

Reinforcement Learning with Human Feedback, RLHF

Aarti Singh

Machine Learning 10-734
Dec 4, 2025

Slides courtesy: Yuda Song, Keith Chester, Zhaolin Gao

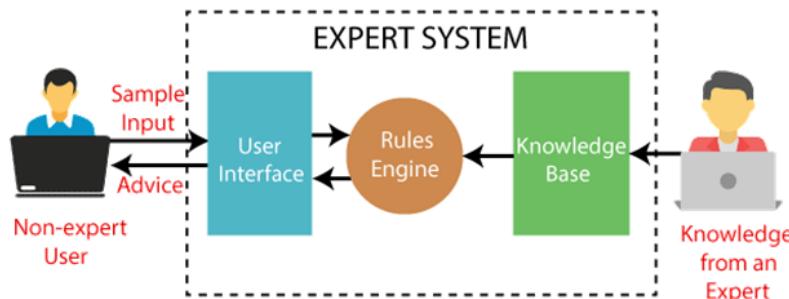
MACHINE LEARNING DEPARTMENT

Carnegie Mellon.
School of Computer Science

Role of Human Feedback in AI development

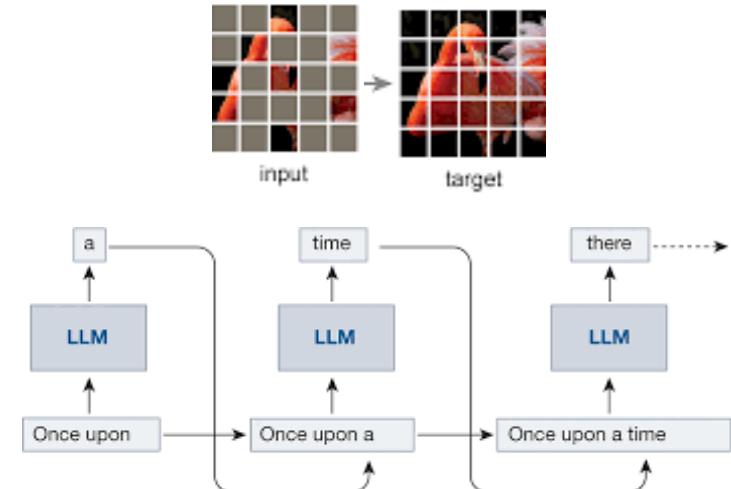
1970s

Expert systems



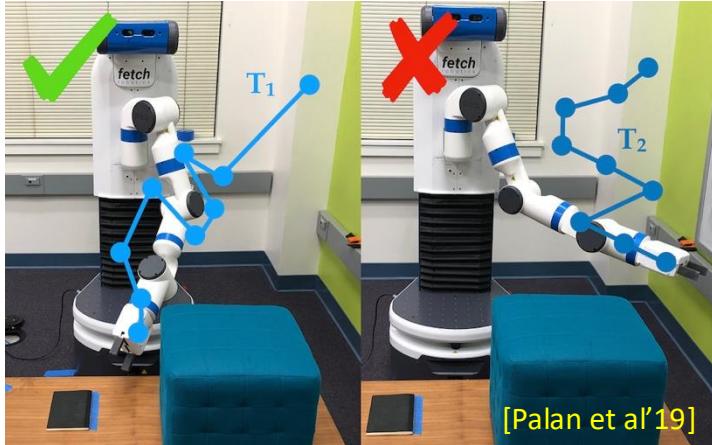
2020s

Self-supervised systems

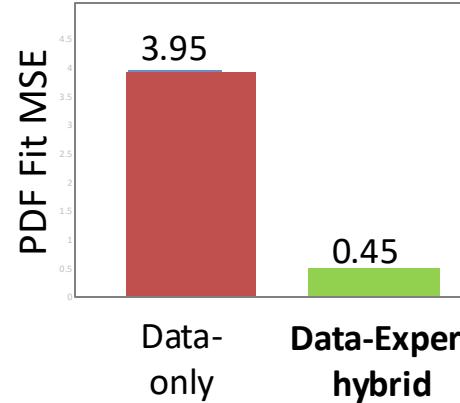


How to align AI systems with human values and expectations?

