
dx

2σ
+

∫ w+σ

βa+σ

1/2 + cxk−1
dx

2σ

= 1/2 +
c

2σk
[−(σ + a− w)k + (βa+ σ − a)k + (w + σ)k − (βa+ σ)k]

F1(w)− F2(w) =
c

2σk
[(σ + a− w)k − (βa+ σ − a)k − (w − σ)k + (βa+ σ)k] (62)

Differentiating the above term with respect to w, gives c
2σ [−(σ + a−w)k−1 − (w− σ)k−1] ≤ 0 because

σ ≤ w ≤ a+σ and hence F1(w)−F2(w) is decreasing with w. We already saw F1(σ)−F2(σ) ≤ cσk−2a.
We can also verify that at the other boundary,

F1(a+ σ)− F2(a+ σ) =
c

2σk
[−(βa+ σ − a)k − ak + (βa+ σ)k] (63)

=
c

2σk
[−ak − σk(1 + k

βa− a
σ

) + σk(1 + k
βa

σ
)] (64)

=
c

2σk
[−ak + kσk−1a] (65)

≤ c

2
σk−2a (66)

(e) When σ + a ≤ w ≤ βa+ σ

F1(w) =

∫ w+σ

w−σ
(1/2 + cxk−1)dx/2σ (67)

= 1/2 +
c

2σk
[(w + σ)k − (w − σ)k] (68)

(69)

F2(w) =

∫ βa+σ

w−σ
(1/2 + c(x− a)k−1)

dx

2σ
+

∫ w+σ

βa+σ

1/2 + cxk−1
dx

2σ

= 1/2 +
c

2σk
[(βa+ σ − a)k − (w − σ − a)k + (w + σ)k − (βa+ σ)k]

F1(w)− F2(w) =
c

2σk
[(w − σ − a)k − (βa+ σ − a)k − (w − σ)k + (βa+ σ)k] (70)

(71)

Differentiating with respect to w gives c
2σ [(w− σ− a)k−1− (w− σ)k−1] ≤ 0 because w− σ− a ≤ w− σ

and so F1 − F2 is decreasing with w. We know F1(a+ σ)− F2(a+ σ) ≤ c
2σ

k−2a, and we can verify at
the other boundary that

F1(βa+ σ)− F2(βa+ σ) =
c

2σk
[(βa− a)k − (βa+ σ − a)k − (βa)k + (βa+ σ)k] (72)

≈ c

2σk
[(βa− a)k − (βa)k − σk(1 + k

βa− a
σ

) + σk(1 + k
βa

σ
)] (73)

=
c

2σk
[(βa− a)k − (βa)k + kσk−1a] (74)

≤ c

2
σk−2a (75)
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(f) When βa+ σ ≤ w ≤ βa+ 2σ

F1(w) = 1/2 +
c

2σk
[(w + σ)k − (w − σ)k]

F2(w) =

∫ βa+σ

w−σ
1/2 + c(x− a)k−1dx/2σ +

∫ w+σ

βa+σ

1/2 + cxk−1dx/2σ (76)

= 1/2 +
c

2kσ
[(βa+ σ − a)k − (w − σ − a)k + (w + σ)k − (βa+ σ)k] (77)

Hence

F1(w)− F2(w) =
c

2σk
[(βa+ σ)k − (βa+ σ − a)k + (w − σ − a)k − (w − σ)k] (78)

≈ c

2σk
[(βa+ σ)k−1ka− (w − σ)k−1ka] (79)

≤ ca

2σ
[(βa+ σ)k−1 − (βa)k−1] (80)

≈ c/2σk−2a (81)

� σk−2a (82)

Alternately, by the same argument as in the previous case, differentiating with respect to w gives
c
2σ [(w − σ − a)k−1 − (w − σ)k−1] ≤ 0 because w − σ − a ≤ w − σ and so F1 − F2 is decreasing with w.
We know F1(βa+ σ)− F2(βa+ σ) ≤ c

2σ
k−2a, and we can verify at the other endpoint that

F1(βa+ 2σ)− F2(βa+ 2σ) = 0 (83)

(g) When w ≥ βa+ 2σ, F1(w) = F2(w)

That completes the proof of the second proposition.



2 “Linear” Convolved Regression Function, Justifying Eq.(8,9,10,11)

For ease of presentation, let us assume the threshold is at 0, and define m ∈ P(c, C, k, σ) as

m(x) =

{
1/2 + f(x) + ∆(x) if x ≥ 0

1/2− f(x) if x < 0

Due to assumption (M), ∆(x) must be 0 when 0 ≤ x ≤ σ. Hence, the Taylor expansion of ∆(x) around x = σ
looks like

∆(x) = (x− σ)∆′(σ) + (x− σ)2∆′′(σ) + ...

