Hybrid RL

Aarti Singh

Machine Learning 10-734
Dec 2, 2025

Slides courtesy: Yuda Song

ACHI




Data source in RL

> Exploration

offline RL online RL generative model

The capability of exploration increases from left to right.



Offline RL

Data collected from offline policy/distribution D? = {(s;ya;, 1,81,

where (s,a)~ 9 , offline distribution and r~R(s,a),s'~P(.|s,a)

Where do we get the offline data?
Collection of different (not necessarily optimal) policies
Need strong coverage — all possible optimal policies

What if we have expert demonstrations?
Can we mimic experts aka Imitation learning



Imitation learning

* Expert demonstrations — state, expert actions (no rewards)

1. Behavioral cloning — offline data from expert
supervised learning of policy m: s-> a using (state, expert
actions) data

2. Dagger (Dataset Aggregation) — online interaction with expert

roll out policy, collect expert actions for states visited by policy,
add to dataset, then repeat

3. Inverse RL — first learn reward from (state, expert actions) then train
policy using learnt reward



Distribution shift issue — Imitation
learning

e Offline data may not have seen test time scenarios
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General function approximation

e QOffline RL - FQI

requires strong coverage assumption but no bonus

e RL with Generative model — Bilinear UCB

requires generative access

* Online RL - Bilinear UCB

No strong assumptions
but computationally inefficient!

N

Fit regression for each round T under bonus
Ellipsoid constraint



Bilinear-UCB — online RL

At iteration ¢ :

Select f, = arg max V,(sy)
gEF

t—1 2
s.t., Vh: Z ([E@h,i[f(sh, a,, Sh+1,g)]> < R?

=

For all h, create &, )= {s;,, a;, 5,1 } W/ m triples, where:

T
- P ‘f P L]
- For Q-Brank casexsy, a, ~ d,”, 5,1 ~ Py( - | 53 a)

. For V-B rank case: s, d:ﬁ, a, ~ U(A), spp1 ~ Py( - | s, ap)

Roll out 7, to collect trajectory and add to data



Distribution shift issue — offline RL

e Offline data may not have seen test time scenarios
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Best of both worlds?

Can we combine offline and online data in RL
to reduce compute efficiency
while not requiring strong coverage assumptions?

Yes! Hybrid RL
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Hybrid RL
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Hybrid RL

Montezuma's Revenge
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RND — DeepRL baseline Easy — offline 100% expert data
Medium — 20% random + 80% expert

Hybrid RL — 10x faster than RND with just
Hard — 50% random + 50% expert

0.1m samples
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Setup
* Finite-horizon MDP (S, A, H, P, R, d,)

* Function approximation
:7:: Tlx ?ZX e X ?H—l

 For each h, we have iid offline dataset
Dy = {(si,a;, 15, )2
where (s,a)~ 9, offline distribution

and r~R(s,a),s'~P(.|s,a)



Hybrid Q Iteration

/f> e Use both offline and online data to fit Q function

* Act greedily according to Q

\.—— °* Collect online data

No bonus/optimism! — oracle regression efficient
Doesn’t require strong coverage!
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Hybrid Q Iteration

(Song et al’23)

Hy-Q: lterations T, Offline dataset D}f of sizem=Tforh=1, .., H-1

1: Initialize f,(s,a) = 0.
2: fort=1,...,7T do

3: Let 7* be the greedy policy w.r.t. f*i.e., nt(s) = argmax, ff(s,a).

4: For each h, collect m, = 1 online tuples D! ~ d’,’;t.

i.e. observe s, ~ d7 ,ap ~ mk(|sp), sni1 ~ P(-|sh,an)

and add (sp,, ap, 1y, Sp,) to D

5-7: Run FQl using offline and online data collected so far
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Hybrid Q Iteration

(Song et al’23)

Hy-Q: Iterations T, Offline dataset D,‘f of sizem=Tforh=1, .., H-1

1: Initialize f,(s,a) = 0.
2: fort=1,...,7T do

3:

4:

Let 7* be the greedy policy w.r.t. f*i.e., nt(s) = argmax, ff(s,a).

For each h, collect m, = 1 online tuples D! ~ d’,’;t.

Set _f“’l(s; a) =0.

forh=H—-1,...,0do
Estimate H'l using least squares regression on the aggregated data

D} = Dy + X, D

I+l arg mm{EDt (f(s,a) —r— max ,'ij_ll(s a ))2}
f€Fn
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Key intuition

Hy-Q ensures that f;f small Bellman error under both offline

t
distribution 95 and online distribution dj,

— Robust to distribution shift i.e. if offline data has poor coverage
— Still leverage offline data to reduce amount of online data

— Computationally efficient as requires no bonus optimization
(computational difficulty when implementing optimism)

17



Catastrophic forgetting

Why not warm-start with offline data, then switch to online?

 May result in catastrophic forgetting due to a vanishing proportion
of offline samples being used for model training as we collect more
online samples.

* size of the offline dataset m; should be comparable to the total
amount of online data, so that both have similar weight and we
ensure low Bellman error on v throughout the learning process.

* use a fixed (significant) number of offline samples for updating
model even as we collect more online data, so that we do not
“forget” the distribution v.

* key practical insight - offline data should be used throughout
training to avoid catastrophic forgetting.
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HyQ Regret

* FQl guarantees that m, is at least as good as any policy covered by v.

Given any comparator policy 7€, for any f € F and corresponding greedy policy 7/, we have
H-1

ESDNdD [‘/Oﬂ-e (80) = VOWf (30)1| < Z Esh,ahwdge [Tfh—l-l (sh: ah) . fh(sh: a’h)]
h=0

7

-
offline error

f [Ju(8hyan) — T fry1(sn, an)] .

