

RL with continuous action spaces

General function approximation

Aarti Singh

Machine Learning 10-734

Nov 6, 2025

Slides courtesy: Wen Sun

MACHINE LEARNING DEPARTMENT

Carnegie Mellon.
School of Computer Science

Continuous ^{state,} action spaces

Bandits:

Reward is linear, Lipschitz, GP, NN, ...

e.g. $r^*(x) = x^T \theta^*$ x, θ^* are d-dimensional

$$x^* \rightarrow r^*$$

MDP:

Linear MDP - Reward is linear, Transition is low rank $-d$ $\phi \in \mathbb{R}^d$

$$r_h(s, a) = \underline{w}_h^T \underline{\phi}(s, a), P_h(s' | s, a) = \mu_h(s')^T \phi(s, a)$$

LSVI-UCB algorithm has low regret $\tilde{O}(H^2 \sqrt{d^3 N})$

Linear Q^* - $Q^*(s, a) = \theta^{*T} \phi(s, a)$

Doesn't work!

$$e^{s, a}$$

$$\pi^* \rightarrow \theta^*$$

LSVI-UCB: Least Square Value Iteration with UCB

Value iteration at episode n using $\{s_h^i, a_h^i, r_h^i, s_{h+1}^i\}_{h=1, i=1}^{H-1, n-1}$

$$\widehat{V}_H^n(s) = 0, \forall s$$

For $h = H-1, H-2, \dots, 1$

$$\theta_h^n \leftarrow \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n-1} \left(\underbrace{\langle \phi(s_h^i, a_h^i), \theta \rangle - r_h^i - \widehat{V}_{h+1}^n(s_{h+1}^i)}_{\widehat{Q}(s, a)} \right)^2 + \lambda \|\theta\|_2^2$$

Least square
 Bellman consistency
 $\widehat{Q}(s, a)$

$$\widehat{Q}_h^n(s, a) = \min \left\{ b_h^n(s, a) + \langle \phi(s, a), \theta_h^n \rangle, H \right\}, \forall s, a$$

$$\widehat{V}_h^n(s) = \max_a \widehat{Q}_h^n(s, a), \quad \pi_h^n(s) = \arg \max_a \widehat{Q}_h^n(s, a), \forall s$$

Bellman error

Consider $f(s, a) = Q(s, a)$.

$$\begin{aligned}\text{Bellman error} &= f(s, a) - T f(s, a) &= Q - T Q \\ &= f(s, a) - \left(r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} f(s', a') \right) &f \text{ linear} \\ &= T f &T f \text{ linear} \\ &= \sum_{s'} P(s' | s, a) \max_{a'} f(s', a')\end{aligned}$$

If Bellman error $\neq 0$, then $f \neq Q^*$

Why does linear Q^* not suffice?

Even if f is linear, $T f$ may not be linear T unless transitions P (and reward r) is also linear!

Bellman completeness

Bellman completeness: For any Q function in \mathcal{F} , its Bellman update is
also in \mathcal{F}

Implies Bellman error

Bellman completeness: For any Q function in \mathcal{F} , its Bellman update is
also in \mathcal{F}

Implies Bellman error

can be 0 for $f = Q^*$

can be 0 for $f = Q^*$

LSVI-UCB: Least Square Value Iteration with UCB

Value iteration at episode n using $\{s_h^i, a_h^i, r_h^i, s_{h+1}^i\}_{h=1, i=1}^{H-1, n-1}$

$$\widehat{V}_H^n(s) = 0, \forall s$$

For $h = H-1, H-2, \dots, 1$

$$\theta = T\theta \quad \checkmark$$

$$\theta_h^n \leftarrow \operatorname{argmin}_{\theta} \sum_{i=1}^{H-1} (\langle \phi(s_h^i, a_h^i), \theta \rangle - r_h^i - \widehat{V}_{h+1}^n(s_{h+1}^i))^2 + \lambda \|\theta\|_2^2$$

$$\widehat{Q}_h^n(s, a) = \min \left\{ b_h^n(s, a) + \langle \phi(s, a), \theta_h^n \rangle, H \right\}, \forall s, a \quad \checkmark$$

$$\widehat{V}_h^n(s) = \max_a \widehat{Q}_h^n(s, a), \quad \pi_h^n(s) = \arg \max_a \widehat{Q}_h^n(s, a), \forall s$$