Human Preference Feedback

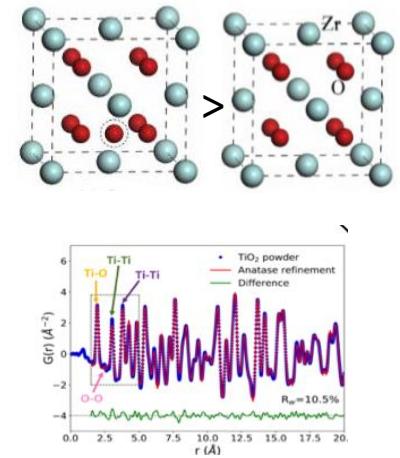


Trajectory feedback in
autonomous navigation



Human judgement based on
scientific domain knowledge

Preference for products



Fine-tuning Large Language Models

Modeling Human Preferences

Human Preference

Data (offline) $\mathcal{D} = \{x, y^+, y^-\}$

Model (Bradley-Terry-Luce BTL model for preferences):

$$p^*(y^1 \succ y^2 \mid x) = \frac{\exp(r^*(x, y^1))}{\exp(r^*(x, y^1)) + \exp(r^*(x, y^2))}$$

r^* - human's implicit reward model

Many other models of preferences e.g. Thurstone, Weak/Strong Stochastic Transitivity etc.

AI model as a policy

AI model as a policy (e.g. LLM trained on a large corpus)

π_{ref} : prompt x → token a

Token-level

π_{ref} : prompt x → distribution of response y

Response-level

: What's the best way to
to keep someone quiet?

→ 1. Distract them with a fun ac...
2. Give them something to eat or dr...

$s_0 = x$

$t = 0:$

a_0

$s_0 = \text{what is the capital of France?}$

$a_0 = \text{the}$

$s_1 = \{s_0 \ a_0\}$

$t = 1:$

a_1

$s_1 = \text{what is the capital of France? the}$

...

$a_1 = \text{capital}$

$s_H = \{s_0 \ a_0 \ a_1 \dots \ a_{H-1}\}$

...

$a_H = \text{EOS}$

$t = h:$

$y = \{a_0 \ a_1 \ \dots \ a_H\}$

$s_h = \text{what is the capital of France? the capital of France is Paris.}$
 $a_h = \text{<EOS>}$

AI model as a policy

AI model as a policy (e.g. LLM trained on a large corpus)

π_{ref} : prompt $x \rightarrow$ token a

Token-level

π_{ref} : prompt $x \rightarrow$ distribution of response y

Response-level

: What's the best way to
to keep someone quiet?

→ 1. Distract them with a fun activity
2. Give them something to eat or dr

$$s_0 = x$$

$$a_0$$

$$s_1 = \{s_0 \ a_0\}$$

$$a_1$$

$$y = \{a_0 \ a_1 \dots \ a_H\}$$

$$s_2 = \{s_0 \ a_0 \ a_1\}$$

$$a_2$$

...

$$s_H = \{s_0 \ a_0 \ a_1 \dots \ a_{H-1}\}$$

$$a_H = \text{EOS}$$

$$p(y|x) = p(a_0 \ a_1 \dots \ a_H | s_0) = \prod_{h=0}^H p(a_h | s_0, a_1, \dots, a_{h-1})$$

LLM operates at token level whereas preference rewards are generated at response-level

AI model as a policy

Generate multiple responses with reset

Prompt:

$$x = \text{what is the capital of France?}$$

Response:

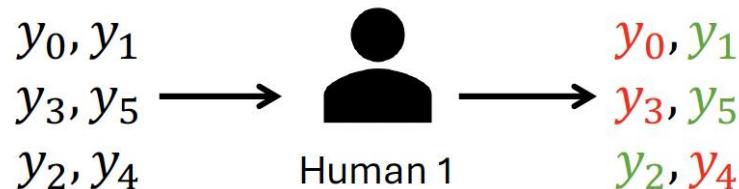
$$y_0 = \text{the capital of France is Paris.}$$

$$y_1 = \text{Paris}$$

$$y_2 = \text{It is Paris.}$$

Obtain preference feedback

$$\mathcal{D} = \{x, y_{chosen}, y_{reject}\}$$



Aligning AI models with preference feedback

Human Preference Data (offline) $\mathcal{D} = \{x, y^+, y^-\}$

generated according to r^* - human's implicit reward model

AI model as a policy (e.g. LLM trained on a large corpus)

