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Abstract

We consider the change-point detection prob-
lem of deciding, based on noisy measure-
ments, whether an unknown signal over a
given graph is constant or is instead piece-
wise constant over two induced subgraphs of
relatively low cut size. We analyze the corre-
sponding generalized likelihood ratio (GLR)
statistic and relate it to the problem of find-
ing a sparsest cut in a graph. We develop
a tractable relaxation of the GLR statistic
based on the combinatorial Laplacian of the
graph, which we call the spectral scan statis-
tic, and analyze its properties. We show how
its performance as a testing procedure de-
pends directly on the spectrum of the graph,
and use this result to explicitly derive its
asymptotic properties on few graph topolo-
gies. Finally, we demonstrate both theoret-
ically and by simulations that the spectral
scan statistic can outperform naive testing
procedures based on edge thresholding and
χ2 testing.

1 Introduction

In this article we are concerned with the basic but
fundamental task of deciding whether a given graph,
over which a noisy signal is observed, contains a clus-
ter of anomalous or activated nodes comprising an in-
duced subgraph. Such a problem is highly relevant in
a variety of scientific areas, such as surveillance, dis-
ease outbreak detection, biomedical imaging, sensor
network detection, gene network analysis, environmen-
tal monitoring and malware detection over a computer
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network. Recent theoretical contributions in the sta-
tistical literature (see, e.g., [4, 3, 2, 1]) have detailed
the inherent difficulty of such testing problems in rela-
tively simplified settings and under specific conditions
on the graph topology. A natural algorithm for detec-
tion of anomalous clusters of activity in graphs is the
generalized likelihood ratio test (GLRT) or scan statis-
tic, a computationally intensive procedure that entails
scanning all clusters in our class for anomalous acti-
vation. Unfortunately, its performance over general
graphs is not well understood, and little attention has
been paid to determining alternative, computationally
tractable, procedures.

In this article we assume that the class of clusters of
constant signal consists of sub-graphs of small cut size.
We believe this is a natural and realistic assumption
which, as we demonstrate below, allows us to explic-
itly incorporate into the detection problem the prop-
erties of the graph topology through its spectrum. In
particular, we show that the GLRT is an integer pro-
gram with a term in the objective that corresponds to
the sparsest cut in a graph, a known NP-hard prob-
lem [27]. With this in mind, we propose a relaxation
of the GLRT, called the spectral scan statistic, which
is based on the combinatorial Laplacian of the graph
and, importantly, is a computationally efficient pro-
gram. As our main result, we derive theoretical guar-
antees for the performance of the spectral scan statis-
tic, that hold for any graph and are based on the spec-
trum of the combinatorial Laplacian. For comparison
purposes, we derive theoretical guarantees for two sim-
ple estimators, the edge thresholding and the χ2 test.
We conclude our study by applying the main result
to balanced binary trees, the lattice, and Kronecker
graphs, giving precise asymptotic results. Simulations
for these models verify that the spectral scan statistic
dominates the simple estimators. Before we elaborate
on the statistical setup, we will examine two real-world
examples of graph structured signals with low cut size.

Disease Detection in Human Networks. Many
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common experimental techniques in virology report
various indicators of a virus, such as antibody pro-
tein concentrations (western blot, enzyme-linked im-
munosorbent assay) or measuring virus concentrations
directly (the plaque assay). One popular method, the
western blot [8], reports concentrations by the shade of
bands from an x-ray film darkened by a luminescent
compound. Infectious diseases diffuse within human
networks, so we can exploit this network structure in
the detection of infectious diseases, then we may be
able to detect and localize an incipient infection un-
der low signal-to-noise ratios (very light bands in the
western blot).

Sensor Networks. Sensor networks might be de-
ployed for detecting nuclear substances, water contam-
inants, or activity in video surveillance. Water sup-
ply contamination is a common cause for outbreaks of
cholera, gastroenteritis, E. coli, and polio. The design
of sensor networks for water supply was the subject of
an engineering challenge in [31]. Because of the poten-
tial for large scale health problems, it is of interest to
detect contaminated water under low signal-to-noise
regimes. As we will see, by exploiting the graph struc-
ture (in this case, the pipe network for the water sup-
ply), one can detect activity in networks when the ac-
tivity is very faint. Furthermore, the graph structure
provides a versatile framework for modeling environ-
mental constraints.

Contributions. Our contributions are as follows. (1)
We define a new class of signals based on the notion
of small cut size that reflects in a natural way the
topological properties of the graph. (2) We analyze
the corresponding GLR statistic and show that it is,
in fact, related to the problem of finding the sparsest
cut. We then develop a computationally efficient re-
laxation of the GLR statistic, called the spectral scan
statistic and analyze its properties. In our main the-
oretical result, we show that the performance of the
spectral scan statistic depends explicitly on the spec-
tral properties of the graph. (3) Using such results we
are able to characterize in a very explicit form the per-
formance of the spectral scan statistic on a few notable
graph topologies and demonstrate its superiority over
naive detectors, such as the edge thresholding and the
χ2 test. (4) Finally, we have formulated the detection
problem under more general and realistic scenarios,
which involve composite null and alternative hypothe-
ses as opposed to simple hypotheses as is customary
in the theoretical statistical literature on this subject.

