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Average Bellman error — Q version

Weaker notion of Bellman error:

Evaluate g-approximation of Q using a policy ¢
&g fh) = IEsh’ahNde 8(Sp ah) = rsp ah) - [Esh+1~P (-Isp.an) [l’;l:;{( g(ShH, a)]]
f: defines roll-in distribution over s, a;,

We know that &(Q*; f, h) = 0,Vf

Hence, any g such that &(g;f, h) # 0, is an incorrect Q* approximator



Average Bellman error — V version

Evaluate average Bellman wrt V function induced by g as well:

1) = s | V9D = 00750 = Ex oo Vo)

f: defines roll-in distribution over s;,, a;,

and V,(s) =max, g(s,a).

Again we have &(Q*;f,h) = 0,Vf

( because: VQ*(S) - r(S, ﬂ'Q*(S)) - [ES'NPh(.|S,7IQ*(S))VQ*(S,) = 0)
Hence, any g such that &(g; f, k) # 0, is an incorrect Q™ approximator



Estimating Q-Bellman error
(generative setting)

Recall our hypothesis class &, where each g € Z is in the form of g(s, a)

For O-Bellman rank, we define Bellman error loss as:

(Sps Ops Sp1158) = 8(Sp, ap) — 1Sy, @) — max 8(Spy1,a)
a

T
If we had a dataset D := {sy, ay, S4.1} Where s, a, ~ .7, 5,1 ~ Py( - | 53, ap)

then Vg : EglZ(s), a5, 5,41, 8)] IS an unbiased est of &(g;f, h)



Estimating V-Bellman error
(generative setting)

Recall our hypothesis class &, where each g € Z is in the form of g(s, a)

For V-Bellman rank, we define Bellman error loss as:

Ha, = m,(sy)} (
1/A

C(Spy Aps Shy 15 8) = 8(sp> ay) — (s, ap) — max 8(Sp415 a'))

a

If we had a dataset D := {s, @, 5,41} where s, ~ d.7, @, ~ U(H),

Spe1 ~ Pp(- Ispoap)

then Vg : Egl€(s;, ap, 5,41, 8)] IS @an unbiased est of &(g;f, h)



Estimating Bellman rank

Uniform convergence style assumption on our hypothesis class Z:

Given any distribution v € A(S X A X §), and m i.i.d samples {s;, a;, s;} from v,
w/ probability at least 1 — 0,

Vg: |EL(s,a,s,8) —Egl(s,a,5,8)| < (m, F,0)

8gen

Example: when & is discrete (for B-rank loss), Hoeffding + union bound over & implies:

(m, F,0) := 2H\/1n(|f}'|/5)
m

egen



Bellman rank

3 two mappings W, : & [Rd, X,: F - [Rd(d = Bellman-rank)

st. V.8 € F : 8(g;f, h) = (W,(@), X, ()
g f

Vh:&,€ lditid 7y EnCron Rank of this matrix = Bellman rank

Note: we just assume the existence of W, X, but they are unknown



Algorithm under Bellman rank

 Works for general function approximation with low Bellman rank

e Gives optimism without adding (nonlinear) bonus



Bilinear-UCB

A general algorithm under Bellman rank that can learn an € near
optimal policy with number of samples

e.g., poly(H, b-rank, In(| & |),1/€?)



Bilinear-UCB

At iteration ¢ :

Select f, = arg max V,(sy)
gEF

t—1 &
s.t., Vh: Z ([E%,i[f(sh, a,, Sh+1,g)]> < R?
i=0
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Bilinear-UCB

At iteration ¢ :

Select f, = arg max V,(sy)
gEF

t—1 2
s.t., Vh: Z ([E%,i[f(sh, a,, Sh+1,g)]> < R?

=

T
- - o~ T o~ .
- For Q-Brank case: sy, a, ~ d,”, 5,1 ~ Py( - | 53 @)

For all h, create 9, , = {s;,, a;, 5,1} W/ m triples, where:

. For V-B rank case: s;, ~ d;ﬁ, a, ~ U(A), spp1 ~ Py( - | s, ap)

11



Bilinear-UCB

t—1 2
Select f, = arg ]géa;{ V(o) sit., Vh: g (Egh’i[f (s, @y s,,+1,g)]) < R?

1. When the batch size (| 9, ;|) is large,

[Egh’if(shs ah9 Sh+l9 g) — %(g;.fp h)

t—1
2. We know that ) &(f*;f, h) =0

i=1

3. By properly setting batch size and R, we eliminate wrong hypothesis, but keep f*

4. This gives optimism: V(sp) > Vp(sp) := V*(sp)

Optimism allows explore and exploit tradeoff! 5



Analysis of Bilinear-UCB

Step 1: proving optimism via showing f *is always a feasible solution (whp)

t—1 2
Recall constraint: V4 : Z ([E%J_[f(sh, Qs St g)]) <R?
i=0

Lemma: set R = ﬁ  Egon(m, F, 6/ TH),
W/ prob 1 — 8, we have /™ being a feasible solution for all the T iterations;

