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Continuous action spaces

Bandits:

Reward is linear, Lipshitz, GP, NN, …

e.g. r*(x) = xT  x,  are d-dimensional

Why?

Optimal action a* depends on reward r*

MDP: 

Optimal policy * depends on Q*

Attempt 1: Value function Q* is linear

e.g. Q*(s,a) = (s,a)T     are d-dimensional
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Linear Q doesn’t suffice

• No, regret bounds:

      Linear Bandits  Q* Linear

    Upper bound  ෨𝑂(d 𝑇) LinUCB     𝑂(𝑒𝐻) 

    Lower bound   Ω(d 𝑇)  Ω(𝑝𝑜𝑙𝑦(𝐻))

• Need additional assumptions!
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Linear MDP
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 Attempt 2: Use a parametric function to approximate 𝑟 𝑠, 𝑎 , 𝑃(𝑠′|𝑠, 𝑎)

 E.g. Linear 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇  𝜙(𝑠, 𝑎) 

           Low-rank 𝑃ℎ 𝑠′|𝑠, 𝑎 = 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎) 

 Also called low-rank MDPs

 For all , P = T 

SxS Sxd

dxS

P(s’|s,(s)]

(s,(s)]



Linear MDP
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 Use a parametric function to approximate 𝑟 𝑠, 𝑎 , 𝑃(𝑠′|𝑠, 𝑎) 

 E.g. Linear 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇 𝜙(𝑠, 𝑎) 

           Low-rank 𝑃ℎ 𝑠′|𝑠, 𝑎 = 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎) 

 Learn the parameters

 Training data 𝒔𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝒔𝑡+1  gathered online by the 

agent/learning algorithm 



Fundamental property of Linear MDP
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For any value function V,   Bellman update Th V is linear

where Bellman operator 

                  Th V (s) = 𝑟ℎ 𝑠, 𝜋 𝑠 + σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′

Proof: 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇  𝜙(𝑠, 𝑎)

           σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝑎 𝑉𝜋 𝑠′  = σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎)𝑉𝜋 𝑠′

          =σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝑉𝜋 𝑠′  . 𝜙(𝑠, 𝑎)

Implies Q* is linear! But stronger



LSVI-UCB: Least Square 
Value Iteration with UCB
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For h = H-1, H-2, …, 1

Value iteration at episode n using {shi, ahi, rhi, sh+1
i}ℎ=1,𝑖=1

𝐻−1,𝑛−1

n

n
nn



LSVI-UCB: Least Square 
Value Iteration with UCB
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n

At each episode n
For h = H, H-1,  ..., 1

Estimate using data from past episodes 

Plan

Execute
 Roll out h

n to collect trajectory  and add to data



LSVI-UCB: Least Square 
Value Iteration with UCB
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Bandits: If H = 1, recover LinUCB for Linear bandits 

n

n
nn

This implies 𝜃ℎ
𝑛 = Λℎ

𝑛 −1 σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 (𝑟ℎ
𝑖 + ෠𝑉ℎ+1

𝑖 (𝑠ℎ+1
𝑖 ))

 where 𝜙ℎ
𝑖 =  𝜙(𝑠ℎ

𝑖 , 𝑎ℎ
𝑖 ) and Λℎ

𝑛 −1
=  σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 𝜙ℎ

𝑖 𝑇

and bonus 𝑏ℎ
𝑛 𝑠, 𝑎 = 𝜙(𝑠, 𝑎)

Λℎ
𝑛−1𝛽 (derived later)



LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

  Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] =  ෨𝑂(𝐻2 𝑑3𝑇)

Key proof idea:  Combine proofs of LinUCB and UCB-VI
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LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

  Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] =  ෨𝑂(𝐻2 𝑑3𝑇)

Step 1: Design bonus to guarantee Optimism i.e. 𝑉ℎ
∗ 𝑠 ≤ ෠𝑉ℎ

𝑛 𝑠  ∀ℎ, 𝑠

 implies Bonus 𝑏ℎ
𝑛 𝑠, 𝑎  = Transition error 𝑒ℎ

𝑛 𝑠, 𝑎

Step 2: Characterize transition error 

Step 3: Apply simulation lemma
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𝑒ℎ
𝑛 𝑠, 𝑎



LSVI-UCB Regret
• With probability at least 1 – , LSVI-UCB has regret

  Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] =  ෨𝑂(𝐻2 𝑑3𝑇)