Related Work. Normal means testing in high-
dimensions is a well established and fundamental prob-
lem in statistics (see, e.g., [19]). A significant portion
of the recent work in this area, [4, 3, 2, 1], has focused
on incorporating structural assumptions on the signal,

as a way to mitigate the effect of high-dimensionality
and also because many real-life problems can be rep-
resented as instances of the normal means problem
with graph-structured signals (see, for an example,
[20]). These contributions have considered the GLRT
when the alternative hypothesis takes on the form of
a combinatorial space. However, the performance of
such test has been analyzed only for certain types of
graphs, and it is unclear to what extent those analyses
extend to general graph topologies. Moreover, while
much is known about the theoretical performance of
the GLRT, little attention is paid to its computational
feasibility. Another line of research relevant to our
problem is the optimal fail detection with nuisance pa-
rameters and matched subspace detection in the signal
processing literature (see, e.g. [34, 6, 16, 15]). Though
our problem can be cast as a special case of the more
general problem of optimal testing of a linear subspace
under nuisance parameters considered in that line of
work, the focus on a graph-structured signal, as well
as the type of analysis based on the interplay between
the scan statistic and the spectral properties of the
graph contained in our work, are novel.

1.1 Problem Setup

In this section, we formalize the problem of detecting
a change of signal from a single set of noisy observa-
tions recorded at the vertices of the graph. For a given
connected, undirected, possibly weighted large graph
G = (V,E,W) on |V | = n nodes, we observe one re-
alization of the random vector

y = β + ε, (1)

where β ∈ Rn and ε ∼ N(0, σ2In), with σ2 known.
We will assume that there are two groups of constant
signal for β, namely that there exists a subset C ⊂ V
such that β is constant within both C and it com-
plement C̄ = V \C. We formalize this assumption by
writing

β = µ1 + δ1C , (2)

where µ, δ ∈ R are unknown parameters, 1 ∈ Rn is a
n-dimensional vector of ones and 1C is the indicator
function of the subset C. The parameter µ can be
thought of as the magnitude of the background signal
and is a nuisance parameter, while δ quantifies the
the gap in signal between the two clusters. Setting
β̄ = 1>β/n, we will use ‖β−β̄‖ to measure the energy
of the signal (note that this quantity is independent of
µ) where ‖.‖ always denotes the `2 norm. We will
define the signal-to-noise ratio (SNR) to be

‖β − β̄‖
σ

=

√
|C||C̄|
n

δ

σ
.
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We will not assume any knowledge of the true cluster-
ing (C, C̄), other than that it belongs to a given class
C of bi-partitions (C, C̄) of V such that C and C̄ are
both large and have low cut size. Formally, we define,
for some ρ > 0,

C = C(ρ) =

{
C ⊂ V,C 6= ∅ :

|∂C|
|C||C̄|

≤ ρ

n

}
, (3)

where ∂C = {(i, j) ∈ E : i ∈ C, j ∈ C̄} is the bound-
ary of C. Note that C is a symmetric class in the sense
that C ∈ C if and only if C̄ ∈ C. We are interested
in the problem of testing whether the gap parameter
δ in equation (2) is zero (i.e. the signal β is constant)
or it is non-zero for some C ∈ C, regardless of the
value of µ. Thus, we can naturally cast our structured
change-point detection problem as the following com-
posite hypothesis testing problem:

H0 : β ∈ Θ0 vs H1 : β ∈ Θ1, (4)

where Θ0 = {µ1, µ ∈ R} and Θ1 = {1µ + 1Cδ, µ ∈
R, δ ∈ R \ {0}, C ∈ C}. Notice that the alternative
can be written as the union of alternatives of the form
HC

1 : β ∈ ΘC
1 := {1µ+1Cδ, µ ∈ R, δ ∈ R\{0}}, C ∈ C.

Notice that it is not required that C is a connected set
of vertices.

To make our analysis meaningful, we measure the dif-
ficulty of the detection problem in terms of the en-
ergy parameter by assuming that, for some η > 0,
‖β − β̄‖ ≥ η, ∀β ∈ Θ1. Thus, we can think of
η as the minimal degree of separation between the
null and alternative hypotheses. Below we will ana-
lyze asymptotic conditions under which the hypothesis
testing problem described above is feasible, in a sense
made precise in the next definition, when the size of
the graph n increases. To this end, we will further
assume that the relevant parameters of the model, η,
σ, δ and ρ change with n as well, even though we will
not make such dependence explicit in our notation for
ease of readability. Our results establish conditions for
asymptotic disinguishability as a function of the SNR
η/σ and ρ and the spectrum of the graph G.

Definition 1. Let Pβ denote the distribution of y in-
duced by the model (1), where β ∈ Θ0∪Θ1. For a given
statistic S(y) and threshold τ ∈ R, let T = T (y) be 1
if S(y) > τ and 0 otherwise. We say that the hypothe-
ses H0 and H1 are asymptotically distinguished
by the test T if

sup
β∈H0

Pβ{T = 1} → 0 and sup
β∈H1

Pβ{T = 0} → 0,

(5)
where the limit is taken as n → ∞. We say that
H0 and H1 are asymptotically indistinguishable
if there does not exist any test for which the above
limits hold.

Notation. We will need some mathematical termi-
nology from algebraic graph theory ([17]). A central
object to our analysis is the combinatorial Laplacian
matrix L = D −W, where W is the weight matrix
of the graph G and D = diag{dv}v∈V is the diago-
nal matrix of node degrees, dv =

∑
w∈V Wv,w, v ∈ V .

If the graph is weighted then Wv,w reflects this. We
will denote the eigenvalues of L with {λi}ni=1, which
we will always take in increasing order. Since G is
connected, the smaller eigenvalue λ1 = 0, with cor-
responding eigenvector, 1. λ2 is known as the alge-
braic connectivity, which is known to provide bounds
for the minimum cut sparsity via Cheeger’s inequality.
Throughout this study we use Bachmann-Landau no-
tation for asymptotic statements: if an/bn → 0 then
an = o(bn) and bn = ω(an). If an/bn → c for some
c > 0 then we write an � bn. When y ∈ Rn is a vec-
tor then ȳ = 1

n

∑n
i=1 yi, but for a set C ⊆ V then we

define C̄ = V \C.