LSVI-UCB does not work under Bellman completeness

$$\widehat{Q}_h^n(s, a) = \min \left\{ b_h^n(s, a) + \langle \phi(s, a), \theta_h^n \rangle, H \right\}, \forall s, a$$

Issue: Adding bonus which may be non-realizable
(e.g. in linear case, bonus may be nonlinear in s)

Recall $b_h^n(s, a) = \|\phi\|_{\Lambda_h^{n-1}} \beta$

~~nonlinear in $\phi(s, a)$~~

Need different algorithm (no bonus on Q)
– how to achieve optimism?

Average Bellman error

Weaker notion of Bellman error:

Evaluate g -approximation of Q using a policy π_f

$$\mathcal{E}(g; f, h) = \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[g(s_h, a_h) - r(s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P(\cdot | s_h, a_h)} \left[\max_{a \in \mathcal{A}} g(s_{h+1}, a) \right] \right]$$

Bellman error $Q - TQ$

f : defines roll-in distribution over s_h, a_h

We know that $\mathcal{E}(Q^*; f, h) = 0, \forall f$ *if $g = Q^*$ $g = Tg$ pointwise (s, a)*

Hence, any g such that $\mathcal{E}(g; f, h) \neq 0$, is an incorrect Q^* approximator

Average Bellman error

Evaluate average Bellman wrt V function induced by g as well:

$$\mathcal{E}(g; f, h) = \mathbb{E}_{\underbrace{s_h \sim d_h^{\pi_f}}_{\text{f: defines roll-in distribution over } s_h, a_h}} \left[V_g(s_h) - r(s_h, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P(\cdot | s_h, \pi_g(s_h))} \left[V_g(s_{h+1}) \right] \right]$$

$V - TV$

f : defines roll-in distribution over s_h, a_h

Again we have $\mathcal{E}(Q^*; f, h) = 0, \forall f$

if $g = a^*$ $V_g = V^*$

(because: $V_{Q^*}(s) - r(s, \pi_{Q^*}(s)) - \mathbb{E}_{s' \sim P_h(\cdot | s, \pi_{Q^*}(s))} V_{Q^*}(s') = 0$)

Hence, any g such that $\mathcal{E}(g; f, h) \neq 0$, is an incorrect Q^* approximator

Q-TD (s, a)
 $\text{arg}(\text{Q-TD})$
 $\delta \rightarrow g$

Bellman rank

approx
 $g \approx \theta$ $f = \text{arg}$

\exists two mappings $W_h : \mathcal{F} \mapsto \mathbb{R}^d$, $X_h : \mathcal{F} \mapsto \mathbb{R}^d$ (d = Bellman-rank)

s.t. $\forall f, g \in \mathcal{F} : \underline{\mathcal{E}(g; f, h)} = \langle W_h(g), X_h(f) \rangle$

	g	f	approx
$\mathcal{E}_{g; f, h}$			
$\mathcal{E}_{f; f, h}$			

$\forall h : \mathcal{E}_h \in \mathbb{R}^{|\mathcal{F}| \times |\mathcal{F}|}$

π_f

arg

Rank of this matrix = Bellman rank

Note: we just assume the existence of W, X , but they are unknown

Examples of Bellman rank

- **Linear Bellman completeness:** For any linear Q function, its Bellman update is also linear

Given feature ϕ , take any linear function $\theta^\top \phi(s, a)$:

$$\forall h, \exists \underline{w} \in \mathbb{R}^d, s.t., \underline{w}^\top \underline{\phi}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \underline{\theta}^\top \underline{\phi}(s', a'), \forall s, a$$

