

# Offline RL

Aarti Singh

Machine Learning 10-734  
Nov 18, 2025

Slides courtesy: Wen Sun



MACHINE LEARNING DEPARTMENT



# Data source in RL

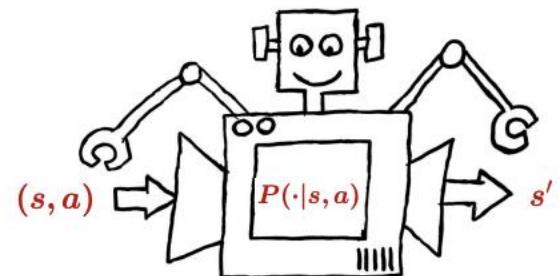
Exploration



offline RL



online RL

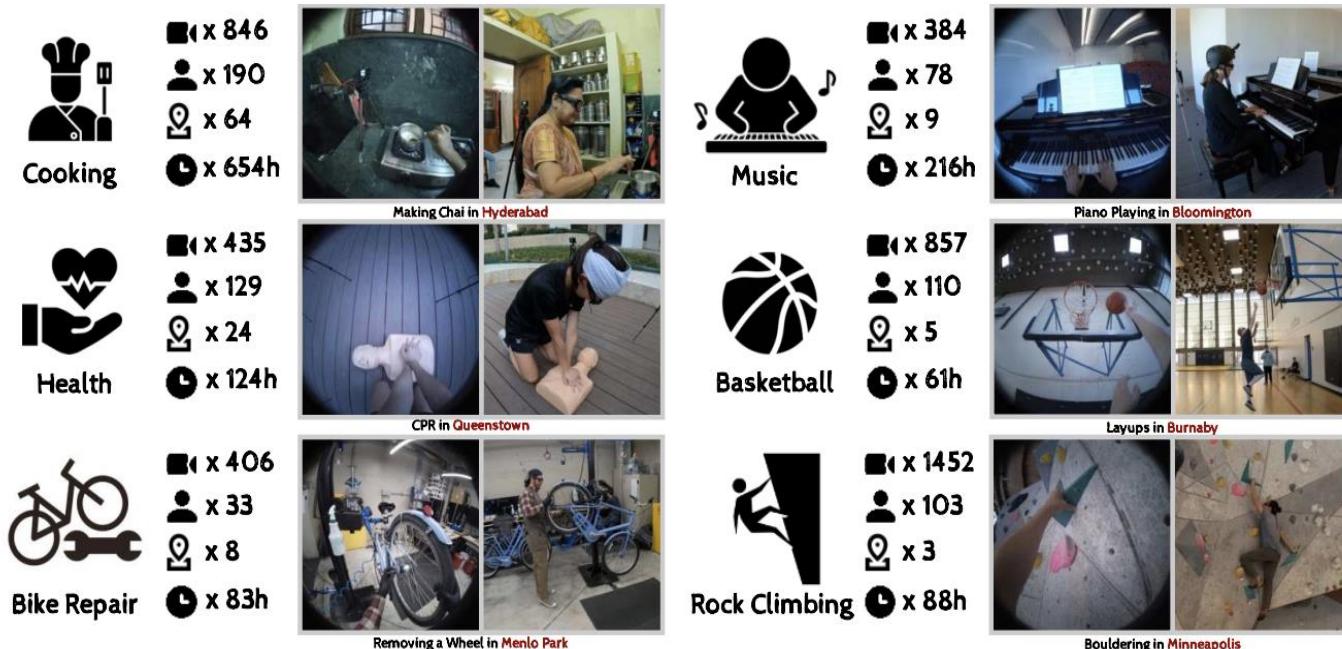


generative model

The capability of exploration increases from left to right.