2 Methods

The hypothesis testing problem at hand presents two
challenges: (1) the model contains a nuisance param-
eter µ ∈ R and (2) the alternative hypothesis is com-
prised of a union of hypotheses indexed by C ∈ C.
The existence of the nuisance paramter sets our prob-
lem further apart from existing work of structured nor-
mal means problems (see, e.g. [4, 3, 2, 1]), which re-
lies on a simplified framework consisting of a simple
null hypothesis and a composite hypothesis consist-
ing of unions of simple alternatives. We will eliminate
the interference caused by the nuisance parameter by
considering test procedures that are independent of
µ. The formal justification for this choice is based on
the theory of optimal invariant hypothesis testing (see,
e.g. [23]) and of uniformly best constant power tests
(see [39]). Due to space limitations we will not provide
the details and refer the reader to [15, 16, 14, 13, 34, 6]
and references therein for in depth-treatments of these
issues related to the model at hand.

For the simpler problem of testing H0 versus HC
1 for

some C ⊂ V , the optimal test is based on the likeli-
hood ratio (LR) statistic (see the proof of Lemma 2
below for a derivation)

2 log ΛC(y) = 2 log

(
supβ∈Θ1

fβ(y)

supβ∈Θ0
fβ(y)

)

=
1

σ2

|V |
|C||C̄|

(∑
v∈C

ỹv

)2

,

(6)

where ỹ = y − ȳ and fβ is the Lebesgue density of
Pβ. This test rejects H0 for large values of ΛC(y).
Optimality follows from the fact that the statistical
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model we consider has the monotone likelihood ratio
property.

When testing against composite alternatives, like in
our case, it is customary to consider instead the gen-
eralized likelihood ratio (GLR) or scan statistic, which
in our case reduces to

ĝ = max
C∈C(ρ)

2σ2 log ΛC(y).

Through manipulations of the likelihoods, we find that
the GLR statistic has a very convenient form which is
tied to the spectral properties of the graph G via its
Laplacian.

Lemma 2. Let ỹ = y − 1( 1
n

∑
v∈V yv) and K = I −

1
n11>. Then the GLR statistic is

ĝ = max
x∈{0,1}n

x>ỹỹ>x

x>Kx
s.t.

x>Lx

x>Kx
≤ ρ, (7)

where L is the combinatorial Laplacian of the graph G.

The proof is provided in the appendix. The savvy
reader will notice the connection between the graph
constrained scan statistic (7) and the graph sparsest
cut program. By Lagrangian duality, we see that the
program (7) is equivalent to (for some Lagrangian pa-
rameter ν)

min
C⊆V

|∂C|
|C||C̄|

− ν
(
∑
i∈C ỹi)

2

|C||C̄|

the first term of which is precisely the sparsest cut
objective, and the second term drives the solution C
to have positive within cluster empirical correlations.
The sparsest cut program is known to be NP-hard,
with poly-time algorithms known for trees and planar
graphs [27]. Because of this fact, approximate algo-
rithms have been proposed over the past two decades,
most notably the uniform multicommodity flow ap-
proach of [24, 37] and the semi-definite relaxation of
the cut metric [5]. [18] observed that the minimum cut
sparsity is bounded by the algebraic connectivity (λ2),
suggesting the Fiedler vector (i.e. the second eignen-
vector of L) to be an appropriate relaxation of the
characteristic vector of the cut. Moreover, the well
known Cheeger inequality shows that the minimum
cut sparsity (in a regular graph) is bounded by the
algebraic connectivity (see [9]). We will follow the tra-
dition of bounding sparsity with the algebraic connec-
tivity, and provide a surrogate estimator to the scan
statistic based on this simple spectral relaxation.

Proposition 3. Define the Spectral Scan Statistic
(SSS) as

ŝ = sup
x∈Rn

(x>ỹ)2 s.t. x>Lx ≤ ρ, ‖x‖ ≤ 1,x>1 = 0.

Then the GLR statistic is bounded by the SSS: ĝ ≤ ŝ.

Proof. First let us notice that K = I − 1
n11> is the

projection onto the subspace orthogonal to 1. Because
K is thus idempotent, ỹ1 = 0, and since L1 = 0 we
can rewrite

ĝ = max
x∈{0,1}n\{0,1}

(Kx)>ỹỹ>(Kx)

(Kx)>(Kx)

s.t.
(Kx)>L(Kx)

(Kx)>(Kx)
≤ ρ

So, we have the following relaxation,

ĝ ≤ max
x6=0,x>1=0

x>ỹỹ>x

x>x
s.t.

x>Lx

x>x
≤ ρ = ŝ

Notice that because the domain X = {x ∈ Rn :
x>Lx ≤ ρ, ‖x‖ ≤ 1,x>1 = 0} is symmetric around
the origin, this is precisely the square of the solution
to

√
ŝ = sup

x∈Rn
x>y s.t. x>Lx ≤ ρ, ‖x‖ ≤ 1,x>1 = 0,

(8)
where we have used the fact that x>ỹ = ((I −
1
n11>)x)>y = x>y because x>1 = 0 within X .

Remark 4. Through a reparametrization we can show
that the program (8) has a linear objective and only
quadratic constraints. After forming the Lagrangian
we can show that this is equivalent to

inf
ν0,ν1≥0

ν0ρ+ ν1 +
1

4
ỹ>[ν0L + ν1I]−1ỹ

which can be solved by first order interior point meth-
ods over the parameters ν0, ν1 where the gradient cal-
culation requires the solution to a linear system. Fur-
thermore, the linear systems are semidefinite, diago-
nally dominant, hence by the recent work of [21], has
a running time of O(|E| log n) modulo logarithmic pre-
cision factors.

The formulation in (8) shows that the SSS is related
to the supremum of a Gaussian process over X . This
fact will turn out to be extremely convenient, as we
show next.