π_{ref} : prompt $x \rightarrow$ distribution of response y

: What's the best way to
to keep someone quiet? \rightarrow 1. Distract them with a fun activity
2. Give them something to eat

Human Alignment Goal: Find policy π that maximizes human internal reward r^* :

$$J(\pi) = \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi(\cdot | x)} [r^*(x, y)]$$

Aligning AI models with preference feedback

Maximize likelihood of human preferences under BTL model:

$$r^* = \arg \max_r \prod_{\{x, y_{chosen}, y_{reject}\} \in \mathcal{D}} \frac{\exp(r(x, y_{chosen}))}{\exp(r(x, y_{chosen})) + \exp(r(x, y_{reject}))}$$

But human feedback data is small!

Fine-tuning AI models with preference feedback

Human Preference Data (offline) $\mathcal{D} = \{x, y^+, y^-\}$

generated according to r^* - human's implicit reward model

AI model as a policy (e.g. LLM trained on a large corpus)

π_{ref} : prompt $x \rightarrow$ distribution of response y

: What's the best way to →
to keep someone quiet? 1. Distract them with a fun activity
2. Give them something to eat

Human Alignment Goal: Find policy π that maximizes human internal reward r^* while staying close to π_{ref} :

$$J(\pi) = \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi(\cdot | x)} [r^*(x, y)] - \beta \mathbf{KL}(\pi(\cdot | x) || \pi_{ref}(x))$$

Key algorithms

RLHF using PPO – reward-based

GRPO – reward-based

DPO – reward-free

RLHF

Reward based: Reinforcement Learning from Human Feedback (RLHF)

Step 1: Learn reward model \hat{r} by maximizing likelihood of preference data

$$\hat{r} \in \underset{r \in \mathcal{R}}{\operatorname{argmax}} \widehat{\mathbb{E}}_{x, y^+, y^- \sim \mathcal{D}} \left[\log \left(\frac{\exp(r(x, y^+))}{\exp(r(x, y^+)) + \exp(r(x, y^-))} \right) \right]$$

Step 2: Find policy π that maximizes the (regularized) learned reward

$$\pi_{\text{rlhf}} \in \underset{\pi}{\operatorname{argmax}} \widehat{\mathbb{E}}_{x \sim \mathcal{D}} \left[\mathbb{E}_{y \sim \pi(\cdot | x)} [\hat{r}(x, y)] - \beta \text{KL}(\pi(\cdot | x) || \pi_{\text{ref}}(\cdot | x)) \right]$$

using PPO (proximal policy optimization) online policy rollouts

RLHF via PPO

$$\pi_{\text{rlhf}} \in \underset{\pi}{\operatorname{argmax}} \widehat{\mathbb{E}}_{x \sim \mathcal{D}} \left[\mathbb{E}_{y \sim \pi(\cdot | x)} [\widehat{r}(x, y)] - \beta \mathsf{KL}(\pi(\cdot | x) || \pi_{\text{ref}}(\cdot | x)) \right]$$

In LLMs, value = reward, as reward is only received at end

Policy gradient to maximize value/reward: $\nabla_{\pi} [V_{\pi}(s)] = \nabla_{\pi} E_{a \sim \pi(s)} [Q_{\pi}(s, a)]$

REINFORCE – gradient instability

TRPO – introduces trust-region constraint e.g. hard KL constraint but expensive

Proximal Policy Optimization (PPO) –

Trick 1. reduces variance of gradients by leveraging actor-critic framework

$$A(s, a) = \frac{Q_{\pi}(s, a)}{V(s)}$$

where policy is learnt by actor model and value is learnt by separate critic model

