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Offline RL setting

• Applications – learning from demonstrations, past experiences, 
observational data
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Distribution shift issue
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• Offline data may not have seen test time scenarios

Test time



Offline RL setting
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Key assumptions
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Fitted Q-Iteration, FQI algorithm
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Note: the algorithmic idea here is similar to DQNs [Deepmind 15]



FQI – why it works
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FQI analysis

For simplicity, we analyze the case when 𝜖𝑎𝑝𝑝𝑟𝑜𝑥,𝜈 = 0

The kth iteration of FQI guarantees that with probability ≥ 1 − 𝛿
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Optimization error related 

to VI convergence

≤ 𝒪
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Statistical error
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𝑓∗ ∈ ℱ

)



Statistical error
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)

Recall FQI’s regression problem

Here define  

And due to small Bellman error 

with probability ≥ 1 − 𝛿

n

0



Optimization error
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Coverage assumption



Optimization error
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FQI policy error bound
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Convert Q-error            to policy error.  

ሿ𝜋𝑘(𝑠))

ሿ𝜋𝑘(𝑠))



FQI analysis – finite ℱ

For simplicity, we analyze the case when 𝜖𝑎𝑝𝑝𝑟𝑜𝑥,𝜈 = 0

The kth iteration of FQI guarantees that with probability ≥ 1 − 𝛿
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Optimization error related 

to VI convergence

≤ 𝒪
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FQI analysis - finite ℱ

Now, we analyze the case when 𝝐𝒂𝒑𝒑𝒓𝒐𝒙,𝝂 ≠ 𝟎

The kth iteration of FQI guarantees that with probability ≥ 1 − 𝛿
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Optimization error related 

to VI convergence

≤ 𝒪
1

(1 − 𝛾)3

𝐶 log(|ℱ|/𝛿)

𝑛
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Inherent 
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FQI guarantee for low Bellman rank
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Now, we analyze the case when 𝝐𝒂𝒑𝒑𝒓𝒐𝒙,𝝂 ≠ 𝟎

The kth iteration of FQI guarantees that with probability ≥ 1 − 𝛿

Optimization error related 

to VI convergence

≤ 𝒪
1
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𝐶 𝑑 log(1/𝛿)
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+ 𝜖𝑎𝑝𝑝𝑟𝑜𝑥,𝜈 +

2𝛾𝑘

(1 − 𝛾)2

Inherent 

Bellman error



General function approximation

• Offline RL - FQI

 requires strong coverage assumption
   low Bellman error + finite ℱ OR low Bellman rank

• RL with Generative model – Bilinear UCB

 requires generative access

   low Bellman rank

• Online RL – Bilinear UCB

  low Bellman rank
 

No strong assumptions, but statistically & computationally inefficient!

18Worse by factor of H Fit regression for each round T



Bilinear-UCB, online, bonus
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Roll out 𝜋𝑓𝑡
 to collect trajectory  and add to data



Distribution shift issue
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• Offline data may not have seen test time scenarios

Test time



Best of both worlds?

Can we combine offline and online data in RL 

to reduce sample and compute efficiency 

while not requiring strong coverage assumptions?

Yes! Hybrid RL
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