Step 1: Design bonus to guarantee Optimism i.e. 𝑉ℎ
∗ 𝑠 ≤ ෠𝑉ℎ

𝑛 𝑠  ∀ℎ, 𝑠
 

For any policy , consider
෠𝑄ℎ

𝑛 𝑠, 𝑎  −  𝑄ℎ
𝜋 𝑠, 𝑎

       =  𝑏ℎ
𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝜃ℎ

𝑛 >  −𝑟ℎ 𝑠, 𝑎 − 𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1
𝜋 (𝑠′)]

       =  𝑏ℎ
𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝑤ℎ + 𝜃ℎ

෡𝑉 > + < 𝜙 𝑠, 𝑎 , Λℎ
𝑛 −1

σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖 ) >

          −𝑟ℎ 𝑠, 𝑎 − 𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1
𝜋 (𝑠′)]    

𝜃ℎ
𝑛 = Λℎ

𝑛 −1 σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 (𝑟ℎ
𝑖+ ෠𝑉ℎ+1

𝑖 (𝑠ℎ+1
𝑖 )) 

      = Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 (𝑟ℎ

𝑖+𝔼
𝑠′~𝑃(.|𝑠ℎ

𝑖 ,𝑎ℎ
𝑖 )

෢[𝑉ℎ+1
𝑖 (𝑠′)] + 𝜂ℎ

𝑖 )  where 𝜂ℎ
𝑖  is transition error

       = Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 (𝜙ℎ

𝑖 𝑤ℎ + 𝜙ℎ
𝑖 𝜃ℎ

෡𝑉 + 𝜂ℎ
𝑖 )  Bellman update is linear in linear MDP
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LSVI-UCB Regret
• With probability at least 1 – , LSVI-UCB has regret

  Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] =  ෨𝑂(𝐻2 𝑑3𝑇)

Step 1: Design bonus to guarantee Optimism i.e. 𝑉ℎ
∗ 𝑠 ≤ ෠𝑉ℎ

𝑛 𝑠  ∀ℎ, 𝑠
 

For any policy , consider

෠𝑄ℎ
𝑛 𝑠, 𝑎  −  𝑄ℎ

𝜋 𝑠, 𝑎
       =  𝑏ℎ

𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝜃ℎ
𝑛 >  −𝑟ℎ 𝑠, 𝑎 − 𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1

𝜋 (𝑠′)]

       =  𝑏ℎ
𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝑤ℎ + 𝜃ℎ

෡𝑉 > + < 𝜙 𝑠, 𝑎 , Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 𝜂ℎ

𝑖 ) > −𝑟ℎ 𝑠, 𝑎
 −𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1

𝜋 (𝑠′)]
      = 𝑏ℎ

𝑛 𝑠, 𝑎  +< 𝜙 𝑠, 𝑎 , 𝜃ℎ
෡𝑉 >  + < 𝜙 𝑠, 𝑎 , Λℎ

𝑛 −1 σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖 >

 −𝔼𝑠′~𝑃 . 𝑠, 𝑎 𝑉ℎ+1
𝜋 𝑠′  

      = 𝑏ℎ
𝑛 𝑠, 𝑎  + 𝔼𝑠′~𝑃 . 𝑠, 𝑎 ෠𝑉ℎ+1

𝑖 𝑠′ + < 𝜙 𝑠, 𝑎 , Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 𝜂ℎ

𝑖 >
 −𝔼𝑠′~𝑃 . 𝑠, 𝑎 𝑉ℎ+1

𝜋 𝑠′

      = 𝑏ℎ
𝑛 𝑠, 𝑎 + 𝔼𝑠′~𝑃 . 𝑠, 𝑎 ෠𝑉ℎ+1

𝑖 𝑠′  −𝔼𝑠′~𝑃 . 𝑠, 𝑎 𝑉ℎ+1
𝜋 𝑠′  + 𝑒ℎ

𝑛 𝑠, 𝑎
      ≥ 0.    by induction for optimism and choice of bonus
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LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

  Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] =  ෨𝑂(𝐻2 𝑑3𝑇)