3 Theoretical Analysis

We first derive a simple condition for asymptotic in-
distinguishability based on testing the null versus a
single component in the alternative. A more refined
analysis of the lower bound for the general hypothesis
(4) is beyond the scope of this article. Recall that,
under alternative hypothesis, ‖β − β̄‖ ≥ η uniformly
over Θ1.
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Theorem 5. (1) H0 and H1 are asymptotically indis-
tinguishable if η/σ = o(1).
(2) Suppose that there is a subset of clusters C′ ⊆ 2V

such that all the elements of C′ are disjoint, of the
same size (|C| = c for all C ∈ C′), and

∀C ∈ C′, n|∂C|
|C||C̄|

≤ ρ

2

i.e., elements of C′ belong to the alternative hypoth-
esis with ρ/2 cut sparsity. Furthermore assume that
c|C′|
n → 1. Consider the observation model (1), and

the testing problem given by (4). Then H0 and H1 are
asymptotically indistinguishable if

η

σ
= o(|C′|1/4)

The proof is in the appendix. We will analyze the
performance of the SSS statistic by relying on its rep-
resentation (8) as the square of the supremum of a
Gaussian process. We draw heavily on the theory of
the generic chaining, perfected in [38], which essen-
tially reduces the problem of computing bounds on
the expected supremum of Gaussian processes to geo-
metric properties of its index space.

Theorem 6. The following hold with probability at
least 1− δ. Under the null H0,

ŝ ≤

√2σ2
∑
i>1

min{1, ρλ−1
i }+

√
2σ2 log

2

δ

2

,

while under the alternative H1,

ŝ ≥

(
η −

√
2σ2 log

2

δ

)2

.

Proof. For a detailed proof, please see the appendix.
We use generic chaining to control the process
{x>y}x∈X appearing in the SSS. First, we notice that
the index set X is the intersection of an ellipsoid and
the unit ball, which is the intuition behind the follow-
ing lemma.

Lemma 7. Let L have spectrum {λi}ni=1. Then under
H0,

E sup
x∈X

x>y ≤
√

2σ2
∑
i>1

min{1, ρλ−1
i }.

The proof is provided in the appendix and is a di-
rect result of Lemma 14 from [22]. We can then use
the well known phenomena, that the supremum of
a Gaussian process concentrates around it’s expecta-
tion. Hence, by Lemma 14 the first statement in The-
orem 6 holds. The second statement follows by apply-
ing standard concentration results to the univariate

Gaussian β−β̄
‖β−β̄‖y and noticing that β−β̄

‖β−β̄‖ ∈ X and

E (β−β̄)>

‖β−β̄‖ y = ‖β − β̄‖ ≥ η under H1.

As a corollary we will provide sufficient conditions for
asymptotic distinguishability that depend on the spec-
trum of the Laplacian L. As we will show in the next
section, these conditions can be applied to a number of
graph topologies whose spectral properties are known.

Corollary 8. The null and alternative, as described in
Thm. 6, are asymptotically distinguished by the SSS,
ŝ, and the GLRT, ĝ, if

η

σ
= ω

√∑
i>1

min{1, ρλ−1
i }

 (9)

Other stronger sufficient conditions are

η

σ
= ω

(√
k +

(n− k)ρ

λk+1

)
(10)

if k is large enough that λk+1 > ρ.

Proof. To see equation (9) we note that, due to Theo-
rem 6, if√

2σ2
∑
i>1

min{1, ρλ−1
i }+

√
2σ2 log

2

δ

= o

(
η −

√
2σ2 log

2

δ

)

then we attain asymptotic distinguishability by choos-
ing any threshold τ between, and sufficiently far from,
the left and right hand side of the previous display. To
show equation (10) we note that by choosing k such
that λk+1 > ρ we see that∑

1<i≤k

min{1, ρλ−1
i } ≤ k

⇒
∑
i>k

min{1, ρλ−1
i } ≤ (n− k)

ρ

λk+1
.

Interestingly, there are no logarithmic terms in (9) that
usually accompany uniform bounds of this type, which
is attributed to the generic chaining.

For comparison, we consider the performance of
two naive procedures for detection: the energy de-
tector, which reject H0 if ‖ỹ‖2 is too large and
the edge thresholding detector, which reject H0 if
max(v,w)∈E |yv − yw| is large. The following is a clas-
sical result that can be found in [19].
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Theorem 9. H0 and H1 are asymptotically distin-
guished by ‖ỹ‖ if

η

σ
= ω(n1/4).

while ‖ỹ‖ fails to asymptotically distinguish H0 from
H1 if

η

σ
= o(n1/4)

In [35] the authors examined the problem of exact re-
covery of cluster boundaries in the graph-structured
normal means problem by taking differences between
observations corresponding to adjacent nodes. The fol-
lowing result stems from Theorem 2.1 of [35], and the
fact that |C||C̄|/n scales like min{|C|, |C̄|} up to a fac-
tor of 2.

Theorem 10. H0 and H1 are asymptotically distin-
guished by max(v,w)∈E |yv − yw| if

η

σ
= ω

(√
max

C∈C,|C|≤n/2
|C| log n

)
.

Hence, if maxC∈C,|C|≤n/2 |C| is large then the edge
thresholding statistic may be dominated by the SSS,
because the bound in Corollary 8 is always smaller
than

√
n.

4 Specific Graph Models

In this section we demonstrate the power and flexi-
bility of Theorem 6 by analyzing in detail the perfor-
mance of the spectral scan statistic over three graph
topologies: balanced binary trees, the 2 dimensional
lattice and the Kronecker graphs (see [26, 25]).