$\& \leftarrow T\theta$

Claim: it has Q-Bellman rank d

$\forall g(s, a) := \theta^\top \phi(s, a)$, we have:

$$\begin{aligned} \mathcal{E}(g; f, h) &= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[\theta^\top \phi(s_h, a_h) - r(s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} \left[\max_{a \in \mathcal{A}} \theta^\top \phi(s_{h+1}, a) \right] \right] \\ &= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} [\theta^\top \phi(s_h, a_h) - w^\top \phi(s_h, a_h)] \quad \text{Bellman completeness} \end{aligned}$$

$$= \langle \theta - w, \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} [\phi(s_h, a_h)] \rangle$$

Examples of Bellman rank

- **Linear Bellman completeness:** For any linear Q function, its Bellman update is also linear.

Given feature ϕ , take any linear function $\theta^\top \phi(s, a)$:

→ $\forall h, \exists w \in \mathbb{R}^d, s.t., w^\top \phi(s, a) = r(s, a) + \mathbb{E}_{s' \sim P_h(s, a)} \max_{a'} \theta^\top \phi(s', a'), \forall s, a$

• **Linear MDP** *r linear, P low rank r = θ^Tφ(s, a) P = μ(s')^Tφ(s, a)*

⇒ linear Bellman completeness \Rightarrow Q-Bellman rank d

Examples of Bellman rank

- Linear Q^* and V^* $Q^*(s, a) = (\underline{w}^*)^\top \phi(s, a), \quad V^*(s) = (\underline{\theta}^*)^\top \psi(s), \forall s, a$

Claim: it has Q-Bellman rank 2d

$$\mathcal{F}_h = \left\{ (w, \theta) : \max_a \underline{w}^\top \underline{\phi}(s, a) = \underline{\theta}^\top \underline{\psi}(s), \forall s \right\}$$

avg (Q-TB)

$$\begin{aligned} \mathcal{E}(g; f, h) &= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[\underline{w}^\top \underline{\phi}(s_h, a_h) - r(s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} [\underline{\theta}^\top \underline{\psi}(s_{h+1})] \right] \\ &= \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[\underline{w}^\top \underline{\phi}(s_h, a_h) - \underbrace{(\underline{w}^*)^\top \underline{\phi}(s_h, a_h)}_{Q^*(s_h, a_h)} + \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} [(\underline{\theta}^*)^\top \underline{\psi}(s_{h+1})] \right. \\ &\quad \left. - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, a_h)} [\underline{\theta}^\top \underline{\psi}(s_{h+1})] \right] \end{aligned}$$

$$= \left\langle \begin{bmatrix} w - w^* \\ \theta - \theta^* \end{bmatrix}, \mathbb{E}_{s_h, a_h \sim d_h^{\pi_f}} \left[\begin{array}{c} \phi(s_h, a_h) \\ - \mathbb{E}_{s' \sim P_h(s_h, a_h)} [\psi(s')] \end{array} \right] \right\rangle \quad \psi(s') \neq \eta^\top \phi(s, a)$$

Examples of Bellman rank

- **Linear Q^* and V^*** $Q^*(s, a) = (w^*)^\top \phi(s, a), \quad V^*(s) = (\theta^*)^\top \psi(s), \forall s, a$

Claim: it has Q-Bellman rank 2d

Note that $\psi(s_h, a_h) := \mathbb{E}_{s' \sim P_h(s_h, a_h)}[\psi(s')]$ is in general not linear in $\phi(s_h, a_h)$ if transition dynamics are not linear

But V^* linear *inherently* implies transition dynamics are linear:

Since $V^* = T V^*$, we have

$$\underbrace{\theta^* \psi(s)}_{V^*} = \max_a \left(r(s, a) + \underbrace{\mathbb{E}_{s' \sim P(s, a)}[\psi(s')]}_{\theta^* \psi(s, a)} \right)$$

which implies transition dynamics are linear (given definition of $\psi(s, a)$).

