RL with continuous action spaces
Linear MDP

Aarti Singh

Machine Learning 10-734
Oct 30, 2025

Slides courtesy: Yuejie Chi, Wen Sun

ACHI

Continuous action spaces

Bandits:
Reward is linear, Lipshitz, GP, NN, ...
e.g. r(x) = x"0* X, 0* are d-dimensional
Why?

Optimal action a” depends on reward r’

MDP:
Optimal policy ©° depends on Q"

Attempt 1: Value function Q" is linear
e.g. Q'(s,a) = ¢(s,a)" O ¢, 0* are d-dimensional

LE-:QE;- w‘-{)r:ﬂlof‘“ﬁ“ ‘ﬁ (sbade ra‘tkh) faﬁ‘

Linear Q doesn’t suffice

* No, regret bounds:

Linear Bandits Q’ Linear
Upper bound 0 (dVT) LinUCB 0(e™)
Lower bound Q(dVT) Q(poly(H))

* Need additional assumptions!

Linear MDP

* Attempt 2: Use a parametric function to approximate r(s,a), P(s’|s, a)

* E.g. Linear r,(s,a) = w/l ¢(s,a)

!_—l‘

Low-rank P, (s'|s,a) = up (s p(s,a)

—
* Also called low-rank MDPs
dxS
4ol
oS S d(s,m(s)]
P(s’|s,m(s)]
* Forall x, pT = b T

'mem

Linear MDP

* Use a parametric function to approximate r(s,a), P(s’|s, a)
* E.g. Linear 1;,(s, @) = w} ¢(s, a)

Low-rank P, (s'|s,a) = un (s ¢ (s, a)

* Learn the parameters F \Pa-lm. “i\“wobﬁ" H“Tuutn r;h»hhm

* Training data (s, a;, ¢, St +1) gathered online by the

agent/learning algorithm

Fundamental property of Linear MDP
\

For any value function V, Bellman update T, V is linear
where Bellman operator i T
{}htb*
%&jﬁ-’ T,V (s)= rh(s, T[(S)) + X P(S’ | s, n(s))V”(s')
Vﬁ
Proof: 1,(s,a) = w/ ¢(s,a)

> P(s'|s,a)V™(s") =Zs,quh (s (s, a?V”(s’)

=X n(sN'VT(S) . P(s, a)

oy qorondie for ¥ ol

Implies Q* is linear! But stronger

A A
\Fﬂ TV / &‘4# T@

LSVI-UCB: Least Square
Value Iteration with UCB

N B S
Sy A Yy gmH -
Value iteration at episode n using {shi, ahi, rhi, sh,, '}, 2172

v}’{(s) =0,Vs

Forh=H-1,H-2, .., 1 L% D W
fii i et Ty /‘—‘:\E\ . /
0y « argmin > ~ ((¢(s},,a}),0) — 7, — Vi1 (sh11)) " + A613
B o eee— - —————
A Qﬁf
—~ >
(¢ q) = min{ b'(s,a)+ a). 0 H}V & de™
Q (s, a) i { H(s,a)+ (¢(s,a),0y), sy Wb

Vi(s) =max Q%(s,a). a'(s) =argmax Q(s,a),Vs

LSVI-UCB: Least Square
Value Iteration with UCB

At each episode n
Forh=H,H-1, ..., 1

Estimate using data from past episodes

—_~

07(s,a) = min{ bis.a) + ($(s,),67), H Vs,

Plan o
my(s) = argmax Q (s,a),Vs

Execute
Roll out " to collect trajectory and add to data

LSVI-UCB: Least Square
Value Iteration with UCB

§Z(s,a)=min{ by (s, a)+(qbsa. 92) H} Vs, a

LALIND M
n-1 _~—m> ,/'-—J__'“>
0, < a,rgmmz ((¢(s},,a},),0) — Vh+1(sh+1)) R GIE
1=1 S i) .53.{
m ~ A%»ﬁf .
This implies 8y = Arﬁ_l ¢h(rh+Vh+1(sh+1)) (Z ?(*K"ﬂﬂ)m o
. - 2 i \
T\\ J“ T
where ¢} = ¢(sh,al)and AL = V- ¢h¢h+}‘£
and bonus b} (s,a) = |[|¢(s, a)IIAn-l,B (derived later) RN ‘l"
h