4.1 Balanced Binary Trees

We begin the analysis of the spectral scan statistic
by applying it to the balanced binary tree (BBT) of
depth `. The class of signals that we will consider have
clusters of constant signal which are subtrees of size at
least cnα for 0 < c ≤ 1/2, 0 < α ≤ 1. Hence, the cut
size of the signals are 1 and ρ = [cnα(1− cnα−1)]−1.

Corollary 11. Let G be the balanced binary tree with
n vertices, and ρ = n[cnα(n− cnα)]−1.
(a) The spectral scan statistic can asymptotically dis-
tinguish H0 from H1 if the SNR satisfies

η

σ
= ω(n

1−α
2 log n).

(b) H0 and H1 are asymptotically indistinguishable if

η

σ
= o(n

1−α
4 ).

The lower bound in part (b) is a direct result of Theo-
rem 5 (b). This result shows that when α is near to 1
then there is little gap between the upper bound of the
SSS and the lower bound. To illustrate our claim, we
simulate the probability of correct discovery of change-
points (rejecting H0 when the truth is H1) versus the
probability of false alarm (falsely rejecting H0). We
compare the following estimators: the energy statis-
tic, edge differencing, the SSS, and the unconstrained
GLRT. The unconstrained GLRT is formed by choos-
ing the cluster C without the constraint C ∈ C, which
is formed by merely ordering the elements of y and
greedily adding the components to C until the RHS
of (7) is maximized. These are given for the four es-
timators in Figure 1 and for the SSS as n = 2`+1 − 1
increases. In these simulations a subtree at level 2 (of
size n/4) was chosen as C, the gap-to-noise ratio is
fixed at δ/σ = 0.8, and ρ = 4/n. We see that even
in the low n regime, exploiting the graph structure is
essential to improve the power of testing H0 against
H1. As n increases with δ/σ fixed the performance of
the SSS dramatically increases.

4.2 Lattice

We will analyze the performance guarantees of the SSS
over the 2-dimensional lattice graph with p vertices
along each dimension (n = p2).

Corollary 12. Let G be the p × p square lattice
(n = p2), and let ρ = Cn−(1−α)/2 for α ∈ [0, 1).
(a) The spectral scan statistic can asymptotically dis-
tinguish H0 from H1 if the SNR satisfies

η

σ
= ω(n

1+α
4

√
log n)

(b) H0 and H1 are asymptotically indistinguishable if
the SNR is weaker than

η

σ
= o(n

α
4 )

The proof of (a) is in the appendix. Unfortunately, the
upper bound in (a) is larger than that provided for the
energy statistic in Theorem 9. Our experiments (Fig-
ure 1) suggest though that these upper bounds can be
greatly improved. The lower bound, Corollary 12 (b),
holds because we can form C′ of Theorem 5 (b) from
disjoint squares of size a constant multiple of n1−α

making |C′| � nα. We demonstrate the improvement
of the SSS over competing tests in Figure 1. In these
simulations a

√
n/2 ×

√
n/2 square was chosen to be

C with ρ = 4/
√
n. Despite the weaker guarantee in

Corollary 12 the SSS demonstrates the importance of
exploiting the graph structure.
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Figure 1: Above: the simulated probability of correct discovery (power) against false alarm (size) of the SSS compared to
the energy detector, edge thresholding and the unconstrained GLRT of the BBT (left), Lattice (middle), and Kronecker
graph (right). Below: the performance of the SSS as n increases.

4.3 Kronecker Graphs

Much of the research in complex networks has focused
on observing statistical phenomena that are common
across many data sources. Most notably, the degree
distribution of real world graphs obey a power law
[11] and networks are often found to have small di-
ameter [29]. A class of graphs that satisfy these prop-
erties, while providing a simple modeling platform, are
the Kronecker graphs (see [26, 25]). Let H1 and H2

be graphs on p vertices with Laplacians L1,L2 and
edge sets E1, E2 respectively. The Kronecker prod-
uct, H1 ⊗H2, is the graph over vertices [p]× [p] such
that there is an edge ((i1, i2), (j1, j2)) if i1 = j1 and
(i2, j2) ∈ E2 or i2 = j2 and (i1, j1) ∈ E1. We will
construct graphs that have a multi-scale topology us-
ing the Kronecker product. Let the multiplication of a
graph by a scalar indicate that we multiply each edge
weight by that scalar. First letH be a connected graph
with p vertices. Then the graph G for ` > 0 levels is
defined as

1

p`−1
H ⊗ 1

p`−2
H ⊗ ...⊗ 1

p
H ⊗H

The choice of multipliers ensures that it is easier to
make cuts at the more coarse scale. Notice that all of
the previous results have held for weighted graphs.

Corollary 13. Let G be the Kronecker product graph
described above with n = p` vertices, and consider
only signals with cuts within the k coarsest scale (ρ ∝
p2k−`−1).
(a) The spectral scan statistic can asymptotically dis-
tinguish H0 from H1 if the SNR satisfies

η

σ
= ω(p2(`+ 2)n(2k+1)/`)

(b) H0 and H1 are asymptotically indistinguishable if

η

σ
= o(n

k
4` /
√
p)

The proof and an explanation of ρ is in the appendix.
Again, we demonstrate the improvement of the SSS
over competing tests in Figure 1. For these simulations
the base graph H was chosen to be two triangles (K3)
connected by a single edge (p = 6). At the coarsest
scale one of the K3 subgraphs was chosen to be C with
ρ = 4/n.