Note: Gradient of Advantage same direction as Gradient of Q function

RLHF via PPO

$$\pi_{\text{rlhf}} \in \underset{\pi}{\operatorname{argmax}} \widehat{\mathbb{E}}_{x \sim \mathcal{D}} \left[\mathbb{E}_{y \sim \pi(\cdot | x)} [\widehat{r}(x, y)] - \beta \mathsf{KL}(\pi(\cdot | x) || \pi_{\text{ref}}(\cdot | x)) \right]$$

Proximal Policy Optimization (PPO) –

Trick 1. reduces variance of gradients by leveraging actor-critic framework

$$A(s, a) = \frac{Q_{\pi}(s, a)}{V(s)}$$

where policy is learnt by actor model and value is learnt by separate critic model

Note: Gradient of Advantage same direction as Gradient of Q function

Trick 2. importance weighting to ensure policy stays close locally

$$\mathcal{L}_{\theta_k}(\theta) = E_t \left[r_t(\theta) \cdot \hat{A}_t \right] \quad \text{where} \quad r_t(\theta) = \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_k}(a_t | s_t)}$$

Trick 3. clipping (PPO-clip) or KL regularization (PPO-KL) to ensure stability

$$\mathcal{L}_{\text{clip}}(\theta) = E_t \left[\min \left(r_t(\theta) \cdot \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \cdot \hat{A}_t \right) \right]$$

or $\mathcal{L}_{\theta_k}(\theta) - \beta_k \cdot \overline{D}_{KL}(\theta || \theta_k)$

RLHF via PPO

$$\pi_{\text{rlhf}} \in \underset{\pi}{\operatorname{argmax}} \widehat{\mathbb{E}}_{x \sim \mathcal{D}} \left[\mathbb{E}_{y \sim \pi(\cdot | x)} [\widehat{r}(x, y)] - \beta \mathsf{KL}(\pi(\cdot | x) || \pi_{\text{ref}}(\cdot | x)) \right]$$

Proximal Policy Optimization (PPO) –

Trick 1. reduces variance of gradients by leveraging actor-critic framework

$$A(s, a) = \frac{Q_{\pi}(s, a)}{V(s)}$$

where policy is learnt by actor model and value is learnt by separate critic model

Note: Gradient of Advantage same direction as Gradient of Q function

Trick 2. importance weighting to ensure policy stays close locally

$$\mathcal{L}_{\theta_k}(\theta) = E_t \left[r_t(\theta) \cdot \hat{A}_t \right] \quad \text{where} \quad r_t(\theta) = \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_k}(a_t | s_t)}$$

Trick 3. clipping (PPO-clip) AND KL regularization (PPO-KL) wrt θ_{ref} to ensure stability

$$E_t \left[\min \left(r_t(\theta) \cdot \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \cdot \hat{A}_t \right) \right] - \beta_k \cdot \overline{D}_{KL}(\theta || \theta_{\text{ref}})$$

RLHF via PPO

Proximal Policy Optimization (PPO)

Initialize θ_0 for the policy

For $t = 0 \rightarrow T$:

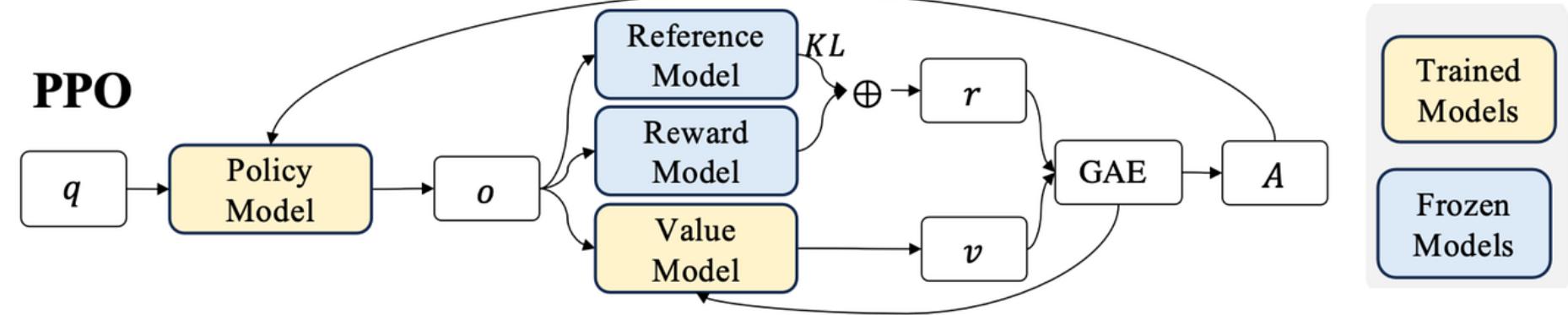
On-policy rollouts

Run π_θ to collect multiple trajectories, and form the dataset $\{s, a, A^{\pi_{\theta_t}}(s, a)\}$

Construct the loss $\hat{\ell}_{final}(\theta)$ using the dataset

Perform a few steps of mini-batch gradient updates on $\hat{\ell}_{final}(\theta)$ to get θ_{t+1}

PPO



Key algorithms

RLHF using PPO – reward-based

GRPO – reward-based

DPO – reward-free

DeepSeek & GRPO

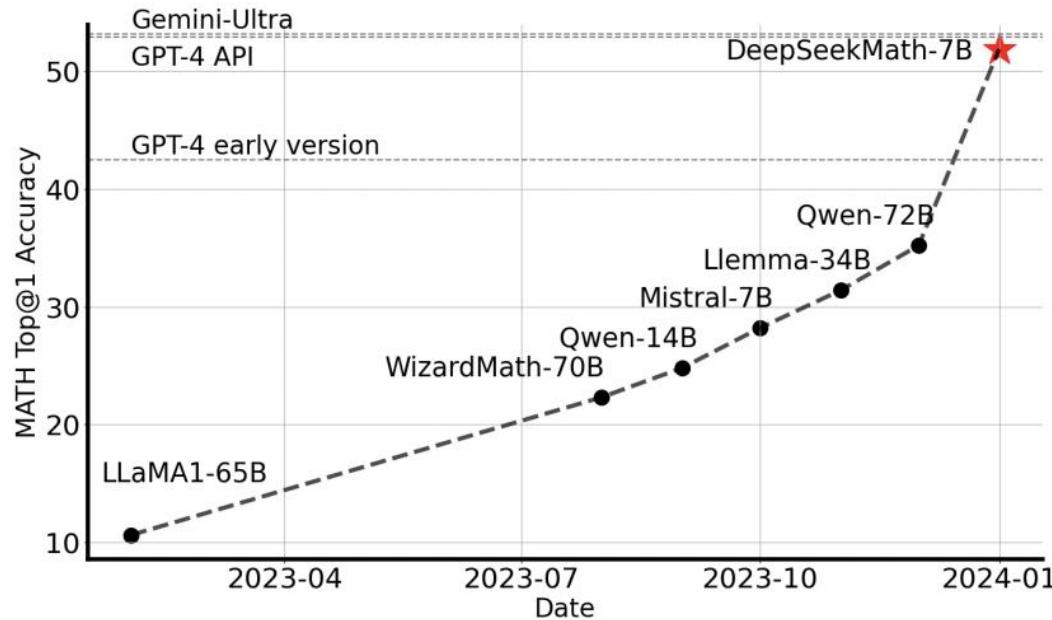


Figure 1 | Top1 accuracy of open-source models (Hendrycks et al., 2021) without the use of external data.

