RL with continuous action spaces
General function approximation

Aarti Singh

Machine Learning 10-734
Nov 6, 2025

Slides courtesy: Wen Sun

ACHI



ol ,
Continuous‘’action spaces

Bandits:
Reward is linear, Lipshitz, GP, NN, ... . «
e.g. r(x) = x"0* x, 0* are d-dimensional % A
MDP:

4
Linear MDP - Reward is linear, Transitign is low rank ~d 4’9@‘
(s, @) = wi ¢(s,a), Pa(s'ls,@) = (N (s, @)
LSVI-UCB algorithm has low regret O (H?Vd3N)

Linear Q* - Q*(s,a) = 6* T(s,a) =8
Doesn’t work! S
e



LSVI-UCB: Least Square
Value Iteration with UCB

Value iteration at episode n using {s}, a;'l,r,‘;,s,iwl}g;ll"in;ll
Vi(s) =0,Vs
¥ squoT® 18\RAVA
Forh=H-1,H-2, .., 1 0% %&,.aﬂ ot
- 8
R—1 a(sa) _J/_r >
92 A arg;ninz ((‘i’(S;’u aj,), 9) = i V}T+1(S;a+1)) + )\”9”%

] e

- 1=1

—_—~

0 (s, a) = min{ bis,a) + ((s, a),00), H},vS,a

Vi(s) =max Q%(s,a). a'(s) =argmax Q(s,a),Vs



Bellman error

Consider f(s,a) = Q(s,a).

Bellman error= f(s,a) — T f(s,a) = 8-T8 J Licesy
) J4W.«") ;‘fﬂ'ﬂ Ti T
= f(s,a) — (r(s, a) + By p(|s,q maxf(s’, a’))
V4 v —-— a’ v
‘* .
TJ = 2 Pl "ﬁf‘x(s‘a)
If Bellman error # 0, then f # Q* §/

Why does linear Q™ not suffice?

Evenif f islinear, T f may not be linear T unless transitions P
(and reward r) is also linear!



Bellman completeness

Bellman completeness: For any Q function in F, its Bellman update is

alsoinF
e

Implies Bellman error

EBcsilrman compleaeteness: For anmny Q function im 7. its Bellrmanmn update is

can be O for £ — &~

canbe Ofor f = Q~



LSVI-UCB: Least Square
Value Iteration with UCB

_ _ _ _ o Himq
Value iteration at episode n using {sy,, aj,7%,Sh+1 n—1ioq

v}’{(s) =0,Vs

For h=H-1,H-2, ..., 1

& < TH /
n—1 L
. i i i 2
0h arg;mnz ({p(sh»a3),0) — 5 — Vi1 (shi))” + Al6II3
i=1

= 4 f
Q 3(s, @) = min { b/(s,a) + (qb(s, a), 92), H},Vs, a N} (5R)

Vi(s) =max Q%(s,a). a'(s) =argmax Q(s,a),Vs



LSVI-UCB does not work under
Bellman completeness

—_~

0 (s, a) = min{ bis,a) + ($(s,a),00), H},VS,a

Issue: Adding bonus which may be non-realizable
(e.g. in linear case, bonus may be nonlinear in s)

Recall bj'(s,a) = ||o]| ..-1 )
" ¢—/21’-i; pwhﬂ-w«"‘ P(G0)

Need different algorithm (no bonus on Q)
— how to achieve optimism?



Average Bellman error

Weaker notion of Bellman error:

Evaluate g-approximation of Q using a policy ¢

Cg(g ;f’ h) = [Esh,ahNd;ff g (Sh’ ah) —-r (Sha ah) - [Esh+1~P(-|sh,ah) [meag; g (Sh+1’ a)] ]
a

{Lbuﬂ.ﬁ-l. et QHT%_‘J
f: defines roll-in distribution over s, a;,

We know that E(Q*;f,h) = 0,Yf 1 9= Q §="Tq pantuie (8,9

Hence, any g such that &(g; f, h) # 0, is an incorrect O approximator



Average Bellman error

Evaluate average Bellman wrt V function induced by g as well:
N-TV

1) = s | Vi) = 60700 = Ex oo Vo)

a —

f: defines roll-in distribution over s, a;,

. & *
Again we have &(Q*;f,h) = 0,Vf ‘J 1' a V,GU

(because: Vjy.(s) — 1(s, my«(s)) — Egop, | S’,,Q*(S))VQ*(S’) =0)
Hence, any g such that &(g; f, h) # 0, is an incorrect Q™ approximator



