
RL with continuous action spaces
Linear MDP

Aarti Singh

Machine Learning 10-734
Oct 30, 2025

Slides courtesy: Yuejie Chi, Wen Sun

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAA

Continuous action spaces

Bandits:

Reward is linear, Lipshitz, GP, NN, …

e.g. r*(x) = xT x,  are d-dimensional

Why?

Optimal action a* depends on reward r*

MDP:

Optimal policy * depends on Q*

Attempt 1: Value function Q* is linear

e.g. Q*(s,a) = (s,a)T    are d-dimensional

2

Linear Q doesn’t suffice

• No, regret bounds:

 Linear Bandits Q* Linear

 Upper bound ෨𝑂(d 𝑇) LinUCB 𝑂(𝑒𝐻)

 Lower bound Ω(d 𝑇) Ω(𝑝𝑜𝑙𝑦(𝐻))

• Need additional assumptions!

3

Linear MDP

4

 Attempt 2: Use a parametric function to approximate 𝑟 𝑠, 𝑎 , 𝑃(𝑠′|𝑠, 𝑎)

 E.g. Linear 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇 𝜙(𝑠, 𝑎)

 Low-rank 𝑃ℎ 𝑠′|𝑠, 𝑎 = 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎)

 Also called low-rank MDPs

 For all , P = T 

SxS Sxd

dxS

P(s’|s,(s)]

(s,(s)]

Linear MDP

5

 Use a parametric function to approximate 𝑟 𝑠, 𝑎 , 𝑃(𝑠′|𝑠, 𝑎)

 E.g. Linear 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇 𝜙(𝑠, 𝑎)

 Low-rank 𝑃ℎ 𝑠′|𝑠, 𝑎 = 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎)

 Learn the parameters

 Training data 𝒔𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝒔𝑡+1 gathered online by the

agent/learning algorithm

Fundamental property of Linear MDP

6

For any value function V, Bellman update Th V is linear

where Bellman operator

 Th V (s) = 𝑟ℎ 𝑠, 𝜋 𝑠 + σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′

Proof: 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇 𝜙(𝑠, 𝑎)

 σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝑎 𝑉𝜋 𝑠′ = σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎)𝑉𝜋 𝑠′

 =σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝑉𝜋 𝑠′ . 𝜙(𝑠, 𝑎)

Implies Q* is linear! But stronger

LSVI-UCB: Least Square
Value Iteration with UCB

7

For h = H-1, H-2, …, 1

Value iteration at episode n using {shi, ahi, rhi, sh+1
i}ℎ=1,𝑖=1

𝐻−1,𝑛−1

n

n
nn

LSVI-UCB: Least Square
Value Iteration with UCB

8

n

At each episode n
For h = H, H-1, ..., 1

Estimate using data from past episodes

Plan

Execute
 Roll out h

n to collect trajectory and add to data

LSVI-UCB: Least Square
Value Iteration with UCB

9
Bandits: If H = 1, recover LinUCB for Linear bandits

n

n
nn

This implies 𝜃ℎ
𝑛 = Λℎ

𝑛 −1 σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 (𝑟ℎ
𝑖 + ෠𝑉ℎ+1

𝑖 (𝑠ℎ+1
𝑖))

 where 𝜙ℎ
𝑖 = 𝜙(𝑠ℎ

𝑖 , 𝑎ℎ
𝑖) and Λℎ

𝑛 −1
= σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 𝜙ℎ

𝑖 𝑇

and bonus 𝑏ℎ
𝑛 𝑠, 𝑎 = 𝜙(𝑠, 𝑎)

Λℎ
𝑛−1𝛽 (derived later)

LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

 Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] = ෨𝑂(𝐻2 𝑑3𝑇)

Key proof idea: Combine proofs of LinUCB and UCB-VI

10

LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

 Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] = ෨𝑂(𝐻2 𝑑3𝑇)

Step 1: Design bonus to guarantee Optimism i.e. 𝑉ℎ
∗ 𝑠 ≤ ෠𝑉ℎ

𝑛 𝑠 ∀ℎ, 𝑠

 implies Bonus 𝑏ℎ
𝑛 𝑠, 𝑎 = Transition error 𝑒ℎ

𝑛 𝑠, 𝑎

Step 2: Characterize transition error

Step 3: Apply simulation lemma

11

𝑒ℎ
𝑛 𝑠, 𝑎

LSVI-UCB Regret
• With probability at least 1 – , LSVI-UCB has regret

 Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] = ෨𝑂(𝐻2 𝑑3𝑇)