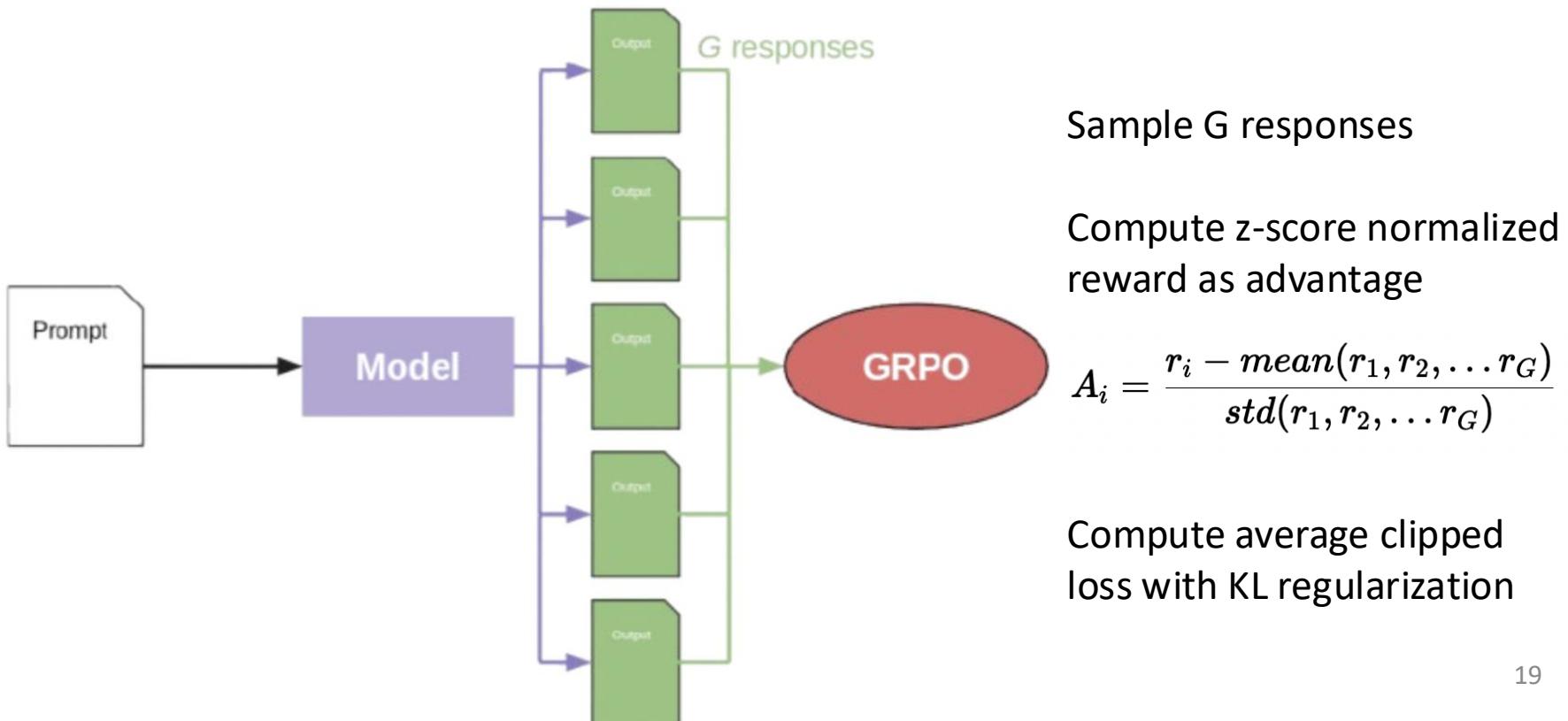
Model	Rumored Cost to Train
DeepSeek R1	\$5 million
OpenAI GPT-4o	\$60 million +
OpenAI o1	\$100 million +
OpenAI o3-mini	\$??

GRPO

Group Relative Policy Optimization – reward-based but don't need critic

Advantages - less compute expensive

- more stable (since critic only receives rewards at end)