S Bellman rank TR fee
§ *a 1
3 two mappings W, : & R X,: F - R4 (d = Bellman-rank)
st. Vg € F 1 E(g:fh) = <Wh(§)aXh(f)>

g [ ogenr

: F|X|F . .
Vh: &, € ledicid 7y & oot Errn Rank of this matrix = Bellman rank

0¥y

Note: we just assume the existence of W, X, but they are unknown
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Examples of Bellman rank

e Linear Bellman completeness: For any linear Q function, its
Bellman update is also linear

Given feature ¢, take any linear function 8" ¢ (s, a):

Vh, EIwERdst qub(sa)—r(sa)+[E
@, ~ TG

y max 0" p(s’,a"), Vs, a
a = =

s'~Py(s,a

Claim: it has Q-Bellman rank

Vg(s,a) := 0"¢(s, a), we have:
o (&-THD

&g, f,h) = s i [9 o(sy, ) — r(sp, ap) — Sh+1NPh( 680 ’max@ P(sy, +1,61)”
—E, [P a) — gy ay)] Rmen targelats

=< 0 —w ,ﬂfsh,ahNd}ff[fﬁ(Sha ah)]> 11



Examples of Bellman rank

e Linear Bellman completeness: For any linear Q function, its
Bellman update is also linear.

Given feature ¢, take any linear function 8" ¢ (s, a):

= Vh,Awe Ry s.t.,.wig(s,a) =r(s,a) + E y max 0" p(s’,a"), Vs, a
af

s'~Py(s,a

l" ? "B\r' M (= QTf{S,n) P: /;.(,I’)T4ﬂ,n)
 Linear MDP ¢ Uneas |

= linear Bellman completeness = Q-Bellman rank d
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Examples of Bellman rank

J ¢
+ LinearQ*and V*  0*(s,0) = W) 'd(s,a), V*(s) = (@) w(s),Ys,a
Claim: it has Q-Bellman rank 2d
gus.a) Vis)
F, = {(w, 0) : maxw ' (s, a) = 0 y(s), Vs}
0 A———mm | —— 5“'3( &,m)
€. f.h) = [Esh,ahNd:f [WT¢(Shs ap) — r(sy, a,) — [Es,, ~PClsmay) [HTW(ShH)]]
SEE— S—
VF( £ h-r‘)
= [Esh,ah~d,ff [WT¢(Sh’ ah) - (W*)T¢(Sha ah) + IEsh+1~Ph('| ) [(9*)T1//(sh +1)]
S * C— —

Q" (S,o)
= [ESh+1~P ([ Spo@h) [HTW(S’HD]]

- w — w* ¢(Sh’ ah) ” [ “; rff.ﬁ (;la)
a é[ 0 — 6% ] ’ Esh’ahNdhf [— Es’rvPh(sh,ah)[l.//_(i?]p 4ls ) .



Examples of Bellman rank

Linear Q* and V* Q0*(s,a) = W»)@(s,a), V*(s) = (0*)"w(s),Vs,a

Claim: it has Q-Bellman rank 2d

Note that Y(sp, an) := Eg_p (5, o) [W(s)] isin general not linear in ¢(sp, ay) if
——

transition dynamics are not linear

But V* linear inherently implies transition dynamics are linear:

Since V* = TV*, we have
’ E yle))
' /" SLPGIe)
9*T¢(s) = max (r(s, a) + H*Tl,b(s, a))
| B a i

which implies transition dynamics are linear (given definition of ¥ (s, a)).

Linear Q*, V* suffices, though linear Q* doesn’t! y



Examples of Bellman rank

4
A - _ kaswn
* Low rank MDP . \d/ divean -
P,(s'|s,a) = ,u,f (s’)Tgb,f (s,a) (neither y* nor gb* is known)
—_
Claim: this model has V-Bellman rank d
Fp=107(-.): 16, < W, € @) e (V-

[Esh’”d:f [VS(Sh) = 7(S, e(sp)) — [ESh+1NP h('|Shaﬂg(sh))[V8(Sh+1)]]

LN

- lES',ﬁNd:j_rllEShNP n-1(:15,4) [VS(Sh) — (s, ”g(sh)) = [Esh+1~Ph(-Ish,zrg(sh))[vg(sh+1)]]

= [EE,&~d:{ IJ }i;—l(sh)T@Tq(i_CZ) [Vg(sh) — (s, my(s)) — E;, +1~P;,(-Ish,ng(sh))[vg(shﬂ)]] d(sy)
T RS Ceelat

- <J 1) | Vi) = 16 76)) = Byl Ve@nid]| Ay Eggogy [67,6, a)1>
Sh A S('J-‘l-l?f P




Examples of Bellman rank

e Latent variable MDP V-Bellman rank = Number of latent states
S
e
Z -f/ Z Z
s / s 4 S
Ko
a a syl '\“:d oy
* * o j (7 =
Givens,a: z ~ ¢™(s,a), s’ ~ v™(2) <pe o

Latent variable MDP is captured by low-rank MDP, so it has small V-Bellman rank...