Linear Q^* , V^* suffices, though linear Q^* doesn't!

Examples of Bellman rank

- Low rank MDP

$$P_h(s' | s, a) = \mu_h^*(s')^\top \phi_h^*(s, a)$$

↓ ↓ ↓

CR^d

linear - ϕ known
(neither μ^* nor ϕ^* is known)

Claim: this model has V-Bellman rank d

$$\mathcal{F}_h = \{\theta^\top \phi(\cdot, \cdot) : \|\theta\|_2 \leq W, \phi \in \Phi\}$$

↙ arg (V-TV)

$$\mathbb{E}_{s_h \sim d_h^{\pi_f}} \left[V_g(s_h) - r(s, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, \pi_g(s_h))} [V_g(s_{h+1})] \right]$$

$$= \mathbb{E}_{\tilde{s}, \tilde{a} \sim d_{h-1}^{\pi_f}} \mathbb{E}_{s_h \sim P_{h-1}(\cdot | \tilde{s}, \tilde{a})} \left[V_g(s_h) - r(s, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, \pi_g(s_h))} [V_g(s_{h+1})] \right]$$

$$= \mathbb{E}_{\tilde{s}, \tilde{a} \sim d_{h-1}^{\pi_f}} \int_{s_h} \underbrace{\mu_{h-1}^*(s_h)^\top \phi_{h-1}^*(\tilde{s}, \tilde{a})}_{P_{h-1}(s_h | \tilde{s}, \tilde{a})} \left[V_g(s_h) - r(s, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, \pi_g(s_h))} [V_g(s_{h+1})] \right] d(s_h)$$