Sh,ahp Ndh
L - >
e

online error

Proof:

Eoorso | Vi™ (50) = V&™ (50)| = Eumao | V3™ (0) — max fo(so, @) + max fo(s0, a) = Vi (s0)]-

Induction argument on each piece.
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HyQ Regret

* FQI guarantees that m, is at least as good as any policy covered by v.

Given any comparator policy 7€, for any f € F and corresponding greedy policy 7/, we have
H-1

ESDNdD [‘/Oﬂ-e (80) = VOWf (30)1| < Z Esh,ahwdge [Tfh—l-l (sh: ah) . fh(sh: a’h)]
h=0

7

-
offline error

e fn(shyan) — T fay1(sn,an)].

L. >
"

online error

Proof:
Esmao [max fo(s,a) = V5 (5)] = Eomao [Eyps (o) fo(5:0) — Vi (5)]
= Eodo [Bq ot (1) f0(8:0) — TF1(8,0)] + Eany [E, s oy T F1(5,0) = Vi (5)]
=E, . [fo(s;a) = Tfi(s,a)]+
Esmd, [E

anr T

'JTf
1) [R(8,@) + YEo p(s,0) max fi(s',a") = R(s,a) + Egup(s,a) V1" (8')]]

= Es,angf [fo(s,a) =T fi(s,a)] + ESNde [mgx fi(s,a) — Vfo (s)] Apply induction



HyQ Regret

Realizability and Bellman completeness). For any h, we have Q3 € Fp. Additionally, for
h

any fri1 € Frai1, we have T fniq1 € Fp.

Hy-Q ensures that f; small Bellman error under both offline distribution 9, and online

distribution d,’ft

(Bellman error bound for FQI). Let ¢ € (0,1), with probability at least 1 — 6, for any h € [H — 1]

and t € [T,

” t—|—1

and

Z”ft+1

Standard concentration arguments

V2  log(2HT|F|/6
e
,3111”2 o < O(V2,log(2HT|F|/6)).
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Controlling offline error

(Bellman error bound for FQI). Let § € (0,1), with probability at least 1 — 8, for any h € [H — 1]

and t € [T, 9 VZ log(2HT|F|/o
L e

(Bellman error transfer coefficient). For any policy w, define the transfer coefficient as

S { o By [Ths1(5,@) = fa(5,0) }

0, max

e \/Zfz_ol Es,a~vs (Tfh-i—l (s’ CL) o fh(s’ a))2

* ratio of the worst-case expected Bellman error under policy it to the expected
Bellman error under the offline data

* smaller than previous coverage used for offline FQI
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Controlling offline error

(Bellman error bound for FQI). Let § € (0,1), with probability at least 1 — 8, for any h € [H — 1]

and t € [T,

Vinax 108(2HT|F|/9)
1457 - TG, < o FemBEETEIRY)

(Bellman error transfer coefficient). For any policy w, define the transfer coefficient as

O s {0 g s Bty T (0.) — (0] }
Jer \/Z Es,a~up, Tfh+1(3 a) fh(s7 a))2

For each h, with probability at least 1-0

T
S ) sZcﬂe\/Es L
t=1 i

< O(VTV2.x log(|F1/9)).
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Controlling online error

(Bellman error bound for FQI). Let § € (0,1), with probability at least 1 — 8, for any h € [H — 1]

and t € [T,

lef”l TFiti s g S O(Viax logRHT|F/5)).

Under low Bellman rank,

T
ZES awd""f fh S, (1.) Tfh-i—l S a,) < Z

t=1

s,a~dy’ [fi(s,0) = T fry1(s, a)] |—Z| Xu(fY), Wa(f*))|-

Let Xt := S Xn(F)Xn ()T + AL, we get

DR (), Wi (F)] < anhf)llztMJZEsade[fh(s 0) = T (5,0)°] + B3,

t=1 * :
2
o(\rLdT) O(/TdVZ, 1og(|71/5))
Historical Bellman error 24

Using elliptical potential lemma



HyQ Regret

Given any comparator policy 7€, for any f € F and corresponding greedy policy ¥, we have

with probability at least 1 — 0,

ZT: V™ = V™ = O((max{Che, 1} + Vd) - V2, HT - log(|F[/3)).

Comparison to online RL: Under bilinear model, regret

O(\/AV2 1 H?T - 1og(|F1/5))

So hybrid RL worse only by transfer coefficient term.
Computationally regression oracle-efficient!

Sample complexity — no advantage over online RL.

25



	Slide 1: Hybrid RL
	Slide 2
	Slide 3: Offline RL
	Slide 4: Imitation learning
	Slide 5: Distribution shift issue – Imitation learning
	Slide 6
	Slide 7: General function approximation
	Slide 8: Bilinear-UCB – online RL
	Slide 9: Distribution shift issue – offline RL
	Slide 10: Best of both worlds?
	Slide 11: Hybrid RL
	Slide 12: Hybrid RL
	Slide 13: Setup
	Slide 14: Hybrid Q Iteration
	Slide 15: Hybrid Q Iteration
	Slide 16: Hybrid Q Iteration
	Slide 17: Key intuition
	Slide 18: Catastrophic forgetting
	Slide 19: HyQ Regret
	Slide 20: HyQ Regret
	Slide 21: HyQ Regret
	Slide 22: Controlling offline error
	Slide 23: Controlling offline error
	Slide 24: Controlling online error
	Slide 25: HyQ Regret