16



Examples of Bellman rank

Dim (28 crabund)
* Latent variable MDP V-Bellman rank = Number of latent states

[&'n’fu@

I//141

Given s, a: 7 ~ ¢*(S, a), s’ ~ V*(Z)

* Block MDP - Special case of latent variable MDP where a state can only be
generated from one latent state i.e. one-to-one mapping, hence latent state
is deterministically decodable P(s|z) >0 = P(s|z') =0 Vz' #z

17



Algorithm under Bellman rank

Works for general function approximation with low Bellman rank

Gives optimism without adding (nonlinear) bonus

18



Bilinear-UCB

A general algorithm under Bellman rank that can learn an € near
optimal policy with number of samples

N/
e.g., poly(H, b-rank, In(| & |),1/€?)

e

% &A ¢ \<\, IA)

19



Q-Bellman rank setting

Recall our hypothesis class &, where each g € Z is in the form of g(s, a)

For O-Bellman rank, we define Bellman error loss as:

(Sps Ops Sp1158) = 8(Sp, ap) — 1Sy, @) — max 8(Spy15a")
a

taq,u.ntw-
If we had a dataset & := {s;, a3, 5;,,.1} where s;, a;, ~ d:f, Spe1 ~ Pr(- | sy ap)
e, ) ——

then Vg : EglZ(s), a5, 5,41, 8)] IS an unbiased est of &(g;f, h)

Lw‘in‘u’ owea-

20



V-Bellman rank setting

Recall our hypothesis class &, where each g € Z is in the form of g(s, a)

v (»':) = Q(f‘, HO)

For V-Bellman rank, we define Bellman error loss as:

Ha, = r,(sy)}
h llAg h ( g(sy, ap) — r(sy, a;) — ntlz}x 8(Sp115 a’))

C——r s e e =~

& (Sps Aps Sp11 8) =

4 P
If we had a dataset D := {s, @, 5,41} where s, ~ d.%, @, ~ U(H),

Spe1 ~ Pp(- Ispoap) <

then Vg : Egl€(s;, ap, 5,41, 8)] IS @an unbiased est of &(g;f, h)

21



At iteration ¢ :

'md

Bilinear-UCB

Ao bow wu

Select f, = arg max V,(sy) 7

= BETF e . &
Myi»z' 2 e

t—1 )
s.t., Vh : Z ([Egh,i[f(sh, a,, Sy, +1,g)]> < R? Cﬂ“‘i ot
=0 erginel Bdnvan crror ¥ Lord e

22



Bilinear-UCB

At iteration ¢ :

4©
o™
Select f, = ar (wjr**
; = arg max V,(sy) oV
gEF v
=1 ) ¢
s.t., Vh: Z ([Egh,i[f(sh, Qs Spy 1 g)]) < R?
i=0 ac_num‘dﬁ“

For all h, create 9, , = {s;,, a;, 5,1} W/ m triples, where:

T
- - o~ T o~ .
- For Q-Brank case: sy, a, ~ d,”, 5,1 ~ Py( - | 53 @)

e )

. For V-B rank case: s;, ~ d:ﬁ, a, ~ U(A), spp1 ~ Py( - | s, ap)

23



Bilinear-UCB

t—1 )
Se'eth; = al'g I;gléa; Vg(SO) S.t., Vh . 2 (Egh,i[f(sh’ ah, Sh-l-l’ g)]) S 6:.2.

i=0
wl
1. When the batch size (| 9, ;|) is large, bord
[Egh’if(shs ap, Sh+l9 g) i %(g;.fp h)
t—1 Hre
Mad
*. e [

2. We know that ; E(f*:foh)=0 Binean boodst * © el

3. By properly setting batch size and R, we eliminate wrong hypothesis, but keep f*

4. This gives optimism: V(sp) > Vp(sp) := V*(sp)

Optimism allows explore and exploit tradeoff! )



Analysis of Bilinear-UCB

Uniform convergence style assumption on our hypothesis class Z:

Given any distribution v € A(S X A X §), and m i.i.d samples {s;, a;, s;} from v,
w/ probability at least 1 — 0,

Vg: |EL(s,a,s,8) —Egl(s,a,s’,g) ‘ <
¥ Lo

ot erp¥ed

(m, F,0)

egen

Example: when & is discrete (for B-rank loss), Hoeffding + union bound over & implies:

([ F /3
(m,%,é):zH\/n(' 79
m

J

egen

25
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