Proof: Consider any iteration i < :

|[E93l.’f (S Qs S5 ) — ES5 o W | < Egen

(IEgi,hf(Sh’ Ay, Sh+1af*))2 < 'Egen since %(f*;j;a h)=0

t—1 2
2 2 .. p2
Z ([E@i,hbﬂ(sh, ap, Sh+1’.f*)) S tggen S ngen — 'y

i=0 13



Analysis of Bilinear-UCB

Step 1: proving optimism via showing f* is always a feasible solution (whp)

The fact that f* being feasible = optimism, i.e., V?, Vﬁ(so) > Vf*(so) 10

Proof:

Recall the objective function:

t—1 2
Select f, = arg glezg Vg(So) s.t., Vh: g (E@h,i[f (87, ay,, sh+1,g)]> < R?
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Analysis of Bilinear-UCB

Step 2: Using optimism to upper bound per-episode regret:

Opt|m|Sm # V*(So) — Vﬂft(SO) S %(So) - Vﬂft(SO)

Lemma:
H-1
Vft(SO) - Vﬂf’(SO) = Z [Esh,ahNdei [f;(slv ah) - r(Sh’ ah) - [EshHNPh(sh,ah) maz/let(shﬂ—l’ al)
h=()
H-1 H-1
= Y 8 fuh) = ) W(HTX)
h=0 h=0

Proof:
Vft (SO) _ Vn-ft (SO) = ]an"’nft(.g()) [ft(SO’ aO)] — ]:Eah~nft(sh)' Sh+1~P('|Sh’ ah) [ ZI;& r(sh’ ah)]

= Eqyomr,(sp), snia~P(ISh, an) [Xh=o (fe(sn an) — 1(sp, an) = fe(Sn+1, @ns1))]
telescoping sum since f;(sy, ay) =0
= Yh=o E, s.~a"rc ft(snan) = v(sp,an) = Eg,  _p(Jsp, ap) [rr}f,let(sh+1» a)]]

since apy; = arg max f;y(sp41,a’) 15
al



Analysis of Bilinear-UCB

Step 2: Using optimism to upper bound per-episode regret:

H-1

V*(sy) — V() = Z | i [ft(sh, ap) — 1y, ap) — By, p,(s,ap) MAXSi(Sp 41, a’)]
h=0 g

H-1 H-1
= 2 8Uafu) = X, Wi)'X,(f)
h=0 h=0

-1
Define “feature” covariance matrix X, , = 2 X,(H)X,(H)T + Al
i=0

H-1

Cauchy-Schwartz implies V" (s,) — V(s < Z H W, (1) H . ”Xh(fr)”Et—}}
h=0 i |
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Analysis of Bilinear-UCB

Summary so far, after optimism + per-episode regret decomposition, we get:

1—1
Define “feature” covariance matrix %, ;, = Z X, (f)X,( fl-)-r + Al
i=0

H-1
Vi Vs = Vi) < ) || W) || IXDlsy
h=0 g

Similar to linUCB, using elliptical potential lemma:

Hd 15,
2 X =

where I Xn(f)llo<Bx Vf €eF

Similarly, let  ||Wx(f)|l2 < Bw Vf €F
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Analysis of Bilinear-UCB

Summary so far, after optimism + per-episode regret decomposition, we get:

1—1
Define “feature” covariance matrix %, ;, = Z X, (f)X,( fi)-r + Al
i=0

H-1
Vi Vs = Vi) < ) || W) || IXDlsy
h=0 g

—1

2 2
Vh: Z (IEgh,i[f(sh’ a, Sh+1’f;‘)]) < R
i=0

t—1 —1 2 t—1 2
= Vh: Z o Lh - Z 2 (%( fisfs h) — Eg £(5ys a4 s,,+1,ﬁ)) + Z 2 (Egi,hf(sh, Qs sh+1,ﬁ))
i=0 i=0

i=0

—1 =1
S Vh: Y B(ffu b ATk, =>Vh: Y (WHX0) < 4Tel,
i=0 2
=>Vh: | W | | S4Te
t.h

gen

+ By



Analysis of Bilinear-UCB

H-1
Vi: Vi(s) = Vi) < Y || W) | o Xl
h=0 :

T B2
= H\/4)\B%V +4Ts§en\/exp (};j In(1+ d)\X )) -1

Set /A= Bl /e2,, +1/BY And T = [2Hd1n (4Hd (Bgfﬂﬂ)ﬂ

gemn

< H\/Q (4ABZ, +4Te2,,,)

B% B?
< 5€gen\/dH3 In (4Hd ( ;’; W 1))
gen
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Analysis of Bilinear-UCB

H-1
Vi: Vi(s) = Vi) < Y || W) | o Xl
h=0 :

2 N2
Regret bound < 5€gen\/dH3 In (4Hd (B B + 1))

2
€ gen

Example: when & is discrete (for B-rank loss), Hoeffding + union bound over & implies:

In(| & |/6)

€ gon(, F,8) = 2H\/

eps-optimal with sample complexity, m ~poly (H, d, In(| F |),1/eps?)
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General function approximation

Summary:

* General non-linear function approximation

 Hardness - Exponential complexity with continuous arms

* Poly sample complexity under Bellman rank, low-rank MDP,

Bellman completeness Towards model-free RL
* Bilinear-UCB algorithm

Open questions:
 Computational complexity

* Online setting (needs additional assumptions)

Instead of parametrizing model/value functions,
can we parametrize policies directly?

21
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