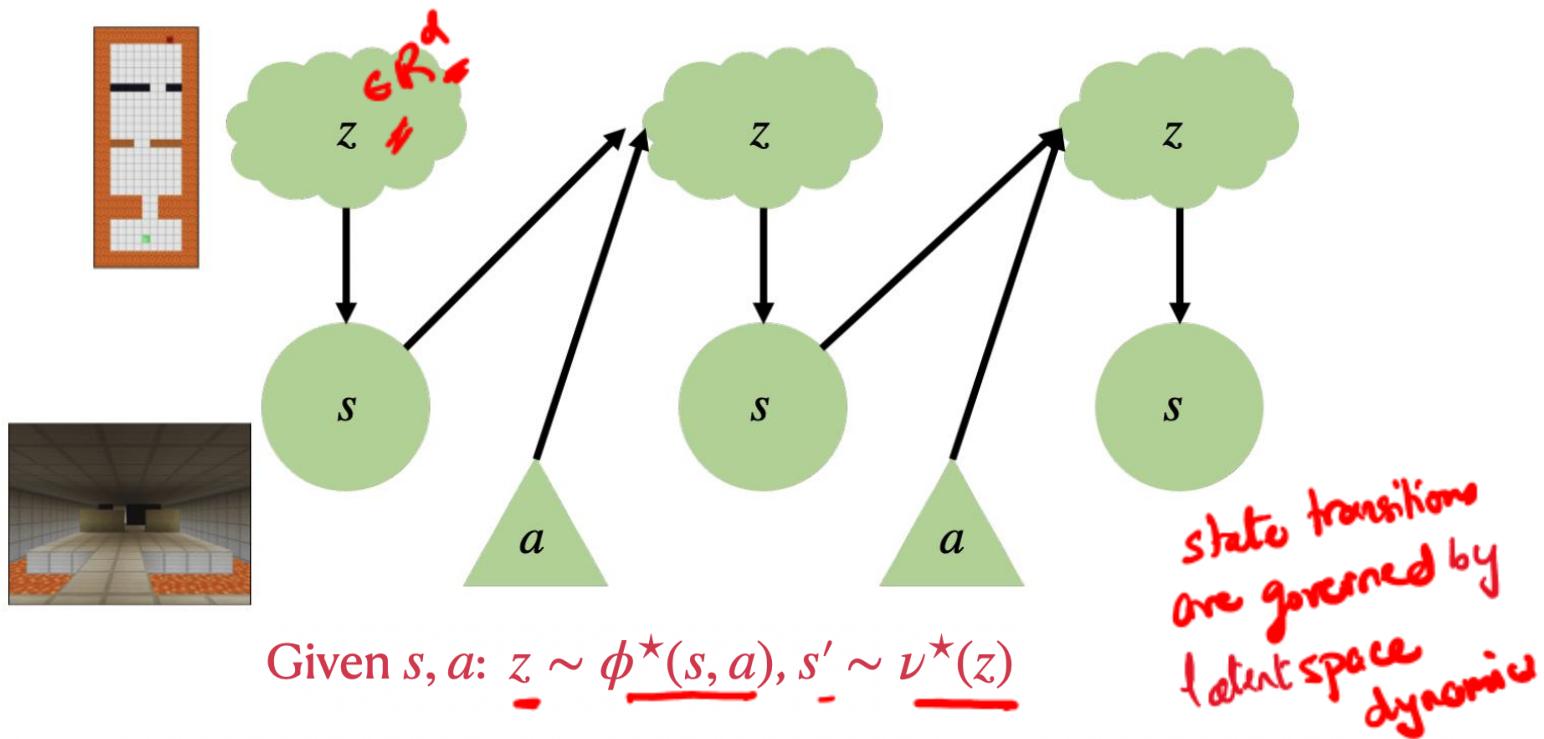
scalar

$$= \left\langle \int_{s_h} \underbrace{\mu_{h-1}^*(s_h)}_{\text{scalar}} \left[V_g(s_h) - r(s, \pi_g(s_h)) - \mathbb{E}_{s_{h+1} \sim P_h(\cdot | s_h, \pi_g(s_h))} [V_g(s_{h+1})] \right] d(s_h), \underbrace{\mathbb{E}_{\tilde{s}, \tilde{a} \sim d_{h-1}^{\pi_f}} [\phi_{h-1}^*(\tilde{s}, \tilde{a})]}_{\text{scalar}} \right\rangle$$