Step 1: Design bonus to guarantee Optimism i.e. 𝑉ℎ
∗ 𝑠 ≤ ෠𝑉ℎ

𝑛 𝑠 ∀ℎ, 𝑠

For any policy , consider
෠𝑄ℎ

𝑛 𝑠, 𝑎 − 𝑄ℎ
𝜋 𝑠, 𝑎

 = 𝑏ℎ
𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝜃ℎ

𝑛 > −𝑟ℎ 𝑠, 𝑎 − 𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1
𝜋 (𝑠′)]

 = 𝑏ℎ
𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝑤ℎ + 𝜃ℎ

෡𝑉 > + < 𝜙 𝑠, 𝑎 , Λℎ
𝑛 −1

σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖) >

 −𝑟ℎ 𝑠, 𝑎 − 𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1
𝜋 (𝑠′)]

𝜃ℎ
𝑛 = Λℎ

𝑛 −1 σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 (𝑟ℎ
𝑖+ ෠𝑉ℎ+1

𝑖 (𝑠ℎ+1
𝑖))

 = Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 (𝑟ℎ

𝑖+𝔼
𝑠′~𝑃(.|𝑠ℎ

𝑖 ,𝑎ℎ
𝑖)

෢[𝑉ℎ+1
𝑖 (𝑠′)] + 𝜂ℎ

𝑖) where 𝜂ℎ
𝑖 is transition error

 = Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 (𝜙ℎ

𝑖 𝑤ℎ + 𝜙ℎ
𝑖 𝜃ℎ

෡𝑉 + 𝜂ℎ
𝑖) Bellman update is linear in linear MDP

12

LSVI-UCB Regret
• With probability at least 1 – , LSVI-UCB has regret

 Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] = ෨𝑂(𝐻2 𝑑3𝑇)

Step 1: Design bonus to guarantee Optimism i.e. 𝑉ℎ
∗ 𝑠 ≤ ෠𝑉ℎ

𝑛 𝑠 ∀ℎ, 𝑠

For any policy , consider

෠𝑄ℎ
𝑛 𝑠, 𝑎 − 𝑄ℎ

𝜋 𝑠, 𝑎
 = 𝑏ℎ

𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝜃ℎ
𝑛 > −𝑟ℎ 𝑠, 𝑎 − 𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1

𝜋 (𝑠′)]

 = 𝑏ℎ
𝑛 𝑠, 𝑎 + < 𝜙 𝑠, 𝑎 , 𝑤ℎ + 𝜃ℎ

෡𝑉 > + < 𝜙 𝑠, 𝑎 , Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 𝜂ℎ

𝑖) > −𝑟ℎ 𝑠, 𝑎
 −𝔼𝑠′~𝑃 . 𝑠, 𝑎 [𝑉ℎ+1

𝜋 (𝑠′)]
 = 𝑏ℎ

𝑛 𝑠, 𝑎 +< 𝜙 𝑠, 𝑎 , 𝜃ℎ
෡𝑉 > + < 𝜙 𝑠, 𝑎 , Λℎ

𝑛 −1 σ𝑖=1
𝑁−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖 >

 −𝔼𝑠′~𝑃 . 𝑠, 𝑎 𝑉ℎ+1
𝜋 𝑠′

 = 𝑏ℎ
𝑛 𝑠, 𝑎 + 𝔼𝑠′~𝑃 . 𝑠, 𝑎 ෠𝑉ℎ+1

𝑖 𝑠′ + < 𝜙 𝑠, 𝑎 , Λℎ
𝑛 −1 σ𝑖=1

𝑁−1 𝜙ℎ
𝑖 𝜂ℎ

𝑖 >
 −𝔼𝑠′~𝑃 . 𝑠, 𝑎 𝑉ℎ+1

𝜋 𝑠′

 = 𝑏ℎ
𝑛 𝑠, 𝑎 + 𝔼𝑠′~𝑃 . 𝑠, 𝑎 ෠𝑉ℎ+1

𝑖 𝑠′ −𝔼𝑠′~𝑃 . 𝑠, 𝑎 𝑉ℎ+1
𝜋 𝑠′ + 𝑒ℎ

𝑛 𝑠, 𝑎
 ≥ 0. by induction for optimism and choice of bonus

13

LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

 Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] = ෨𝑂(𝐻2 𝑑3𝑇)