If one represents, as before, F (x) = m ? U , then directly from the definitions, it follows for δ > 0 that

F (δ)− F (0) =

∫ σ+δ

σ

(1/2 + f(z) + ∆(z))
dz

2σ
−
∫ −σ+δ
−σ

(1/2− f(z))
dz

2σ

In particular, due to the form (T) of m, let f = c1|x|k−1 for some c ≤ c1 ≤ C (we could also break f into parts
where it has different c1s but this is a technicality and does not change the behaviour). Then

F (δ)− F (0) =
c1

2kσ
[(xk)σ+δσ − (xk)−σ+δ−σ ] +

∫ δ+σ

σ

[(z − σ)∆′(σ) + (z − σ)2∆′′(σ) + ...]
dz

2σ
(84)

=
c1

2kσ
[(σ + δ)k − σk + (−σ + δ)k − (−σ)k] +

[(z − σ)2]σ+δσ

4σ
∆′(σ) + ... (85)

≈ c1σ
k−2δ +

δ2

4σ
∆′(σ) + o(δ2) (86)

Thus we get behaviour of the form
F (t+ h) ≥ 1/2 + cσk−2h

One can derive similar results when δ < 0.

The claims about WIDEHIST immediately follow from the above, but we can make them a little more explicit.
First note that F (w) = 1/2 + c

σ (w− t) for w close to t (in fact for w ∈ [t− σ, t+ σ]), as seen in Section 1 of this
Appendix. Consider a bin just outside the bins i∗ − 1, i∗, i∗ + 1, for instance bin i = i∗ + 2 centered at bi (note
bi ≥ t+ h), and let J be the set of points j that fall within bi ± σ/2. Define

p̂i =
1

nσ/2R

∑
j∈J

I(Yj = +)

where Yj ∈ {±1} are observations at points j ∈ J . Now, we have, since P (Yj = +) = F (j)

E[p̂i] =
1

nσ/2R

∑
j∈J

F (j)

=
1

nσ/2R

∑
j∈J

1/2 + c
σ (Xj − t)


≈ 1/2 +

1

σ

∫ bi−t+σ/2

bi−t−σ/2

c
σ zdz

= 1/2 +
c

2σ2

[
(bi − t+ σ/2)2 − (bi − t− σ/2)2

]
= 1/2 + c

σ (bi − t)
≥ 1/2 + c

σh
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3 Justifying Claims in the Active Upper Bounds

Phase 1 (k = 1). In the first phase of the algorithm, it is possible that σ � Re/n but � Ree
−n - in other

words the noise may be small enough that passive learning cannot make out that we are in the errors-in-variables
setting, and then the passive estimator will get a point error of C1Re

n/E in each of those epochs (as if there is no

feature noise). This point error is to the best point in epoch e, which we can prove by induction is the true
threshold t with high probability. Since it trivially holds in the first epoch (t ∈ D1 = [−1, 1]), we assume that
it is true in epoch e − 1. Then, in epoch e, the true threshold t is still the best point if the estimator xe−1 of

epoch e− 1 was within Re of t, or in other words if |xe−1 − t| ≤ Re. This would definitely hold if C1Re−1

n/E ≤ Re
i.e. n ≥ 2C1E = 2C1dlog(1/σ)e, which is true since σ � exp{−n/2C1}. However, the algorithm cannot stay in
this phase of σ � Re/n this until the last epoch since σ > RE+1 = RE/2.

Phase 2 (k = 1). When σ � Re/n, WIDEHIST gets an estimation error of C2

√
Reσ
n/E in epoch e. This error is

the distance to the best point in epoch e, which is t by the following similar induction. In epoch e, t is still the
best point only if |xe−1− t| ≤ Re, i.e. C2

2
Re−1σ
n/E ≤ R2

e i.e. nRe ≥ 2C2
2Eσ which holds since Re > σ for all e ≤ E

and since n ≥ 2C2
2E (σ � exp{−n/2C2

2} implies E ≤ n/2C2
2 ).

The final error of the algorithm is is
√

REσ
n/E = Õ( σ√

n
) since RE < 2σ.

Explanation for k > 1 Assume σ � n−
1

2k−2 , otherwise active learning won’t notice the feature noise, and so
log(1/σ) ≤ logn

(2k−2) . Choose total epochs E = dlog( 1
σ )e ≤ logn

(2k−2) ≤ C log n for some C. In each epoch of length

n/E in a region of radius Re = 2−e+1, we get a passive bound of C1

√
Re

σ2k−3n/E
whenever1 σ > (Re

n )
1

2k−1 .

By the same logic as for k = 1, we need to verify that |xe−1− t| ≤ Re so that if t was in the search space in epoch

e− 1 then it remains the in the search space in epoch e, i.e. we want to verify C2
1

Re−1

σ2k−3n/E
≤ R2

e ⇔ σ2k−2Re ≥
2C2

1E
n σ which is true since2 Re ≥ σ and3 σ2k−2 > 2C2

1E/n .

The final point error is given by the passive algorithm in the last epoch as
√

RE

σ2k−3n/E
; since RE < 2σ and

E ≤ C log n, this becomes � 1
σk−2

√
1
n .

1This must happen at some e ≤ E = dlog( 1
σ
)e because RE = 2−E+1 < 2σ < σσ2k−2n since σ � n− 1

2k−2 and hence in

the last epoch σ > (RE
n

)
1

2k−1 .
2By choice of E = dlog( 1

σ
)e, Re ≥ RE ≥ σ ≥ RE+1 .

3Since σ � n− 1
2k−2 we get σ2k−2 > 2C2

1E/n since E ≤ C logn .
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