Bandits: If H= 1, recover LinUCB for Linear bandits

LSVI-UCB Regret

* With probability at least 1 — 9, LSVI-UCB has regret

Regret, YN_.[V*—V™] = O(H?*Vd3T)

*

Key proof idea: Combine proofs of LinUCB and UCB-VI

1]
b njnbh' ToluJas,

10

LSVI-UCB Regret

* With probability at least 1 — 9, LSVI-UCB has regret A \J“ﬂ

Regret, YN_.[V*—V™] = O(H?*Vd3T) -

Step 1: Design bonus to guarantee Optimism i.e. V (s) < V*(s) Vh, s

implies Bonus by, (s, a) = Transition error e,’?(?; a)
Step 2: Characterize transition error

Step 3: Apply simulation lemma

H-1)
Viso) = ViF(sy) < Z Esgmdr” [b;;(.s-, a)+ (P |s,a) = Py(- |s,a)- VI,

1) h=0 T
Va YA en (s, a)
Y P Teanyhen Qs

11

LSVI-UCB Regret

* With probability at least 1 — 9, LSVI-UCB has regret
Regret, YN_.[V*—V™] = O(H?*Vd3T)

Step 1: Design bonus to guarantee Optimismi.e. Vi (s) < V*(s) Vh, s

For any policy i, consider

Qh(sa)—Q(Sa) c;L [S& Mwﬂ\qdﬂh*ﬂ“w‘z"
birzl(s a)+ < ¢(s, a) 0 > —1, (s,a) — s'~P(.S, @) [Vht1(s)]
bi (s, a)+ < c/)(s a), wy, + HV >+ < ¢, a), Ar—l_zﬁ_i_qb"_ﬁh) >
~Th (S a) — s'~P(.|S, Q) [Vh+1(5)]
1 “f - K.y
on = Ay Z L oh (Vi1 (She1)) CZK\j >

=N} -1 Z ¢h(rh+IE §'~P(Jsk al)[Vh+1(s)] + nh) where nh is transition error
=N}y 12 th(thwh + gbhHh + nb) Bellman update is linear in linear MDP

~ ~ A R .
W%(ML*B:\% A:\ g‘#’f\q;\ 12

LSVI-UCB Regret

e With probability at least 1 — 9, LSVI-UCB has regret
Regret, YN_.[V*—V™] = O(H?*Vd3T)

Step 1: Design bonus to guarantee Optimism i.e. V; (s) < V*(s) Vh, s

For any policy &, consider

Qh(s,a) — Qf(s,a)
— = bp(s,aJ+ < ¢(s,a), 60 > —Th (s,a) = Egp(ys, ay[Var1(s")]
= blI(s,a)+ < ¢p(s,a), wy, + 60} >+ < ¢(s, a),A’,";f1 N1opint) > -, (s,a)
—Eg p(s, a)[[:h+1fsl)] 3 . -
=bji(s,a) +< ¢(s,a),0) > + < p(s,a), A} TN phnh > =
_]Es’~P(.|S, a) [Vig1(s")]
=byp(s,a) + Eg_p(s, a)[vi€+1(5’)]+ < ¢(s, a):A?z_l N ohnh >
—Eg p(s, a)ﬂVi?ﬂ(S')] ~— — b~ e 20
=bp(s,a) + Eg¢_p(s, @) [‘7}:+1(5’)] —Egp(is, @ [Vas1(sD] + ex (s, a) (e Lot
> 0. by induction for optimism and choice of bonus——

i . i n
'A Vg, = \Jhﬂ = @!;\T‘?&L =3 \1{5’:\\'{‘ 13

LSVI-UCB Regret

* With probability at least 1 — 9, LSVI-UCB has regret

Regret, YN_.[V*—V™] = O(H?*Vd3T)

T A T,

Step 2: Characterize transition error 2, 2 é e
e
w.p. atleast 1-3, |ef (s, a)| = |pT(s,a) AL " X pint |