5 Discussion

We studied the problem of tractably detecting change-
points in networks under Gaussian noise. To this end
we developed the spectral scan statistic as a compu-
tationally feasible alternative to the generalized likeli-
hood ratio test. We completely characterized the per-
formance of the SSS for any graph in terms of the spec-
trum of the combinatorial Laplacian. For comparison
purposes, we developed theoretical guarantees for two
simple estimators. We applied the main result to three
graph models: binary balanced trees, the lattice and
Kronecker graph. We see that not only is it statis-
tically suboptimal to ignore graph structure, but for
coarse cuts in the balanced binary tree and the Kro-
necker graph the SSS gives near optimal performance.
This claim is backed by both simulation and theory.
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A Appendix

A.1 Proofs in Section 2

Proof of Lemma 2. To expedite the proof, we express
the LR statistics in terms of the sufficient statis-
tics y0 = 1

|C|
∑
i∈C yi ∼ N(β0, σ

2
0) and y1 =

1
|C̄|
∑
i∈C̄ yi ∼ N(β1, σ

2
1) for σ0 = σ/

√
|C| and σ1 =

σ/
√
|C̄|. Then, we obtain

2 log ΛC(y) =
1

σ2
0

(y0 − β̂)2 +
1

σ2
1

(y1 − β̂)2

where β̂ =
σ2
1

σ2
0+σ2

1
y0 +

σ2
0

σ2
0+σ2

1
y1 is the MLE under H0.

(The likelihood under the alternative balances with the
normalizing constant of the null likelihood.) Thus,

2 log ΛC(y) =
1

σ2
0

(
σ2

0

σ2
0 + σ2

1

(y0 − y1)

)2

+
1

σ2
1

(
σ2

1

σ2
0 + σ2

1

(y0 − y1)

)2

=
(y0 − y1)2

σ2
0 + σ2

1

=
1

σ2

|C||C̄|
|V |

(y0 − y1)2

=
1

σ2

|V |
|C||C̄|

 |C̄|
|V |

∑
v∈C

yv −
|C|
|V |

∑
v∈C̄

yv

2

=
1

σ2

|V |
|C||C̄|

(∑
v∈C

yv −
|C|
|V |

∑
v∈V

yv

)2

=
1

σ2

|V |
|C||C̄|

(∑
v∈C

ỹv

)2

. (11)

Now we let x = 1C , making the statistic above

2σ2 log ΛC(y) =
x>ỹỹx

x>Kx
and

|∂C||V |
|C||C̄|

=
x>Lx

x>Kx
.

The result now follows by considering all the indicator
functions corresponding to the sets in C.

Proof of Remark 4. First we notice that (8) is equiva-
lent to

inf
x∈R
−x>ỹ s.t. x>Lx ≤ ρ, ‖x‖ ≤ 1

because x>Lx and x>ỹ are invariant under changes
in 1>x. This admits the Lagrangian (for parameters
ν0, ν1 > 0),

−x>ỹ + ν0(x>Lx− ρ) + ν1(x>x− 1)

which is minimized for fixed ν0, ν1 at x = − 1
2 [ν0L +

ν1I]−1ỹ (which confirms Slater’s condition). Hence,
the dual program is

sup
ν0,ν1≥0

−ν0ρ−ν1−
1

2
ỹ[ν0L+ν1I]−1ỹ+

1

4
ỹ[ν0L+ν1I]−1ỹ

A.2 Proofs in Section 3

Proof of Theorem 5 (1). Let the true C ∈ C be
known. The performance of the optimal test with C
known, which by the Neyman-Pearson Lemma is based
on 2 log ΛC(y), bounds the performance of that with
C unknown. To this end, note that, under H0, the LR
statistic (6) has a χ2

1, while under the alternative HC
1

it has a χ2
1(λ) distribution with non-centrality param-

eter

λ =
δ2

σ2

|C||C̄|
|V |

=
η2

σ2
,

which is the square of the SNR. For fixed C, asymp-
totically indistinguishable of H0 versus H1

C follows by
considering any threshold and noticing that the associ-
ated type 1 and type 2 errors are non-vanishing under
the SNR scaling assumed in the statement. Since the
risk of testing H0 versus H1 is no smaller than the risk
of testing H0 versus H1

C , the result follows.

We remark that the proof of the previous result shows
that when distinguishing H0 from HC

1 , the power of
the test is maximal when |C| = |C̄| for a fixed value of
the SNR.

Proof of Theorem 5 (2). We will begin by construct-
ing from our set, C′, a new set, S, of clusters which
are difficult to distinguish in the sense that the Bayes
risk for the uniform prior over those in the alterna-
tive is bounded away from 0. Enumerate C′ such that

C′ = {Ci}|C
′|

i=1. We will build S by unioning k ele-
ments of C′, then draw S, S′ uniformly from S. Specif-
ically, let k = b

√
|C′|c (recall that c = |C|,∀C ∈ C′),

and let K,K ′ be independent uniform samples with-
out replacement of k elements from {1, . . . , |C′|}. Then
let S = ∪i∈KCi and S′ = ∪i∈K′Ci. Notice that
kc = |S| ≤ n/2 for n large enough.

|∂S|
|S||S̄|

≤ kmaxC∈C′ |∂C|
kc(n− kc)

≤ n− c
n− kc

max
C∈C′

|∂C|
c(n− c)

≤ 2
ρ

2
= ρ

Notice that the risk can be bounded by

sup
β∈Θ0

EβT (y) + sup
β∈Θ1

Eβ[1− T (y)]

≥ Eβ=0T (y) +
1

|S|
∑
S∈S

EβS [1− T (y)] = R∗
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where βS = η
√

n
|S||S̄|1S and S ⊆ C. Then by Propo-

sition 3.2 in [1],

R∗ ≥ 1− 1

2

√
E exp

{
η2

σ2
Z

}
− 1

where

Z =
n|S ∩ S′|√
|S||S̄||S′||S̄′|

for S, S′ drawn independently uniformly from S. No-
tice that

n√
|S̄′||S̄|

≤ 2

Hence,

Z ≤ 2
|S ∩ S′|√
|S||S′|

= 2
|K ∩K ′|√
|K||K ′|

And we have that

R∗ ≥ 1− 1

2

√
Ee

2η2

kσ2
|K∩K′| − 1

Hence, we can apply Proposition 3.4 from [1] (by sub-
stituting µ← η

√
2/(σ
√
k)) and determine that R∗ > δ

if

η
√

2

σ
√
k
≤

√
log

(
1 +
|C′| log(1 + 4(1− δ)2)

k2

)
Because k2 � |C′| we have asymptotic indistinguisha-
bility if η/σ = o(

√
k) = o(|C′|1/4). For some explana-

tion for the choice of k the term k log(1 + |C′|/k2) is
largest when k2 � |C′|.