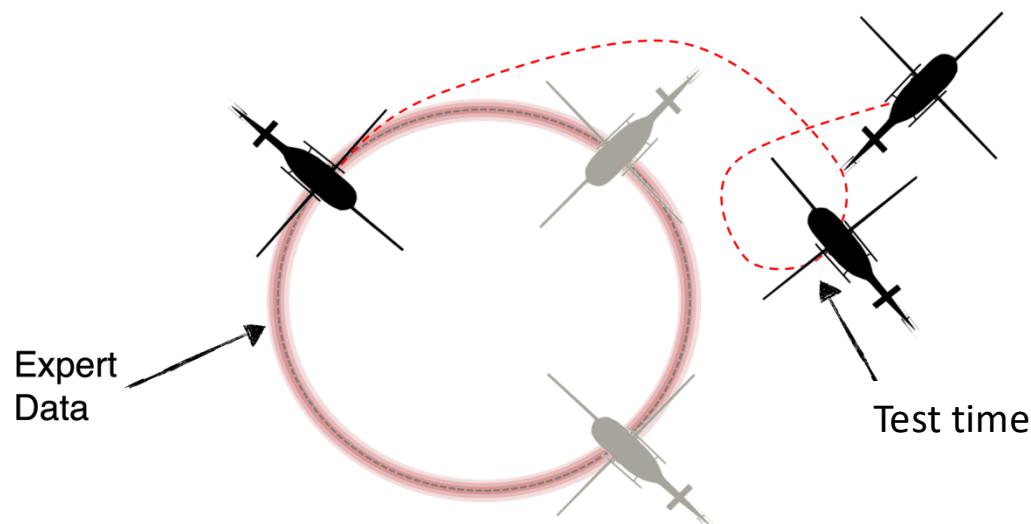
# Offline RL setting

- Applications – learning from demonstrations, past experiences, observational data



# Distribution shift issue

- Offline data may not have seen test time scenarios



# Offline RL setting

1. Infinite horizon Discounted MDPs  $\gamma \in (0,1)$
2. A given offline distribution  $\nu \in \Delta(S \times A)$
3. Function class  $\mathcal{F} = \{f: S \times A \mapsto [0, 1/(1 - \gamma)]\}$

# Key assumptions

1. offline distribution  $\nu$  has full coverage (i.e., diverse):

$$\max_{\pi} \max_{s,a} \frac{d^{\pi}(s,a)}{\nu(s,a)} \leq C < \infty$$

2. Small inherent Bellman error, i.e., near Bellman Completion (note it's averaged over  $\nu$ ):

$$\max_{g \in \mathcal{F}} \min_{f \in \mathcal{F}} \mathbb{E}_{s,a \sim \nu} \left( f(s,a) - \mathcal{T}g(s,a) \right)^2 \leq \epsilon_{approx,\nu}$$

# Fitted Q-Iteration, FQI algorithm

1. offline data points obtained from  $\nu$ :

$$\mathcal{D} = \{s, a, r, s'\}, \quad (s, a) \sim \nu, r = r(s, a), s' \sim P(\cdot | s, a)$$

2. Initialize  $f_0 \in \mathcal{F}$ , and iterate:

$$f_{t+1} = \arg \min_{f \in \mathcal{F}} \sum_{s, a, r, s' \in \mathcal{D}} \left( f(s, a) - r - \gamma \max_{a'} f_t(s', a') \right)^2$$

3. After K iterations, return  $\pi(s) = \arg \max_a f_K(s, a), \forall s$

Note: the algorithmic idea here is similar to DQNs [Deepmind 15]

# FQI – why it works

$$y := r(s, a) + \gamma \max_{a'} f_t(s', a')$$

$$\text{Bayes optimal: } r(s, a) + \gamma \underbrace{\mathbb{E}_{s' \sim P(\cdot | s, a)} \max_a f_t(s', a')}_{(\mathcal{T}f_t)(s, a)}$$

1. **Near Bellman completion** means regression target  $\mathcal{T}f_t$  nearly belongs to  $\mathcal{F}$

$$\mathbb{E}_{s, a \sim \nu} (f_{t+1}(s, a) - \mathcal{T}f_t(s, a))^2 \approx \frac{1}{N} + \epsilon_{approx, \nu}$$

2.  $f_{t+1} \approx \mathcal{T}f_t$  (under **the diverse  $\nu$** ), i.e., it's like Value Iteration,  
we could hope for a convergence

# FQI analysis

For simplicity, we analyze the case when  $\epsilon_{approx,\nu} = 0$

The  $k^{\text{th}}$  iteration of FQI guarantees that with probability  $\geq 1 - \delta$

$$V^* - V^{\pi_k} \leq \mathcal{O} \left( \frac{V_{\max}}{(1-\gamma)^2} \sqrt{\frac{C \log(|\mathcal{F}|/\delta)}{n}} \right) + \frac{2\gamma^k V_{\max}}{1-\gamma}$$