Examples of Bellman rank

- Latent variable MDP

V-Bellman rank = Number of latent states

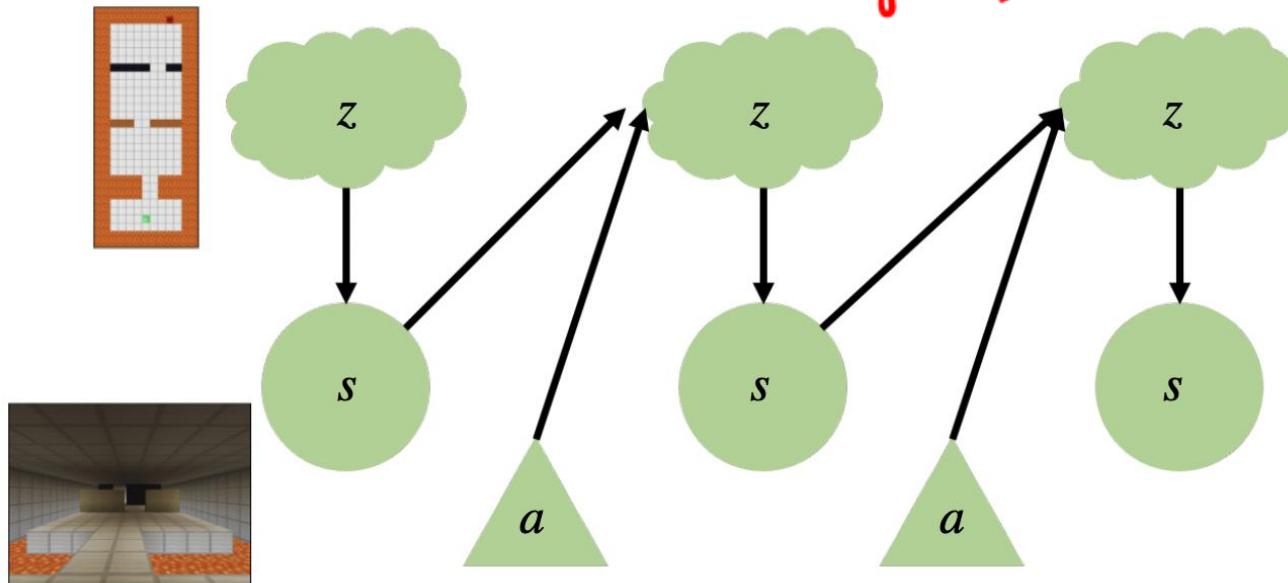


Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank...

Examples of Bellman rank

- **Latent variable MDP**

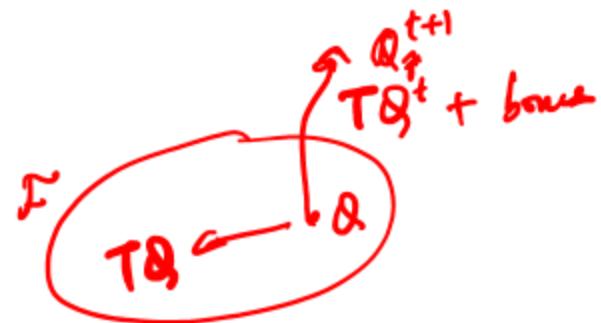
Dim (z is continuous)
V-Bellman rank = Number of latent states
(finters)



- **Block MDP** - Special case of latent variable MDP where a state can only be generated from one latent state i.e. one-to-one mapping, hence latent state is deterministically decodable $P(s|z) > 0 \Rightarrow P(s|z') = 0 \quad \forall z' \neq z$

Algorithm under Bellman rank

- Works for general function approximation with low Bellman rank
- Gives optimism without adding (nonlinear) bonus



Bilinear-UCB

A general algorithm under Bellman rank that can learn an ϵ near optimal policy with number of samples

e.g., $\text{poly}(\underline{H}, \underline{\text{b-rank}}, \underline{\ln(|\mathcal{F}|)}, \underline{1/\epsilon^2})$

$\ell_{\mathcal{F}} \ll |\mathcal{S}|, |\mathcal{A}|$

Q-Bellman rank setting

Recall our hypothesis class \mathcal{F} , where each $g \in \mathcal{F}$ is in the form of $g(s, a)$

For Q -Bellman rank, we define Bellman error loss as:

$$\ell(s_h, a_h, s'_{h+1}, g) = g(s_h, a_h) - r(s_h, a_h) - \max_{a'} g(s_{h+1}, a')$$

generative

If we had a dataset $\mathcal{D} := \{s_h, a_h, s_{h+1}\}$ where $s_h, a_h \sim \underline{d_h^{\pi_f}}$, $s_{h+1} \sim \underline{P_h(\cdot | s_h, a_h)}$

then $\forall g : \mathbb{E}_{\mathcal{D}}[\ell(s_h, a_h, s_{h+1}, g)]$ is an unbiased est of $\mathcal{E}(g; f, h)$

↓ empirical average

V-Bellman rank setting

Recall our hypothesis class \mathcal{F} , where each $g \in \mathcal{F}$ is in the form of $g(s, a)$

For V-Bellman rank, we define Bellman error loss as:

$$V(s) = Q(s, \pi(s))$$

$$\ell(s_h, a_h, s'_{h+1}, g) = \underbrace{\frac{\mathbf{1}\{a_h = \pi_g(s_h)\}}{1/A}}_{\text{Bellman rank}} \left(g(s_h, a_h) - r(s_h, a_h) - \max_{a'} g(s_{h+1}, a') \right)$$