Proof of Lemma 7. Without loss of generality, let y ∼
N (0, I). We recall that, since G is connected, the
combinatorial Laplacian L is symmetric, its small-
est eigenvalue is zero and the remaining eigenvalues
are positive. By the spectral theorem, we can write
L = UΛU>, where Λ is a (n − 1) × (n − 1) diago-
nal matrix containing the positive eigenvalues of L in
increasing order and the columns of the n × (n − 1)
matrix U are the associated eigenvectors. Then, since
each vector x ∈ Rn with 1>x = 0 can be written as
Uz for a unique vector z ∈ Rn−1, we have

X = {x ∈ Rn : x>Lx ≤ ρ,x>x = 1,1>x ≤ 0}
= {Uz : z ∈ Rn−1,

z>U>LUz ≤ ρ, z>U>Uz ≤ 1}
= {Uz : z ∈ Rn−1, 1

ρz>Λz ≤ 1, z>z ≤ 1},

where in the third identity we have used the fact that
U>U = In−1. Letting Z = {z ∈ Rn−1 : 1

ρz>Λz ≤
1, z>z ≤ 1}, we see that

sup
x∈X

x>y = sup
z∈Z

z>U>y
d
= sup

z∈Z
z>ξ,

where ξ ∼ N(0, In−1) and
d
= denotes equality in dis-

tribution.

Next, we show that the set Z, which is the intersection
of an ellipsoid with the unit ball in Rn−1, is contained
in an enlarged ellipsoid. The supremum of the Gaus-
sian process z>ξ over Z will then be bounded by the
supremum of the same process over this larger but sim-
pler set, which we will be able to bound using directly
a result from [38] based on chaining. To this end, let
A = 1

ρΛ = diag{ai}n−1
i=1 and d = max{j : aj < 1}.

For for a vector z ∈ Rn−1 set z1 = z[d], z2 = z[n−1]\[d],
and A2 = diag{ai}i>d. Then, we observe the following
chain of implications, holding for vectors z ∈ Rn−1:

‖z‖ ≤ 1, z>Az ≤ 1⇒ ‖z1‖ ≤ 1,
∑
i>d

aiz
2
i ≤ 1

⇒ z>1 z1 + z>2 A2z2 ≤ 2⇒
∑
i

max{1, ai}
2

z2
i ≤ 1.

Hence, we have the bound

E
√
ŝ ≤ E sup

z∈Rn−1

z>ξ s.t.
∑
i

2 max {1, ai}x2
i ≤ 1.

Recalling that ai = λi+1

ρ , for i = 1, . . . , n − 1, where

λi+1 is the (i + 1)th eigenvalue of L, by Proposition
2.2.1 in [38] the right hand side of the previous expres-

sion is bounded by
√

2
∑
i>1 min{1, ρλ−1

i }.

Supplement to the proof of Theorem 6. The following
property of Gaussian processes effectively reduces the
study of their supremum to the study of its expecta-
tion. It was established by [7] and [10] and can be
found in [22].

Lemma 14. Consider a Gaussian process {Zt}t∈U
where U is compact with respect to metric

d(s, t) = (E(Zs − Zt)2)1/2, s, t,∈ U ,

and let σ2 ≥ supt∈U EZ2
t . We have that with probabil-

ity at least 1− δ∣∣∣∣sup
t∈U

Zt − E sup
t∈U

Zt

∣∣∣∣ <
√

2σ2 log
2

δ
.

Notice that the natural distance is given by d(x0,x1) =
(E((x0−x1)>y)2)1/2 = σ‖x0−x1‖ for x0,x1 ∈ X .

A.3 Proof in Section 4

Proof of Corollary 11 (a). The study of the spectra of
trees really began in earnest with the work of [12]. No-
tably, it became apparent that tree have eigenvalues
with high multiplicities, particularly the eigenvalue 1.
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[30] gave a tight bound on the algebraic connectivity
of balanced binary trees (BBT). They found that for
a BBT of depth `, the reciprocal of the smallest eigen-

value (λ
(`)
2 ) is

1

λ
(`)
2

≤ 2` − 2`+ 2− 2` −
√

2(2`− 1− 2`−1)

2` − 1−
√

2(2`−1 − 1)

+(3− 2
√

2 cos(
π

2`− 1
))−1

≤ 2` + 105I{` < 4}

(12)

[32] gave a more exact characterization of the spectrum
of a balanced binary tree, providing a decomposition of
the Laplacian’s characteristic polynomial. Specifically,
the characteristic polynomial of L is given by

det(λI− L) = p2`−2

1 (λ)p2`−3

2 (λ) . . .

p22

`−3(λ)p2
`−2(λ)p`−1(λ)s`(λ)

(13)

where s`(λ) is a polynomial of degree ` and pi(λ) are
polynomials of degree i with the smallest root satis-
fying the bound in (12) with ` replaced with i. In
[33], they extended this work to more general balanced
trees.