↓                                    ↓

Statistical error related to      Optimization error related  
regression                            to VI convergence

$$\leq \mathcal{O} \left( \frac{1}{(1-\gamma)^3} \sqrt{\frac{C \log(|\mathcal{F}|/\delta)}{n}} + \frac{2\gamma^k}{(1-\gamma)^2} \right)$$

since  $V_{\max} \leq \frac{1}{1-\gamma}$

# Statistical error

## Standard Generalization Bound for regression:

Given  $\{x_i, y_i\}_{i=1}^N$ ,  $(x_i, y_i) \sim \nu$ ,  $y_i = f^*(x_i) + \epsilon_i$ , where  $|y_i| \leq Y$ ,  $\|f^*\|_\infty \leq Y$ ,  
a function class  $\mathcal{F} = \{f: \mathcal{X} \mapsto [-Y, Y]\}$ , where  $f^* \in \mathcal{F}$

Denote  $\hat{f} := \arg \min_{f \in \mathcal{F}} \sum_{i=1}^N (f(x_i) - y_i)^2$  as the least square minimizer, then w/ prob  $1 - \delta$ :

$$\mathbb{E}_{x \sim \nu} \left( \hat{f}(x) - f^*(x) \right)^2 \leq O \left( \frac{Y^2 \ln(|\mathcal{F}|/\delta)}{N} \right)$$

# Statistical error

Recall FQI's regression problem

$$f_{t+1} = \arg \min_{f \in \mathcal{F}} \sum_{s, a, r, s' \in \mathcal{D}} \left( f(s, a) - r - \gamma \max_{a'} f_t(s', a') \right)^2$$

Here define  $f^\star := \mathcal{T}f_t$ ,

And due to small Bellman error  $\min_{f \in \mathcal{F}} \mathbb{E}_{s, a \sim \nu} (f(s, a) - \mathcal{T}f_t(s, a))^2 \leq \epsilon_{approx, \nu}^0$

$$\Rightarrow \mathbb{E}_{s, a \sim \nu} (f_{t+1}(s, a) - \mathcal{T}f_t(s, a))^2 \leq \frac{1}{(1 - \gamma)^2} \frac{\ln(|\mathcal{F}|/\delta)}{n}$$

with probability  $\geq 1 - \delta$

# Optimization error

Consider any state-action distribution  $\beta(s, a)$  ( induced by some policy)

$$\sqrt{\mathbb{E}_{s,a \sim \beta}(f_t(s, a) - Q^*(s, a))^2} := \|f_t - Q^*\|_{\beta,2}$$

$$\leq \|f_t - \mathcal{T}f_{t-1}\|_{2,\beta} + \|\mathcal{T}f_{t-1} - Q^*\|_{2,\beta}$$

$$\leq \sqrt{C} \|f_t - \mathcal{T}f_{t-1}\|_{2,\nu} + \|\mathcal{T}f_{t-1} - Q^*\|_{2,\beta} \quad \text{Coverage assumption}$$

$$\leq \sqrt{C} \epsilon_{regress} + \gamma \sqrt{\mathbb{E}_{s,a \sim \beta} \left( \mathbb{E}_{s' \sim P(\cdot|s,a)} \left( \max_{a'} f_{t-1}(s', a') - \max_{a'} Q^*(s', a') \right) \right)^2}$$

$$\leq \sqrt{C} \epsilon_{regress} + \gamma \sqrt{\underbrace{\mathbb{E}_{s,a \sim \beta} \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} (f_{t-1}(s', a') - Q^*(s', a'))^2}_{:= \beta'(s', a')}}$$

$$= \sqrt{C} \epsilon_{regress} + \gamma \|f_{t-1} - Q^*\|_{2,\beta'}$$

# Optimization error

Consider any state-action distribution  $\beta(s, a)$  ( induced by some policy)

$$\sqrt{\mathbb{E}_{s,a \sim \beta} (f_t(s, a) - Q^*(s, a))^2} := \|f_t - Q^*\|_{\beta, 2}$$

$$\leq \sqrt{C} \epsilon_{regress} + \gamma \|f_{t-1} - Q^*\|_{2, \beta'}$$

$$\leq \sqrt{C} \epsilon_{regress} + \gamma \left[ \sqrt{C} \epsilon_{regress} + \gamma \|f_{t-2} - Q^*\|_{2, \beta''} \right]$$

$$\leq \sqrt{C} \epsilon_{regress} (1 + \gamma + \dots + \gamma^k) + \gamma^k \|f_0 - Q^*\|_{2, \tilde{\beta}}$$

$$\leq \frac{\sqrt{C} \epsilon_{regress}}{1 - \gamma} + \gamma^k / (1 - \gamma)$$

# FQI policy error bound

Convert Q-error  $\|f_k - Q^\star\|_{2,\beta}$  to policy error.