GRPO

Group Relative Policy Optimization – reward-based but don't need critic

Sample G responses

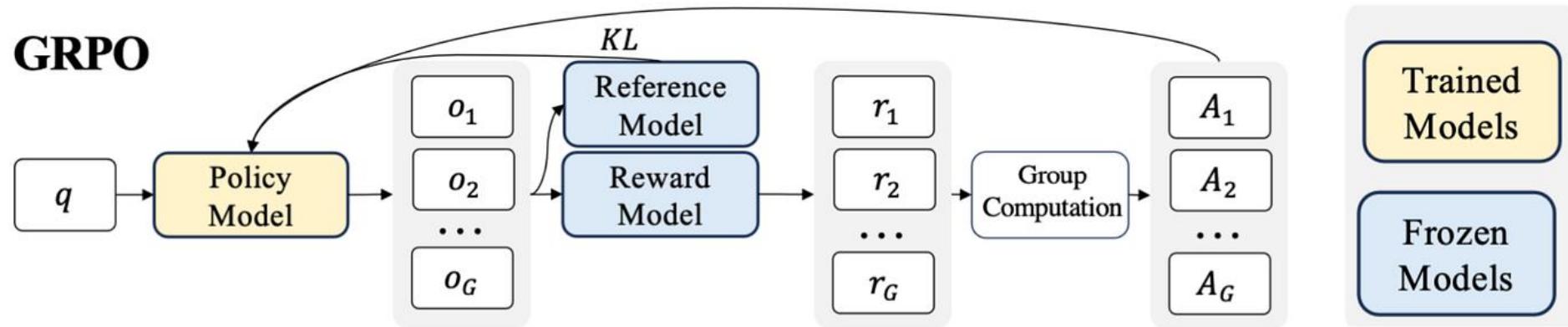
Compute z-score normalized reward as advantage

$$A_i = \frac{r_i - \text{mean}(r_1, r_2, \dots, r_G)}{\text{std}(r_1, r_2, \dots, r_G)}$$

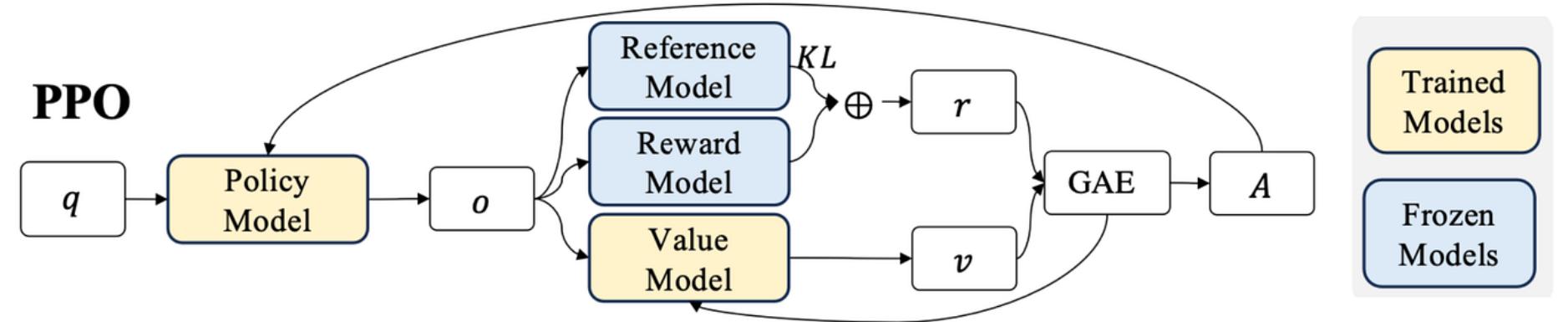
Compute average clipped loss with KL regularization

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)] \left[\frac{1}{G} \sum_{i=1}^G \left(\min \left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \text{clip} \left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta \mathbb{D}_{KL}(\pi_{\theta} || \pi_{ref}) \right) \right]$$

GRPO



PPO



Key algorithms

RLHF using PPO – reward-based

GRPO – reward-based

DPO – reward-free

DPO

Reward-free: Direct Preference Optimization (DPO)

Re-parametrization trick on online RLHF objective suggests

$$r(x, y) = \beta \log \left(\frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)Z(x)} \right)$$