By (13) we know that at most ` + (` − 1) + (` −
2)2 + ... + (` − j)2j−1 ≤ `2j eigenvalues have recip-
rocals larger than 2`−j + 105I{j < 4}. Let k =
max{d `c2

`(1−α)e, 23}, then we have ensured that at
most k eigenvalues are smaller than ρ. For n large
enough

∑
i>1

min{1, ρλ−1
i } ≤ k + ρ

∑̀
j>log k

`2j2`−j

= k + `(`− log k)nρ = O(n1−α(log n)2)

Proof of Corollary 11 (b). We will construct C′ in
Theorem 5 (b) from subtrees of size 4cnα. Let C be
such a subtree, then for n large enough

1− 4cnα−1 ≥ 1− cnα−1

2

⇒ n|∂C|
|C||C̄|

= [4cnα(1− 4cnα−1)]−1

≤ 1

2
[cnα(1− cnα−1)]−1 =

rho

2

Hence the conditions of Theorem 5 (b) hold with |C′| =
n/(4cnα) � n1−α

Proof of Corollary 12 (a). By a simple Fourier analy-
sis (see [36]), we know that the Laplacian eigenvalues
are 2(2− cos(2πi1/p)− cos(2πi2/p)) for all i1, i2 ∈ [p].

Let us denote the p2 eigenvalues as λ(i1,i2) for i1, i2 ∈
[p]. Notice that for i ∈ [p], |{(i1, i2) : i1∨ i2 = i}| ≤ 2i.
For simplicity let p be even. We know that if i1 ∨ i2 ≤
p/2 then λ(i1,i2) = 2 − cos(2πi1/p) − cos(2πi2/p) ≥
1− cos(2π(i1 ∨ i2)/p) . Thus,∑

(i1,i2)6=(1,1)∈[p]2

1 ∧ ρ

λ(i1,i2)

≤ 2
∑
i∈[p/2]

2i

(
1 ∧ ρ

1− cos(2πi/p)

)

≤ ρp
2

2

2

p

∑
i∈[p/2]

2
i/p

1− cos(2πi/p)

≤ ρp
2

2

∫ 1/2

1/p

xdx

1− cos(2πx)

≤ ρp
2

2

log(sin(πx))− πx cot(πx)

2π2

∣∣∣∣1/2
1/p

= ρ
p2

2

(π/p) cot(π/p)− log(sin(π/p))

2π2

While we can use the first order expansion of the terms
to obtain the behavior,

(π/p) cot(π/p) = 1 + o(π/p)

− log(sin(π/p)) = − log(π/p)− log(1 + o(1))

so we arrive at the following,∑
(i1,i2)6=(1,1)∈[p]2

1 ∧ ρ

λ(i1,i2)

≤ ρ p
2

4π2
(1 + log(p/π) + o(1))

=
C

4π2
p1+β(1 + log(p/π) + o(1))

= O(n(1+β)/2 log(p))

which in conjunction with (9) completes our proof.

Proof of Corollary 13 (a). The Kronecker product of
two matrices A,B ∈ Rn×n is defined as A ⊗
B ∈ R(n×n)×(n×n) such that (A ⊗ B)(i1,i2),(j1,j2) =
Ai1,j1Bi2,j2 . Some matrix algebra shows that if H1

and H2 are graphs on p vertices with Laplacians
L1,L2 then the Laplacian of their Kronecker product,
H1⊗H2, is given by L = L1⊗Ip+Ip⊗L2 ([28]). Hence,
if v1,v2 ∈ Rp are eigenvectors, viz. L1v1 = λ1v1 and
L2v2 = λ2v2, then L(v1 ⊗ v2) = (λ1 + λ2)v1 ⊗ v2,
where v1 ⊗ v2 is the usual tensor product. This com-
pletely characterizes the spectrum of Kronecker prod-
ucts of graphs.

We should argue the choice of ρ ∝ p2k−`−1, by showing
that it is the results of cuts at level k. We say that an
edge e = ((i1, ..., i`), (j1, ..., j`)) has scale k if ik 6= jk.
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Furthermore, a cut has scale k if each of its constituent
edges has scale at least k. Each edge at scale k has
weight pk−` and there are p`−1 such edges, so cuts at
scale k have total edge weight bounded by

p`−1
k∑
i=1

pi−` = pk−1
p− 1

pk−1

p− 1
≤ pk

p− 1

Cuts at scale k leave components of size p`−k intact,
meaning that ρ ∝ p2k−`−1 for large enough p.

We now control the spectrum of the Kronecker graph.
Let the eigenvalues of the base graph H be {νj}pj=1 in
increasing order. The eigenvalues of G are precisely
the sums

λi =
1

p`−1
νi1 +

1

p`−2
νi2 + ...+

1

p
νi`−1

+ νi`

for i = (ij)
`
j=1 ⊆ [p]. The eigenvalue distribution {λi}

stochastically bounds

λi ≥
∑̀
j=1

1

p`−j
ν2I{νij 6= 0} ≥ ν2

pZ(i)

where Z(i) = min{j : νi`−j 6= 0}. Notice that if i is
chosen uniformly at random then Z(i) has a geometric
distribution with probability of success (p−1)/p. Also
ρ/( ν2

pZ(i) ) = pZ(i)+2k−`−1/ν2 ≥ 1 if Z(i) ≥ `+ 1− 2k+

logp ν2, so

1

p`

∑
i∈[p]`

min{1, ρ
λi
} ≤ p2k−`−1

ν2

+

b`+1−2k+logp ν2c∑
Z=1

pZ+2k−`−1

ν2

1

pZ
p− 1

p

≤ (`+ 2)p2k−`−1

ν2

This followed from the geometric probability mass
function. We also know that the algebraic connectiv-
ity, ν2, is bounded from below by 4p−2, so the following
result holds.

Proof of Corollary 13 (b). Similarly to the proof of
Corollary 11 (b), we form C′ as the connected com-
ponents of the graph with all the edges at coarseness
less than k− 2. So we have more than quadrupled the
size of the clusters without increasing their cut size.
Hence, |C′| � pk−2 � nk/`/p2.