Denote  $\pi^k(s) = \arg \max_a f_k(s, a)$

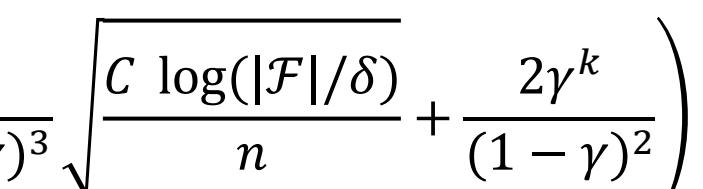
$$\begin{aligned} V^\star - V^{\pi^k} &= \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi^k}} [Q^\star(s, \pi^\star(s)) - Q^\star(s, \pi^k(s))] \\ &\leq \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi^k}} [Q^\star(s, \pi^\star(s)) - f_k(s, \pi^\star(s)) + f_k(s, \pi^k(s)) - Q^\star(s, \pi^k(s))] \\ &\leq \frac{1}{1-\gamma} \left[ \sqrt{\mathbb{E}_{s \sim d^{\pi^k}} (Q^\star(s, \pi^\star(s)) - f_k(s, \pi^\star(s)))^2} + \sqrt{\mathbb{E}_{s \sim d^{\pi^k}} (f_k(s, \pi^k(s)) - Q^\star(s, \pi^k(s)))^2} \right] \\ &\leq \frac{2}{1-\gamma} \left( \frac{\sqrt{C} \epsilon_{regress}}{1-\gamma} + \frac{\gamma^k}{1-\gamma} \right) \end{aligned}$$

# FQI analysis – finite $\mathcal{F}$

For simplicity, we analyze the case when  $\epsilon_{approx,v} = 0$

The  $k^{\text{th}}$  iteration of FQI guarantees that with probability  $\geq 1 - \delta$

$$\begin{aligned}
V^* - V^{\pi_k} &\leq \frac{2}{1-\gamma} \left( \frac{\sqrt{C\epsilon_{regress}}}{1-\gamma} + \frac{\gamma^k}{1-\gamma} \right) \\
&\leq \mathcal{O} \left( \frac{1}{(1-\gamma)^3} \sqrt{\frac{C \log(|\mathcal{F}|/\delta)}{n}} + \frac{2\gamma^k}{(1-\gamma)^2} \right)
\end{aligned}$$



**Statistical error related to regression**      **Optimization error related to VI convergence**

# FQI analysis - finite $\mathcal{F}$

Now, we analyze the case when  $\epsilon_{approx,\nu} \neq 0$

The  $k^{\text{th}}$  iteration of FQI guarantees that with probability  $\geq 1 - \delta$

$$\begin{aligned} V^* - V^{\pi_k} &\leq \frac{2}{1-\gamma} \left( \frac{\sqrt{C} \epsilon_{regress}}{1-\gamma} + \frac{\gamma^k}{1-\gamma} \right) \\ &\leq \mathcal{O} \left( \frac{1}{(1-\gamma)^3} \sqrt{\frac{C \log(|\mathcal{F}|/\delta)}{n}} + \epsilon_{approx,\nu} + \frac{2\gamma^k}{(1-\gamma)^2} \right) \end{aligned}$$

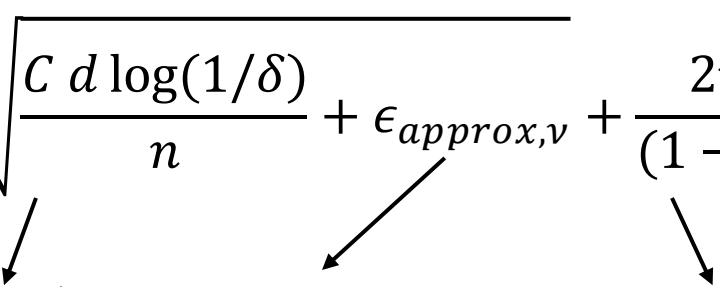
Statistical error related to regression      Inherent Bellman error      Optimization error related to VI convergence