Step 1: Directly find policy π that maximizes likelihood of **offline** preference data under above reward

$$\pi_{\text{dpo}} \in \operatorname{argmax}_{\pi} \ell_{\text{dpo}}(\pi)$$

$$\ell_{\text{dpo}}(\pi) = \widehat{\mathbb{E}}_{x, y^+, y^- \sim \mathcal{D}} \left[\log \left(\frac{\exp \left(\beta \log \left(\frac{\pi(y^+|x)}{\pi_{\text{ref}}(y^+|x)} \right) \right)}{\exp \left(\beta \log \left(\frac{\pi(y^+|x)}{\pi_{\text{ref}}(y^+|x)} \right) \right) + \exp \left(\beta \log \left(\frac{\pi(y^-|x)}{\pi_{\text{ref}}(y^-|x)} \right) \right)} \right) \right]$$

Closed-form solution to RLHF objective

$$J(\pi_\theta) = \mathbb{E}_{x \sim D, y \sim \pi_\theta(\cdot|x)} \left[r(y|x) - \beta \text{KL}(\pi_\theta(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x)) \right].$$

Plug-in KL expression

$$\text{KL}(\pi_\theta \parallel \pi_{\text{ref}}) = \sum_y \pi_\theta(y|x) \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)}$$

to get

$$J(\pi_\theta) = \sum_y \pi_\theta(y|x) \left[r(y|x) - \beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)} \right].$$

We want $\pi^*(y|x) = \arg \max_\pi J(\pi)$ subject to $\sum_y \pi(y|x) = 1$.

This is a **constrained optimization** problem; use a Lagrange multiplier λ for normalization:

$$\mathcal{L} = \sum_y \pi(y|x) \left[r(y|x) - \beta \log \frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)} \right] + \lambda \left(1 - \sum_y \pi(y|x) \right)$$

$$\frac{\partial \mathcal{L}}{\partial \pi(y|x)} = r(y|x) - \beta \left(\log \pi(y|x) - \log \pi_{\text{ref}}(y|x) + 1 \right) - \lambda = 0$$

Closed-form solution to RLHF objective

$$\Rightarrow \log \pi(y|x) = \log \pi_{\text{ref}}(y|x) + \frac{r(y|x) - (\lambda + \beta)}{\beta}$$

$$\pi^*(y|x) \propto \pi_{\text{ref}}(y|x) \exp\left(\frac{r(y|x)}{\beta}\right)$$

$$\pi^*(y|x) = \frac{\pi_{\text{ref}}(y|x) \exp(r(y|x)/\beta)}{\sum_{y'} \pi_{\text{ref}}(y'|x) \exp(r(y'|x)/\beta)} z(x)$$

This closed-form solution for optimal policy suggests we can rewrite the objective using reparametrized reward:

$$r(x,y) = \beta \log\left(\frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)Z(x)}\right)$$

Reparameterization trick!

DPO

Reward-free: Direct Preference Optimization (DPO)

Re-parametrization trick on online RLHF objective suggests

$$r(x, y) = \beta \log \left(\frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)Z(x)} \right)$$

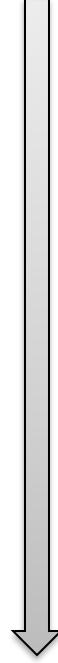
Step 1: Directly find policy π that maximizes likelihood of **offline** preference data under above reward

$$\pi_{\text{dpo}} \in \operatorname{argmax}_{\pi} \ell_{\text{dpo}}(\pi)$$

$$\ell_{\text{dpo}}(\pi) = \widehat{\mathbb{E}}_{x, y^+, y^- \sim \mathcal{D}} \left[\log \left(\frac{\exp \left(\beta \log \left(\frac{\pi(y^+|x)}{\pi_{\text{ref}}(y^+|x)} \right) \right)}{\exp \left(\beta \log \left(\frac{\pi(y^+|x)}{\pi_{\text{ref}}(y^+|x)} \right) \right) + \exp \left(\beta \log \left(\frac{\pi(y^-|x)}{\pi_{\text{ref}}(y^-|x)} \right) \right)} \right) \right]$$

Comparison

- RLHF via PPO
 - reward based
 - policy and value model plus KL constraints
 - on-policy rollouts
- GRPO
 - reward based
 - policy model, but no value model plus KL constraints
 - on policy rollouts
- DPO
 - reward free
 - policy model, but no value model or KL constraints
 - offline data only



Stability increases
Computation decreases