<l s |22 phmill e (S

<ol jn-18 < lonus
where || X1 ¢fln§l||An—1 < B = 0(dH) from LinUCB proof

h

15

LSVI-UCB Regret

* With probability at least 1 — 9, LSVI-UCB has regret

1
vegret, Sl vy = o Y P

Step 3: Apply simulation lemma el (s, a)

(SU) Vi (s“) < Z [Emmd,rn [b”(s a)+ (P”(|s,a) — Py(-|s,a)) - h+l]
h=0

N N H-1 22 U W pn
> -y < z SAEDY z E[b} (s, a) + e (sp, ap)]
i whwh-. Gindea fie oHd)

=2 SHZEVI [EX, 193y r = OBHVAN) = O(H? ANy’

16

I Y
Ca'm'lﬁg ﬁ'(d) using elliptical potential lemma from LinUCB

Fundamental property of Linear MDP

For any value function V, Bellman update T, Vs linear

where Bellman operator

T,V rh(s ﬂ(s)) + ZS,P(S | s, n(s))V”(s’) a

Proof: 1,(s,a) = w/ ¢(s,a)
Yo P(s" | 5,@)V™(s") =X un (s P (s,)V (s")

=X M (sN'VT(S) . d(s,a)
n_— 7
ﬁ'u‘

[N

Implies Q* is linear! But stronger

17

LSVI-UCB: Least Square
Value Iteration with UCB

Value iteration at episode n using {shi, ahi, rhi, sthli}I,L_ll’i"’:_l1

v}’{(s) =0,Vs
Forh=H-1,H-2,...,1 S uue
o8 ey
n—1 . F | : Uy
67, axgmin Y ((9(sh, 1), 6) — 7h — Villa (s341))” + A6 orgy
1=1
0765, = min { bj(s.0)+ (¢(s,a),67), H},Vs,a
Vi(s) =max Q%(s,a). a'(s) =argmax Q(s,a),Vs

18

RL with continuous action spaces
‘TECQ# 18 fbhlﬁj\

Approach 3:

Linear Bellman completeness: For any linear Q function, its
Bellman update is also linear

Given feature ¢, take any linear function w ' ¢ (s, a):

Vh,30 € R% s.t.,07 (s, a) = r(s,a) + [Es’~Ph(s,a) max w'g(s',a),Vs,a

-_—

— —— ol
Rellwen %Jaks:
g\\"‘?} 'ﬁﬂﬂn M M‘LM {'ﬂar\ 'S ri-n" ’Uﬁw

0L ¥ Aineas ¢ P\s QM o

19

RL with continuous action spaces

General function approximation

* Use a parametric function, Q(s, a; ®), to approximate Q*(s, a)
[W {—

* E.g. Q(s, a; ®) = Neural network

Linear 87 ¢ (s, a) where ¢ (s, a) - features

* Learn the parameters ., j?G'M, 'Vll.w.. Weradio

- Training data (s;, a;, ¢, S¢41) gathered online by the

agent/learning algorithm

20

RL with continuous action spaces

General function approximation

* Use a parametric function, Q(s, a; ®), to approximate Q*(s, a)

* E.g. Q(s,a; ®) = Neural network

Linear 87 ¢ (s, a) where ¢ (s, a) - features

Q" is realizable not enough!

Need Bellman completeness: For any Q function in F, its Bellman

update is also in F

21

	Slide 1: RL with continuous action spaces Linear MDP
	Slide 2: Continuous action spaces
	Slide 3: Linear Q doesn’t suffice
	Slide 4: Linear MDP
	Slide 5: Linear MDP
	Slide 6: Fundamental property of Linear MDP
	Slide 7: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 8: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 9: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 10: LSVI-UCB Regret
	Slide 11: LSVI-UCB Regret
	Slide 12: LSVI-UCB Regret
	Slide 13: LSVI-UCB Regret
	Slide 15: LSVI-UCB Regret
	Slide 16: LSVI-UCB Regret
	Slide 17: Fundamental property of Linear MDP
	Slide 18: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 19: RL with continuous action spaces
	Slide 20: RL with continuous action spaces
	Slide 21: RL with continuous action spaces