# FQI guarantee for low Bellman rank

Now, we analyze the case when  $\epsilon_{approx,\nu} \neq 0$

The  $k^{\text{th}}$  iteration of FQI guarantees that with probability  $\geq 1 - \delta$

$$\begin{aligned} V^* - V^{\pi_k} &\leq \frac{2}{1-\gamma} \left( \frac{\sqrt{C} \epsilon_{regress}}{1-\gamma} + \frac{\gamma^k}{1-\gamma} \right) \\ &\leq \mathcal{O} \left( \frac{1}{(1-\gamma)^3} \sqrt{\frac{C d \log(1/\delta)}{n}} + \epsilon_{approx,\nu} + \frac{2\gamma^k}{(1-\gamma)^2} \right) \end{aligned}$$



Statistical error related to regression

Inherent Bellman error

Optimization error related to VI convergence

# General function approximation

- Offline RL - FQI
  - requires strong coverage assumption
    - low Bellman error + finite  $\mathcal{F}$  OR low Bellman rank
- RL with Generative model – Bilinear UCB
  - requires generative access
    - low Bellman rank
- Online RL – Bilinear UCB
  - low Bellman rank

No strong assumptions, but statistically & computationally inefficient!

Worse by factor of  $H$

Fit regression for each round  $T$

# Bilinear-UCB, online, bonus

At iteration  $t$  :

Select  $f_t = \arg \max_{g \in \mathcal{F}} V_g(s_0)$

s.t.,  $\forall h : \sum_{i=0}^{t-1} \left( \mathbb{E}_{\mathcal{D}_{h,i}} [\ell(s_h, a_h, s_{h+1}, g)] \right)^2 \leq R^2$

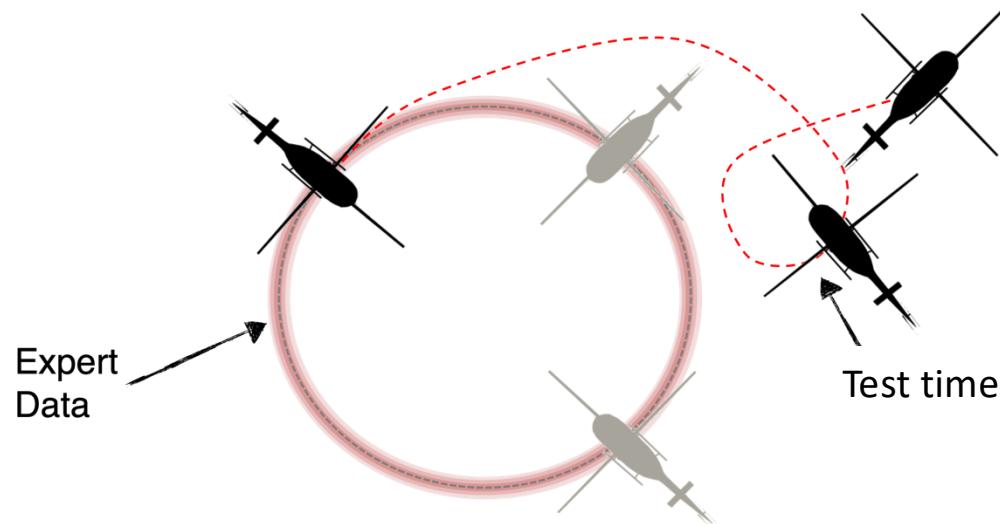
For all  $h$ , create  $\mathcal{D}_{h,t} = \{s_h, a_h, s_{h+1}\}$  w/  $m$  triples, where:

- For Q-B rank case:  $s_h, a_h \sim d_h^{\pi_{f_t}}, s_{h+1} \sim P_h(\cdot | s_h, a_h)$
- For V-B rank case:  $s_h \sim d_h^{\pi_{f_t}}, a_h \sim U(A), s_{h+1} \sim P_h(\cdot | s_h, a_h)$

Roll out  $\pi_{f_t}$  to collect trajectory and add to data

# Distribution shift issue

- Offline data may not have seen test time scenarios



# Best of both worlds?

Can we combine offline and online data in RL  
to reduce sample and compute efficiency  
while not requiring strong coverage assumptions?

Yes! Hybrid RL