Step 2: Characterize transition error

w.p. atleast 1- |𝑒ℎ
𝑛 𝑠, 𝑎 | = |𝜙𝑇 𝑠, 𝑎 Λℎ

𝑛 −1
σ𝑖=1

𝑛−1 𝜙ℎ
𝑖 𝜂ℎ

𝑖 |

 ≤ 𝜙
Λℎ

𝑛−1 σ𝑖=1
𝑛−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖

Λℎ
𝑛−1

 ≤ 𝜙
Λℎ

𝑛−1𝛽

where σ𝑖=1
𝑛−1 𝜙ℎ

𝑖 𝜂ℎ
𝑖

Λℎ
𝑛−1 ≤ 𝛽 = ෨𝑂(𝑑𝐻) from LinUCB proof

15

LSVI-UCB Regret

• With probability at least 1 – , LSVI-UCB has regret

 Regret, σ𝑛=1
𝑁 [𝑉∗−𝑉𝜋𝑛] = ෨𝑂(𝐻2 𝑑3𝑁)

Step 3: Apply simulation lemma

෍

𝑛=1

𝑁

[𝑉∗−𝑉𝜋𝑛] ≤ ෍

𝑛=1

𝑁

[𝑉∗−𝑉𝜋𝑛] ≤ ෍

𝑛=1

𝑁

෍

ℎ=0

𝐻−1

𝔼[𝑏ℎ
𝑛 𝑠ℎ

𝑛 , 𝑎ℎ
𝑛 + 𝑒ℎ

𝑛 𝑠ℎ
𝑛 , 𝑎ℎ

𝑛]

 = 2 𝛽 σℎ=0
𝐻−1 𝑁 σ𝑛=1

𝑁 𝜙ℎ
𝑛

Λℎ
𝑛−1

2
= ෨𝑂(𝛽𝐻 𝑑𝑁) = ෨𝑂(𝐻2𝑑 𝑑𝑁)

16

𝑒ℎ
𝑛 𝑠, 𝑎

෨𝑂 𝑑 using elliptical potential lemma from LinUCB

Fundamental property of Linear MDP

17

For any value function V, Bellman update Th V is linear

where Bellman operator

 Th V (s) = 𝑟ℎ 𝑠, 𝜋 𝑠 + σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′

Proof: 𝑟ℎ 𝑠, 𝑎 = 𝑤ℎ
𝑇 𝜙(𝑠, 𝑎)

 σ𝑠′ 𝑃 𝑠′ | 𝑠, 𝑎 𝑉𝜋 𝑠′ = σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝜙(𝑠, 𝑎)𝑉𝜋 𝑠′

 =σ𝑠′ 𝜇ℎ(𝑠′)𝑇𝑉𝜋 𝑠′ . 𝜙(𝑠, 𝑎)

Implies Q* is linear! But stronger

LSVI-UCB: Least Square
Value Iteration with UCB

18

For h = H-1, H-2, …, 1

Value iteration at episode n using {shi, ahi, rhi, sh+1
i}ℎ=1,𝑖=1

𝐻−1,𝑛−1

n

n
nn

RL with continuous action spaces

• Approach 3:

Linear Bellman completeness: For any linear Q function, its
Bellman update is also linear

19

RL with continuous action spaces

20

General function approximation

 Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate 𝑄∗ 𝑠, 𝑎

 E.g. 𝑄 𝑠, 𝑎; Θ = Neural network

 Linear 𝜃𝑇𝜙(𝑠, 𝑎) where 𝜙(𝑠, 𝑎) - features

 Learn the parameters

 Training data 𝒔𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝒔𝑡+1 gathered online by the

agent/learning algorithm

RL with continuous action spaces

21

General function approximation

 Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate 𝑄∗ 𝑠, 𝑎

 E.g. 𝑄 𝑠, 𝑎; Θ = Neural network

 Linear 𝜃𝑇𝜙(𝑠, 𝑎) where 𝜙(𝑠, 𝑎) - features

Q* is realizable not enough!

Need Bellman completeness: For any Q function in ℱ, its Bellman

update is also in ℱ

	Slide 1: RL with continuous action spaces Linear MDP
	Slide 2: Continuous action spaces
	Slide 3: Linear Q doesn’t suffice
	Slide 4: Linear MDP
	Slide 5: Linear MDP
	Slide 6: Fundamental property of Linear MDP
	Slide 7: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 8: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 9: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 10: LSVI-UCB Regret
	Slide 11: LSVI-UCB Regret
	Slide 12: LSVI-UCB Regret
	Slide 13: LSVI-UCB Regret
	Slide 15: LSVI-UCB Regret
	Slide 16: LSVI-UCB Regret
	Slide 17: Fundamental property of Linear MDP
	Slide 18: LSVI-UCB: Least Square Value Iteration with UCB
	Slide 19: RL with continuous action spaces
	Slide 20: RL with continuous action spaces
	Slide 21: RL with continuous action spaces

