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Data source in RL

> Exploration

offline RL online RL generative model

The capability of exploration increases from left to right.



Offline RL setting

e Applications —learning from demonstrations, past experiences,

observational data
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Distribution shift issue

e Offline data may not have seen test time scenarios
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Offline RL setting

1. Infinite horizon Discounted MDPs y € (0,1)
2. A given offline distribution v € A(S X A)

3. Functionclass & = {f: S XA — [0,1/(1 — y)]}



Key assumptions

1. offline distribution v has full coverage (i.e., diverse):

d”(s,a)
max max <C< o
/2 8,0 I/(S, a)

2. Small inherent Bellman error, i.e., near Bellman
Completion (note it’s averaged over v):

. 2
maxmink, _ (f(s,a) — T g(s,a)) <€
T feF s,a 1/( ) approx,v



Fitted Q-Iteration, FQI algorithm

1. offline data points obtained from v:

D ={s,a,r,5'}, (s,a)~v,r=r(s,a),s ~P(-|s,a)

2. Initialize fy € &, and iterate:

2
foy=argmin Y (f(s,a)—r—rmf}xji(s’,a’))

EF
J s,a,r,s'€P

3. After K iterations, return z(s) = arg max fi(s, a), Vs
a

Note: the algorithmic idea here is similar to DQNs [Deepmind 15]



FQIl — why it works

y :=r1(s,a) + ymaxf(s’,a’)

Bayes optimal: (s, a) + YE,_p.|; oy Max fi(s', a")
a

(T1)(s,a)

1. Near Bellman completion means regression target J f, nearly belongs to &

2 1
[Es,arvl/ (fH-l(S> a) — LO/Wft(s’ Cl)) ~ N Lz Capprox,v

2. f,41 ® T f, (under the diverse 1), i.e., it’s like Value Iteration,
we could hope for a convergence



FQI analysis

For simplicity, we analyze the case when €, = 0

The k" iteration of FQI guarantees that with probability > 1 —§

k
V* —VTk < O ( Vma,x \/Clog(lfl/d)) + 2’7 Vma,x

kL n 1
Statistical error related to Optimization error related
regression to VI convergence

=0 (1-y)3

n +(1—-)/)2

1 \/C log(|F1|/6) 2y*

: 1
since V., < -y



Statistical error

Standard Generalization Bound for regression:

, N
Given {x; i}, (%) ~ 1, ¥; = f*(x) + €, where || <Y, [If*ll, <Y,

afunction class & = {f: & — [-Y, Y]}, where f* e F

N
Denote f := arg min Z (f(x;) — y;)* as the least square minimizer, then w/ prob 1 — &:
F

fe
Y2 In(| F |/6) )

Exil(f(x) -f* (Jn:))2 <0 ( ~
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Statistical error
Recall FQl’s regression problem

2
Ji1 = arg fﬂé;l z (ﬂs, a—r—y nquﬁ(s’, a’))

5,a,r.5 €YD

Here define f* := Jf, 0

And due to small Bellman error JICIEH; [Es,aw(f(so a) — T f(s, a))2 < €ap7r/ox,y

=> [E o (fiy1(s, @) — Tf (s, a))* < a _1 e In(] 3:_ 79)

with probability > 1 — 6
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Optimization error

Consider any state-action distribution f(s, a) ( induced by some policy)

\/[Es,a~ﬁ(ﬁ(s, a) — Q*(s,@))* = |If,— Q% ll55

=L Q*”z,ﬁ

e

*
U = Thilloy + 1T fi1 — Q7o Coverage assumption

<41/ Ce

regress + y\

a

2
[Es,arvﬁ ([ES’NP(‘|S,G) (H?Xf;‘—l(sf’ a,) - ma}x Q*(Sfa a,)) )

S \/Eeregress + y

\

/ ! ! 2
[Es,arv/)’[Es’NP(-ls,a) HI:}X (f;—l(s ’ a,) . Q*(S » d ))

=p'(s",a’)

= \/Ee‘regre.m + T”f:—] o Q*”lﬁ’ =



Optimization error

Consider any state-action distribution f(s, a) ( induced by some policy)

\/[Es,a~ﬁ(ﬁ(s, a) — Q*(s,@))* = |If,— Q% ll55

< \/Eeregress g y”ﬁt—l - Q*”2,ﬁ’

= \/Eeregress 8/ [\/E‘Gregress & 7”];_2 . Q*”2,ﬁ”]

< \/Eemgms (L+7+ ... +7%) + 75U — 0% oy

Ce
5 \/_ regress +}’k’!(1 —:|f)
1 -y
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FQI policy error bound

Convert Q-error ||f — Q*||2,ﬁ to policy error.
Denote 7*(s) = arg max f,(s, a)
o

1
VX = V= s [0 ) - 0, 7))

1
< 1—_nys~dﬂk Q% (s, 7%(5)) = fi(s, () + £il(s, 7(5)) = Q* (s, 7 (s))]

1
< 1= [\/ E, gt (Q*(s, 7%(s)) — fils, 7*(s)))” + \/ E, gt (£i(s, 7)) — Q*(s, 75(s)))

< 2 [\/Eeregress " )’k ]

1y 1—y 1—y



FQI analysis — finite F

For simplicity, we analyze the case when €, = 0

The k" iteration of FQI guarantees that with probability > 1 —§

2 \/Eeregress - }’k

V*_V‘;’Tk S
1 -y e |

<0

1 \/C log(|F|/8) 2y

(1—7)3 n A=y

/ \

Statistical error related to Optimization error related
regression to VI convergence
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FQI analysis - finite F

Now, we analyze the case when €4p5r0xv # 0

The ki iteration of FQI guarantees that with probability > 1 —§

2 \/Eeregress - }’k

V* _ V‘;’Tk S
1—y 1—y 11—y
1 C log(|F|/8) 2yk
S 0 _ 3 + Eapprox,v + _ 2
(1—7) n / (1-vy)
Statistical error related to Inherent

. Optimization error related
regression Bellman error to VI convergence
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FQI guarantee for low Bellman rank

Now, we analyze the case when €4p5r0xv # 0

The ki iteration of FQI guarantees that with probability > 1 —§

(
2 \/Eeregress . }’k

el TE <
. 1=y I 1=
\
1 C dlog(1/6) 2y
<0 + € +
(1-— V)BJ n /approx,v (1— y)z
Statistical error related to Inherent

. Optimization error related
regression Bellman error to VI convergence
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General function approximation

e Offline RL - FQ

requires strong coverage assumption
low Bellman error + finite F OR low Bellman rank

e RL with Generative model — Bilinear UCB
requires generative access
low Bellman rank

e Online RL - Bilinear UCB

low Bellman rank

No strong assumptions, but statistically & computationally inefficient!

Worse by factor of H Fit regression for each round T 3



Bilinear-UCB, online, bonus

At iteration ¢ :

Select f, = arg max V,(sy)
gEF

t—1 2
s.t., Vh: Z ([E@h,i[f(sh, a,, Sh+1,g)]> < R?

=

For all h, create &, )= {s;,, a;, 5,1 } W/ m triples, where:

T
- P ‘f P L]
- For Q-Brank casexsy, a, ~ d,”, 5,1 ~ Py( - | 53 a)

. For V-B rank case: s, d:ﬁ, a, ~ U(A), spp1 ~ Py( - | s, ap)

Roll out 7, to collect trajectory and add to data
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Distribution shift issue

Offline data may not have seen test time scenarios
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Best of both worlds?

Can we combine offline and online data in RL
to reduce sample and compute efficiency
while not requiring strong coverage assumptions?

Yes! Hybrid RL
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