Step 2: Characterize transition error 

w.p. atleast 1- |𝑒ℎ
𝑛 𝑠, 𝑎 | = |𝜙𝑇 𝑠, 𝑎 Λℎ

𝑛 −1
σ𝑖=1

𝑛−1 𝜙ℎ
𝑖 𝜂ℎ

𝑖 |

    ≤ 𝜙
Λℎ

𝑛−1 σ𝑖=1
𝑛−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖

Λℎ
𝑛−1

    ≤ 𝜙
Λℎ

𝑛−1𝛽

where σ𝑖=1
𝑛−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖

Λℎ
𝑛−1 ≤ 𝛽 = ෨𝑂(𝑑𝐻) from LinUCB proof
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LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

  Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] =  ෨𝑂(𝐻2 𝑑3𝑁)

Step 3: Apply simulation lemma

෍

𝑛=1

𝑁

[𝑉∗−𝑉𝜋𝑛] ≤ ෍

𝑛=1

𝑁

[𝑉∗−𝑉𝜋𝑛] ≤ ෍

𝑛=1

𝑁

෍

ℎ=0

𝐻−1

𝔼[𝑏ℎ
𝑛 𝑠ℎ

𝑛 , 𝑎ℎ
𝑛 + 𝑒ℎ

𝑛 𝑠ℎ
𝑛 , 𝑎ℎ

𝑛 ]

   

           = 2 𝛽 σℎ=0
𝐻−1 𝑁 σ𝑛=1

𝑁 𝜙ℎ
𝑛

Λℎ
𝑛−1

2
= ෨𝑂(𝛽𝐻 𝑑𝑁) = ෨𝑂(𝐻2𝑑 𝑑𝑁)
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𝑒ℎ
𝑛 𝑠, 𝑎

෨𝑂 𝑑  using elliptical potential lemma from LinUCB



Fundamental property of Linear MDP
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For any value function V,   Bellman update Th V is linear

where Bellman operator 

                  Th V (s) = 𝑟ℎ 𝑠, 𝜋 𝑠 + σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′

Proof: 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇  𝜙(𝑠, 𝑎)

           σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝑎 𝑉𝜋 𝑠′  = σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎)𝑉𝜋 𝑠′

          =σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝑉𝜋 𝑠′  . 𝜙(𝑠, 𝑎)

Implies Q* is linear! But stronger



LSVI-UCB: Least Square 
Value Iteration with UCB
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For h = H-1, H-2, …, 1

Value iteration at episode n using {shi, ahi, rhi, sh+1
i}ℎ=1,𝑖=1

𝐻−1,𝑛−1

n

n
nn



RL with continuous action spaces

• Approach 3:

Linear Bellman completeness: For any linear Q function, its 
Bellman update is also linear

19



RL with continuous action spaces
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General function approximation

 Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate 𝑄∗ 𝑠, 𝑎

 E.g. 𝑄 𝑠, 𝑎; Θ  = Neural network

             Linear 𝜃𝑇𝜙(𝑠, 𝑎) where 𝜙(𝑠, 𝑎) - features

 Learn the parameters

 Training data 𝒔𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝒔𝑡+1  gathered online by the 

agent/learning algorithm 



RL with continuous action spaces
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General function approximation

 Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate 𝑄∗ 𝑠, 𝑎

 E.g. 𝑄 𝑠, 𝑎; Θ  = Neural network

             Linear 𝜃𝑇𝜙(𝑠, 𝑎) where 𝜙(𝑠, 𝑎) - features

Q* is realizable not enough!

Need Bellman completeness: For any Q function in ℱ, its Bellman 

update is also in ℱ


	Slide 1: RL with continuous action spaces Linear MDP 
	Slide 2: Continuous action spaces
	Slide 3: Linear Q doesn’t suffice
	Slide 4: Linear MDP
	Slide 5: Linear MDP
	Slide 6: Fundamental property of Linear MDP
	Slide 7: LSVI-UCB: Least Square  Value Iteration with UCB
	Slide 8: LSVI-UCB: Least Square  Value Iteration with UCB
	Slide 9: LSVI-UCB: Least Square  Value Iteration with UCB
	Slide 10: LSVI-UCB Regret
	Slide 11: LSVI-UCB Regret
	Slide 12: LSVI-UCB Regret
	Slide 13: LSVI-UCB Regret
	Slide 15: LSVI-UCB Regret
	Slide 16: LSVI-UCB Regret
	Slide 17: Fundamental property of Linear MDP
	Slide 18: LSVI-UCB: Least Square  Value Iteration with UCB
	Slide 19: RL with continuous action spaces
	Slide 20: RL with continuous action spaces
	Slide 21: RL with continuous action spaces