If we had a dataset $\mathcal{D} := \{s_h, a_h, s_{h+1}\}$ where $s_h \sim d_h^{u_f}$, $a_h \sim U(\mathcal{A})$,
 $s_{h+1} \sim P_h(\cdot | s_h, a_h)$

then $\forall g : \mathbb{E}_{\mathcal{D}}[\ell(s_h, a_h, s_{h+1}, g)]$ is an unbiased est of $\mathcal{E}(g; f, h)$

Bilinear-UCB

At iteration t :

Select $f_t = \arg \max_{g \in \mathcal{F}} V_g(s_0)$

s.t., $\forall h : \sum_{i=0}^{t-1} \left(\mathbb{E}_{\mathcal{D}_{h,i}} [\ell(s_h, a_h, s_{h+1}, g)] \right)^2 \leq R^2$

empirical Bellman error

no bonus required

*≡ ellipsoid
constraint
for linear
bandits*

*computationally
efficient?*

Bilinear-UCB

At iteration t :

Select $f_t = \arg \max_{g \in \mathcal{F}} V_g(s_0)$

s.t., $\forall h : \sum_{i=0}^{t-1} \left(\mathbb{E}_{\mathcal{D}_{h,i}} [\ell(s_h, a_h, s_{h+1}, g)] \right)^2 \leq R^2$

For all h , create $\mathcal{D}_{h,t} = \{s_h, a_h, s_{h+1}\}$ w/ m triples, where:

- For Q-B rank case: $s_h, a_h \sim d_h^{\pi_{f_t}}, s_{h+1} \sim P_h(\cdot | s_h, a_h)$
- For V-B rank case: $s_h \sim d_h^{\pi_{f_t}}, a_h \sim U(A), s_{h+1} \sim P_h(\cdot | s_h, a_h)$

Bilinear-UCB

Select $f_t = \arg \max_{g \in \mathcal{F}} V_g(s_0)$ s.t., $\forall h : \sum_{i=0}^{t-1} \left(\mathbb{E}_{\mathcal{D}_{h,i}} [\ell(s_h, a_h, s_{h+1}, g)] \right)^2 \leq \underline{R}^2$

(1)
bonus

1. When the batch size ($|\mathcal{D}_{h,i}|$) is large,

$$\mathbb{E}_{\mathcal{D}_{h,i}} \ell(s_h, a_h, s_{h+1}, g) \rightarrow \mathcal{E}(g; f_i, h)$$

2. We know that $\sum_{i=1}^{t-1} \mathcal{E}(f^*; f_i, h) = 0$

linear bandit : $\theta^* \in \mathcal{C}_t$ ellipsoid

3. By properly setting batch size and R, we eliminate wrong hypothesis, but keep f^*

4. This gives optimism: $V_{f_t}(s_0) \geq V_{f^*}(s_0) := V^*(s_0)$

Optimism allows explore and exploit tradeoff!

Analysis of Bilinear-UCB

Uniform convergence style assumption on our hypothesis class \mathcal{F} :

Given any distribution $\nu \in \Delta(S \times A \times S)$, and m i.i.d samples $\{s_i, a_i, s'_i\}$ from ν ,
w/ probability at least $1 - \delta$,

$$\forall g : \left| \mathbb{E}_\nu \ell(s, a, s', g) - \mathbb{E}_{\mathcal{D}} \ell(s, a, s', g) \right| \leq \underline{\varepsilon_{gen}(m, \mathcal{F}, \delta)}$$

↓
true ↓
 empirical

Example: when \mathcal{F} is discrete (for B-rank loss), Hoeffding + union bound over \mathcal{F} implies:

$$\varepsilon_{gen}(m, \mathcal{F}, \delta) := 2H \sqrt{\frac{\ln(|\mathcal{F}|/\delta)}{m}} \quad \checkmark$$